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Abstract

We address the problem of extracting the road network

from large-scale range datasets. Our approach is fully auto-

matic and does not require any inputs other than depth and

intensity measurements from the range sensor. Road extrac-

tion is important because it provides contextual information

for scene analysis and enables automatic content genera-

tion for geographic information systems (GIS). In addition

to these two applications, road extraction is an intriguing

detection problem because robust detection requires inte-

gration of local and long-range constraints. Our approach

segments the data based on both edge and region properties

and then extracts roads using hypothesis testing. Road ex-

traction is formulated as a minimum cover problem, whose

approximate solutions can be computed efficiently. Besides

detecting and extracting the road network, we also present

a technique for segmenting the entire city into blocks. We

show experimental results on large-scale data that cover a

large part of a city, with diverse landscapes and road types.

1. Introduction

Automatic road extraction has recently attracted the at-

tention of the creators and providers of GIS content in tra-

ditional formats, as well as over the Internet and wireless

networks. This is due to the maturation of sensor and analy-

sis technology and increased consumer interest. Apart from

commercial applications, the extracted road network can be

used for urban and emergency response planning. Progress

has been made since the early work of [1, 17], but the prob-

lem is far from being solved. In 2007, the DARPA Urban

Challenge [3, 15, 23] demonstrated autonomous navigation,

but road locations where provided in GPS coordinates to

the participants. We present an approach for road detection

from airborne Light Detection And Ranging (LIDAR) data

that is applicable to large-scale datasets that is offline, but

fully automatic.

Besides the practical considerations mentioned above,

there are several reasons that make this problem attractive

from a scientific point of view. The consensus regarding

modern scene understanding is that much can be gained by

the use of contextual relationships between the environment

and the objects. The road network provides rich contextual

information for both urban and rural environments, but its

extraction is not without difficulties. Some of these diffi-

culties are due to local extraction failures, because of oc-

clusion or illumination variations, while others are due to

the non-local nature of the constraints that need to be en-

forced. Besides being long-range, many of the constraints

that are desirable for roads, are often violated. For example,

roads are in general straight and elongated. They intersect

at right angles and they are parallel to other roads. When

these constraints hold, they can aid the extraction process

significantly. For instance, Price [20] extracts the road grid

from urban imagery ensuring that its topology is correct.

The system was very accurate for cities with “stereotypi-

cal midwestern US patterns”, but roads that deviated from

these patterns were not detected. The strict a priori en-

forcement of other constraints can lead to similar behav-

iors. Our approach integrates the constraints into early pro-

cessing stages, but allows significant deviations from them

when other evidence suggests the presence of roads with

unexpected orientations or large curved segments.

Our method operates on range data captured from air-

borne LIDAR sensors utilizing both the 3D measurements

and the intensity response of the sensors. The latter is a

measure of the strength of the return pulse and is a func-

tion of distance, but also of the material reflecting the laser.

The benefit of using the intensity of the LIDAR over regular

electro-optic (EO) imagery is that we do not need additional

sensors and, most importantly, that it is not affected by illu-

mination variations and shadows. This property makes the

appearance of materials fairly consistent despite the pres-

ence of shadows. The disadvantage of LIDAR data com-

pared to images is lower resolution.
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Our segmentation approach combines region and edge

information and is able to enforce desirable properties dur-

ing the extraction and not as post-processing steps (Section

4). A fundamental characteristic that distinguishes roads

from other asphalt-paved surfaces, such as parking lots, is

elongation. Unlike previous methods, our approach does

not classify regions as potential roads and then searches for

elongated structures among these regions. The minimum

cover formulation [8] of the problem imposes a preference

for a set of long, straight segments that explains the heat

map of road likelihood while incurring minimum cost.

In addition, we show how the road network can be used

in a hierarchical framework for analyzing urban datasets.

Specifically, we use the computed road likelihood to seg-

ment city blocks. This provides a natural way to divide

very large urban datasets into manageable yet semantical

meaningful blocks. Subsequent analysis can then focus

on each block separately in order to detect buildings and

smaller objects. Our approach is based on the Normalized

Cuts framework [21] that considers intervening contours

between points [13] and is able to segment blocks even if

road detection has missed segments of the road.

2. Related Work

In this section, we briefly review related work on road

extraction beginning with approaches that require a road

database and aim at updating it. Representative work

on road database updating includes that of Baltsavias and

Zhang [2]. The proposed system operates on images, digi-

tal terrain models (DTMs) and geospatial databases. It fuses

multiple cues and relies on detailed models and rules for dif-

ferent types of roads. Grote et al. [9] also aim at assessing

road databases. The normalized cuts algorithm [21] is used

to segment the image using color, edges and road color in-

formation. The latter can be learned from the images since

road centerlines are provided by the database.

A more challenging problem than road database assess-

ment is road extraction from images without the aid of a

database. Laptev et al. [12] addressed road extraction in

scale-space by modeling roads as curves at coarse scales

and ribbons at finer scales, achieving good performance

on rural scenes. Hinz and Baumgartner [10] advocate a

knowledge-based approach with detailed modeling of road

categories that operates on multiple images and DTMs.

Youn et al. [26] exploit the distribution of edges in the

image to search for roads along the dominant edge direc-

tions. A sequence of hierarchical clustering steps followed

by adaptive snakes is employed to detect likely roads and

intersections. Stoica et al. [22] formulate the problem of

extracting the road network using Gibbs point processes.

Roads are treated as lines with no width, but complex re-

lationships and constraints between them can be modeled

using a Markov Chain Monte Carlo scheme. Porikli et al.

[18] consider low, mid and high-level features in a learning

approach implemented in the form of a multi-layer neural

network. Dal Poz et al. [6] propose a rule-based system that

initially forms straight road fragments by chaining road seg-

ments. Proximity and collinearity are then used to complete

partial detections. Mayer et al. [14] compared six meth-

ods for automatic road extraction on a benchmark of high-

resolution aerial and satellite images. The methods consider

either edges or regions, but not both. The conclusion from

this study was that good performance can be attained auto-

matically for medium complexity rural scenes, but not for

dense urban areas. Moreover, many of the techniques do

not scale up to datasets of realistic sizes.

We now turn our attention to methods that use LIDAR as

the main input modality. Hu et al. [11] rely on LIDAR data

using images for verification. They segment the LIDAR

data according to intensity and use a hypothesize and test

scheme that employs iterative Hough transforms and topol-

ogy analysis to favor a grid structure. Results on a dataset of

10.6 million LIDAR points are shown. Clode et al. [5] pre-

sented a region growing approach for road extraction from

airborne LIDAR data. It can be combined with building

and tree detectors to improve the accuracy of the extrac-

tion. The region-growing process, however, makes decision

at the pixel level and cannot favor elongated regions. Poullis

et al. [19] present an approach that bears some similarities

with our work. They use Gabor filters to detect local edges

and tensor voting to infer longer contours based on the sup-

port they receive from their neighbors. Graph cuts [4] are

used to segment the image according to the dominant con-

tour orientation at each patch. Finally, the outputs of filters

that respond to road boundaries and interiors are used as

input to an iterative Hough transform that extracts straight

road segments.

3. Overview of the Approach

This section provides a summary of the processing steps,

which can also be seen in Algorithm 1. We start by extract-

ing ground planes from 3D point cloud data using a simple

segmentation technique (Section 4.1). An aspect of this step

worth emphasizing is that our algorithm does not extract a

single ground plane, but is able to extract multiple approx-

imately horizontal planes on which roads may exist. This

enables the detection of roads at different elevations. Such

situations are encountered in areas with steep cliffs, where

a road may run at the bottom of the cliff while another road

may run at the top. See Fig. 4(b) for an example.

The ground planes cover all the roads, but typically con-

tain many other objects such as grass, sidewalks and parking

lots. Height, however, is not a good cue for further discrim-

ination. Therefore, once the ground has been identified, 3D

points of the ground planes are projected to generate a 2D

map of LIDAR intensity values. The task of road extraction
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(a) Input 3D point cloud (c) 2D intensity(b) Ground plane

Figure 1. System overview. Given input 3D point cloud (a), our system first extracts multiple ground planes marked in blue in (b). The

ground planes contain roads mixed with other objects such as grass, sidewalks, parking lots, playgrounds, and possibly a few errors on

low buildings. All the ground points are then projected onto a 2D image (c) with their laser intensities. Region segmentation (d) and edge

detection (e) are performed on the image to generate boundary and interior features for roads. These local features are integrated into

multiple heat maps (f) representing the likelihood of roads with different widths. A minimum cover algorithm extracts the salient road

regions to explain the heat maps and automatically select the road widths, as shown in (g). Road points are transformed back to 3D and the

final road extraction result is shown in (h). This figure is best viewed in color.

is now reduced to a search over these 2D maps.

In order to process very large datasets, we divide them

in square tiles which are small enough so that computa-

tional cost is low, but large enough so that the property of

roads to be elongated can be captured. We have found that

300m× 300m tiles provide a good trade-off between these

requirements. We divide the data in such tiles with signif-

icant overlaps and focus on extracting the roads correctly

at the center of each tile. In practice, the tiles overlap their

neighbors by 100m on each side.

We then perform segmentation on the tiles to obtain a set

of segments on which we reason (Section 4.2). Two types

of road features, boundary features and interior features are

generated from both segmentation boundaries and edge de-

tection on the 2D map. We accumulate these features to

vote for rectangle hypotheses for roads, and combine them

to obtain a heat map of road likelihood (Section 4.3).

Finally, a minimum cover algorithm is used to find a set

of road segments which best cover this likelihood map (Sec-

tion 4.4). The road widths are selected automatically via

competitions of segments with different widths in the mini-

mum cover process.

4. Road Extraction

In this section, we present our approach for road extrac-

tion in each tile.

Algorithm 1 Road Extraction

1: Extract multiple ground planes.

2: Project intensities of ground points to 2D maps I.

3: Detect edges and perform region segmentation on I us-

ing [16, 21].

4: Compute the strengths of boundary and interior features

using Eq. (1) and Eq. (3).

5: Generate road likelihood map L using Eq. (5).

6: Extract dominant road regions with the correct widths

from L using minimum cover (Algorithm 2).

7: Transform the road regions back to 3D points for visu-

alization.

4.1. Ground Plane Detection

The first step is to extract all possible ground planes.

This is necessary since our datasets, and many areas in the

world, contain multi-level terrain. We use a simple cluster-

ing procedure based on [7] that groups LIDAR points ac-

cording to their x, y, z coordinates. The result is a large

number of clusters, typically several thousand, for each

tile. This grouping allows us to compute properties for

each cluster and classify them as potential parts of a ground

plane.

Given clusters of 3D points C = {C1, C2, ..., Cn}, we

can classify them as potential ground clusters Cground ac-

cording to the following criteria:



• Planarity. Compute PCA of the points in Ci. Let λ1 ≥
λ2 ≥ λ3 ≥ 0 be the eigenvalues. If λ3/(λ1 + λ2 +
λ3) ≥ Tplanar, prune Ci. This removes all the non-

planar segments. In practice, we set Tplanar = 0.01.

• Vertical normal. Let u3 be the smallest eigenvector

of PCA of the points. If ‖(0, 0, 1)T · u3‖ ≤ Tvert,

prune Ci. This removes all planar segments that are

not horizontal. We use Tvert = 0.98, which allows

roads with a slope up to 11.5◦.

After pruning clusters that cannot be parts of the ground,

we extract ground surfaces by grouping adjacent clusters

in Cground. These surfaces are further pruned by removing

those that are too small. Since height variations are small in

these surfaces, the z coordinate is dropped and 2D LIDAR

intensity images are generated with a resolution of 0.5m
per pixel. The next processing steps are applied on these

images.

4.2. Road Feature Extraction

Shape and appearance are both essential measurements

for classifying road regions. Here, we describe the features

that are used in Section 4.3 to generate road hypotheses.

To capture the shape of long and straight road boundaries,

we introduce the boundary feature computed by convolu-

tion with a polarized rectangular filter. We have also noticed

that the texture of road regions typically has a strong regu-

larity which can be identified by the interior feature. The

two types of features are defined as follows.

Boundary feature. Road segments are bounded by long

and straight lines. Hence we define a 2D boundary filter as:

Fbd(x, y) =

{

1, if (−w1 ≤ y ≤ 0) ∧ (0 ≤ x ≤ ℓ1)
−1, if (0 ≤ y ≤ w1) ∧ (0 ≤ x ≤ ℓ1)
0, otherwise.

(1)

where (x, y) are the pixel coordinates, ℓ1 and w1 are the

length and width of the filter. The boundary filter Fbd is

similar to the canonical edge filter [16], but tuned to de-

tect long and straight boundaries (see Fig. 2). The polarity

of this filter assumes that the laser intensity on the road is

lower than its surroundings (road is darker). Road bound-

aries can be detected by convolving the intensity image I
with Fbd:

Sbd(x, y) = Fbd ∗ I(x, y) (2)

We choose filtering as opposed to line fitting to give more

tolerance to curved roads. We construct the mirror image of

Fbd to detect the other side of the road boundary.

Interior feature. The agreement of interior edge orienta-

tions to the road direction is also an important feature. The

−1
+1

(a) Boundary filter Fbd

+1
−10

(b) Interior filter F int

Figure 2. Boundary and interior features. (a) superimposes the

filter onto a road segment, where the green region of the filter has

a value of +1 and value of red region is −1. Similarly, (b) shows

the value of F int w.r.t. edge orientation θ. Note that orientations

almost orthogonal to the road direction have value 0, minimizing

the effect of the crosswalk markings shown in the image.

interior edges are mainly caused by markings and separa-

tors on the road surface, which are approximately parallel

to the road orientation. Therefore, we introduce the follow-

ing filter to measure the strength of these edges:

F int
θ (x, y) =











1, if (min(θ, π − θ) ≤ θ2) ∧ (x, y) ∈ B
−1, if (θ2 < min(θ, π − θ) < π/2 − θ2)∧

(x, y) ∈ B
0, otherwise.

(3)

Here θ ∈ [0, π] is the edge orientation, θ2 = 15◦ is the

tolerance and B = {(x, y) : (|y| ≤ w2) ∧ (0 ≤ x ≤ ℓ2)}
is the rectangular support of the filter (see Fig. 2). Similar

to boundary feature, the induced strength is measured by

convolution

Sint(x, y) =
∑

θ

F int
θ ∗ E(x, y, θ) (4)

where E(x, y, θ) is the edge map. Edges are detected us-

ing [16] which outputs both the orientation and strength of

edge pixels. Note that we do not penalize edges whose

orientations are orthogonal to the road direction (hence

F int
θ (x, y) = 0) to tolerate intersections and crosswalks.

4.3. Road Hypotheses Generation

We generate road hypotheses from the boundary and

interior features described above. To balance accuracy

and efficiency, we sample hypotheses from region segment

boundaries instead of edges or all image pixels. Region

segmentation, such as the normalized cut algorithm (NCut)

[21], can often capture faint boundaries missing from sim-

ple edge detection. We take the laser intensity image as

input and apply NCut on it using intensity similarity as the



only feature. The image is over-segmented to 100-200 re-

gions in order to recall most of the road boundaries. As

seen in Fig. 1, these region boundaries provide a set of much

sparser yet accurate hypotheses compared to edges.

Road hypotheses are parameterized as rectangular win-

dows H = {Hi(xi, yi, θi, wi, ℓi), i = 1, ..., n}, where

(xi, yi), θi, wi and ℓi are top-left corner, orientation, width

and length of window Hi. Corners of windows (xi, yi) are

sampled from long and straight segmentation boundaries.

The orientations θi are obtained from the local maxima in

the histogram of edge orientations weighted by edge mag-

nitude. The width wi is sampled from 10m to 25m and the

length li is sampled from 40m to 300m in our experiments.

For each window Hi, we compute its boundary and in-

terior feature strength by convolving with filters Fbd(Hi)
and F int

θ (Hi) using Eq. (2) and (4), with the window Hi

as support. Images are rotated by different angles θi before

applying these filters. Convolutions on a large set of rect-

angular windows can then be computed efficiently using in-

tegral images [25]. Only windows with Sbd and Sint both

higher than certain thresholds are considered as valid hy-

potheses. Windows with similar width k form a hypothesis

set Hvalid
k = {Hi | Sbd

Hi
(x, y) ≥ Tbd, S

int
Hi

(x, y) ≥ Tint}.

Each valid window casts a vote for the pixels it covers.

Votes are accumulated in a likelihood map:

Lk(x, y) =
∑

Hi∈Hvalid
k

βbdS
bd
i (x, y) + βintS

int
i (x, y) (5)

where Sbd
i (x, y) and Sint

i (x, y) are the boundary and inte-

rior feature strength induced by hypothesis Hi. The coeffi-

cients βbd and βint balance the two scores. The likelihood

L(x, y) is further capped by a threshold Lmax, above which

we are confident that (x, y) belongs to the road and higher

likelihood does not make any difference.

To select road width in the later process, we generate

separate likelihood maps Lk from hypothesis windows with

different widths. Each heat map contains road hypotheses

of all orientations (see Fig. 1(f)). The advantage of com-

bining all the orientations into a single heat map is that in-

tersections will gain more support from roads connecting

to them. This integrates information from long range and

alleviates the problem that local features tend to miss inter-

sections which are not elongated.

4.4. Final Detection as Minimum Cover

The final detection step is to detect road regions by com-

bining hypotheses generated from the previous step. Key

issues of this step include 1) determining the extent of road

regions, i.e. distinguishing the cases of road termination vs.

broken road hypotheses due to corrupted signals or occlu-

sion; 2) consolidating multiple road hypotheses with dif-

ferent orientations; and 3) selecting the correct road width.

1 2

3

Figure 3. Minimum cover. There are three typical scenarios, in

which green rectangles are chosen over red rectangles: 1) deter-

mine whether to terminate or not; 2) different orientation; 3) se-

lecting road width. In 3), there is an ambiguity of splitting the road

into two lanes, or merging them.

Addressing these problems requires long-range information

integration in addition to local road features.

An intuitive idea is to explain the likelihood maps by the

sparsest set of road segments. We formulate this idea as

covering the likelihood maps Lk using a set of road hypoth-

esis windows with the minimum cost. This is known as the

minimum cover problem [24] in which there is a universe of

elements, a collection of subsets and a cost function defined

on the subsets. One would like to find the subcollection

from these subsets covering the elements with the minimum

total cost. In our setting, the sets and elements are:

• Elements. We generate seeds S = {sj} by sampling

the rectangle centerlines of road hypotheses. The sam-

pled points are chosen instead of pixels in the likeli-

hood map for computational efficiency.
• Sets. Rectangular hypotheses R = {R1, ..., Rn} from

the hypothesis generation step. We also create dummy

sets which cover only a single seed.

Each one of the hypotheses Ri has a cost computed by:

Cost(Ri) =
∑

sj∈Ri

C(sj) + A (6)

where C(sj) = 1−L(sj)/Lmax measures the cost of cov-

ering a seed sj . The constant A favors choosing fewer rect-

angles. We seek to extract a subset RS ⊆ R minimizing:

Costcover(RS) =
∑

Ri∈RS

Cost(Ri) +
∑

sj /∈RS

L(sj)

Lmax
(7)

The first summation computes the cost of covering by RS .

The second summation counts the loss of missing seeds, or

equivalently the cost from the dummy sets. The result will

cover as many good seeds as possible by competition of

overlapping hypotheses (see Fig. 3).

The minimum cover problem is NP-hard in general, but

a greedy algorithm can achieve a solution within a constant



(a) Occlusion (b) Multi-level ground planes

(c) Non-orthogonal junctions (d) Curved roads

Figure 4. Screenshots of road extraction results. Each image shows a view of a tile that presents particular challenges. The roads have been

marked in green in all cases. From left to right, top to bottom the challenges are: (a) severe occlusion by trees and buildings; (b) roads on

multiple level ground planes; (c)non-orthogonal junctions; (d) non-orthogonal roads and parking lots.

factor of the optimal cover [8]. We minimize the covering

cost Eq. (7) by sequentially finding the hypothesis Ri with

the lowest cost density:

Density(Ri) =
∑

sj /∈R1,...,Ri−1

sj∈Ri

C(sj) + A

|Ri \
⋃i−1

k=1 Rk|
(8)

where |Ri \
⋃i−1

k=1 Rk| is the number of new seeds covered

by Ri. Recall that the constant A penalizes against solutions

with extremely large numbers of very small rectangles. By

adding a fixed cost to each rectangle, we can obtain solu-

tions with small numbers of larger rectangles that cover ar-

eas of relatively higher cost, due to occlusion or noise. This

allows us to enforce desirable properties, such as elonga-

tion. The process is terminated if all the seeds have been

covered or the cost density Density(Ri) is too high. The

process is summarized in Algorithm 2.

Algorithm 2 Minimum cover

1: Generate seeds S. Set RS = ∅.

2: Repeat

3: Find Ri with the minimum density Eq. (8).

4: Update the seeds covered by all the hypotheses.

5: Until seeds S are all covered or Density(Ri) > Dmax.

4.5. Dataset and Results

We present results on a large point cloud (166 million

points) that covers an area of 3km×3km in Ottawa, Canada.

The data were collected by airborne LIDAR sensors and are

publicly available1. Because the collection was performed

in multiple flights, the dataset is inhomogeneous with vary-

ing density and sampling patterns. The dataset also includes

points captured by terrestrial sensors. We do not use these

points because data density would be sufficient to detect the

roads on which the vehicle drove in a trivial way. No im-

ages are available, but each point has RGB values associated

with it. These values are not used for processing, but only

for visualization. A large part of the dataset is not available

at the above website resulting in wide stripe of missing data

that is visible in the figures.

Figure 4 shows screenshots of 3D models that present

particular challenges to our method, as well as the extrac-

tion results. Figure 5 shows the extracted road network for

the entire dataset. All results are generated with fixed set-

tings for the parameters.

1http : //www.daytaohio.com/WrightState100.php



(a) Extracted road network (b) Detail

Figure 5. Screenshot of the road network for the entire point cloud that contains 166 million points and covers 3 × 3km. Our approach

successfully extracts roads with varying width, large curved sections and bridges with limited false positives and missed detections.

5. City Block Segmentation

City blocks can be segmented using the extracted roads

as boundaries, providing a natural partitioning of the data

for further processing. The challenge is that the detected

roads are not necessarily closed, therefore simple connected

component or greedy region growing would create leakage

on blocks. We use NCut [21] to segment the city blocks

and borrow the idea of “intervening contours” from image

segmentation [13] to incorporate roads. A graph consisting

of projected 2D points is constructed and each point (x, y)
has a road likelihood L(x, y) from the road extraction step.

Graph nodes within a radius of 80m are connected. Edge

weights between nodes i and j are defined by the highest

road likelihood lying between them:

W (i, j) = exp{− max
(x,y)∈ℓ(i,j)

L(x, y)} (9)

where ℓ(i, j) denotes the straight line connecting nodes i
and j. Hence, road likelihood, but not hard decisions on the

presence of roads, is encoded in W . This allows us to obtain

the most likely city blocks, even if some road segments are

missing. We run NCut on W to generate a global segmen-

tation. We have performed extensive tests on the Ottawa

dataset and the results are very promising (see Fig. 6).

6. Conclusion

We have presented an approach for road detection based

on spectral segmentation and an approximation to the mini-

mum cover problem. The strengths of our approach are that

it combines edge and region information in a single step

and that it is able to select a relatively small number of hy-

potheses that explain the likelihood map. It can be easily

extended to extract other ribbon-like structures by consid-

ering appropriate features and selecting an appropriate pa-

rameterization for the hypotheses.

The most urgent future work is a formal evaluation of

the current results. We plan to undertake this manually-

intensive task soon and provide results for completeness (re-

call) and correctness (precision) not only on road centerline

detection, but also on width and regions of special interest

such as junctions, partially occluded roads in dense, urban

regions and faint, dirt roads in rural regions.
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