
A Comparison of Scene Flow Estimation Paradigms

Iraklis Tsekourakis1 and Philippos Mordohai1

Stevens Institute of Technology

Hoboken NJ 07030, USA

Abstract. This paper presents a comparison between two core paradigms for

computing scene flow from multi-view videos of dynamic scenes. In both ap-

proaches, shape and motion estimation are decoupled, in accordance to a large

segment of the relevant literature. The first approach is faster and considers only

one optical flow field and the depth difference between pixels in consecutive

frames to generate a dense scene flow estimate. The second approach is more ro-

bust to outliers by considering multiple optical flow fields to generate scene flow.

Our goal is to compare the isolated fundamental scene flow estimation methods,

without using any post-processing, or optimization. We assess the accuracy of the

two methods performing two tests: an optical flow prediction, and a future image

prediction, both on a novel view. This is the first quantitative evaluation of scene

flow estimation on real imagery of dynamic scenes, in absence of ground truth

data.

1 Introduction

Scene flow is the 3D motion field that generates the optical flow when projected onto

the image plane of a camera. It is arguably the last frontier that remains unexplored in

3D computer vision, even though the problem was formulated a relatively long time ago

[1, 2] and there are exciting applications, such as free-viewpoint video, motion capture,

augmented reality and autonomous driving/driver assistance. The primary reasons for

this are the inherent difficulty of the problem and the lack of data with ground truth that

would aid the development of algorithms.

For over a decade since the original publication that defined the field [1], the relevant

literature consisted of a sparse set of papers [3–9] that seemed well-positioned to spark

a breakthrough, which has not come yet. It took a breakthrough in sensing technology

with the advent of consumer depth cameras (RGB-D cameras, such as the Microsoft

Kinect) to enable reliable scene flow estimation from RGB-D monocular sequences

[10–14]. RGB-D cameras, however, suffer from their own limitations, namely their in-

ability to operate outdoors due to sunlight interference and their short range. Moreover,

monocular inputs hinder free-viewpoint video applications since texture information is

not available for even the slightest viewpoint changes, with a few exceptions [12, 13].

Collet et al. [15] present outstanding results on free-viewpoint video using a dense set

of RGB and IR sensors. It is desirable, therefore, to achieve high-quality scene flow es-

timation from two or more passive cameras, since such a configuration would not suffer

from these limitations. Our inputs are multi-view videos acquired by synchronized, cal-

ibrated, stationary cameras [16, 17]. The synchronized and calibrated requirements for

the cameras can be relaxed, but this is currently out of scope.
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In this paper, we focus on point-wise methods that estimate scene flow in a decou-

pled fashion, by alternating between depth and motion estimation. This choice is not

necessarily an endorsement of this type of scene flow estimation. Other strategies have

different strengths and weaknesses: joint estimation of both shape and motion leads

to higher consistency at a significant computational cost; 3D shape tracking does not

allow the shape to be modified based on temporal constraints; patch-based estimation

allows more complex reasoning and regularization, but may impose too much rigidity.

All these approaches have attractive features, but we believe that our analysis should

start with the fundamental case of estimating the depth and scene flow of each pixel.

A pixel with depth and scene flow estimates can be linked to corresponding pixels

in different views at the same time instant via depth, to the corresponding pixel in the

same view at the next time instant via optical flow, derived from scene flow, and to

corresponding pixels in different views at the next time instant via depth and scene

flow. We evaluate two viewpoint-based paradigms for estimating scene flow from depth

maps and optical flow fields:

– a more common approach, which we term Optical Flow and Depth Difference

(OF+D), in which scene flow is decomposed in two components: one parallel and

one orthogonal to the image plane,

– an approach, we term Multiple Optical Flows (MOF), which combines multiple

optical flows at each reconstructed 3D point to derive its scene flow.

Throughout this effort, we ensure that the two paradigms are tested on identical inputs

under identical conditions to the extent possible.

Besides the difficulty of the problem itself, the second challenge to our research is

the lack of suitable data with ground truth for quantitative evaluations. This is due to the

lack of a convenient technique for generating ground truth motion fields, in 2D or 3D

[18, 19]. This has forced most authors to evaluate their methods on synthetic or static

data. To overcome this obstacle, we perform two types of quantitative evaluation using

frames from a sequestered camera in lieu of ground truth. In the first evaluation, we

attempt to predict the optical flow of the validation camera by projecting the estimated

scene flow. In the second evaluation, we attempt to predict the RGB image at time t+1
given RGB images and estimated scene flow for the other cameras at time t. See Fig. 1.

According to all criteria, MOF is superior to OF+D. Moreover, the difference between

its image predictions and predictions using the actual data of the validation camera is

small.

In summary, the contributions of this work are:

– the MOF algorithm, which is a robust extension of the work of Vedula et al. [1],

– a comprehensive comparison of two viewpoint-based scene flow estimation paradigms,

and

– novel criteria for evaluating scene flow estimation in the absence of ground truth

scene flow.

The conclusions that can be drawn from our experiments are: (i) it is important to

not neglect optical flows from additional views besides the reference view, if they are

available, since using them can lead to significant noise reduction; and (ii) novel view
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Fig. 1. Left to right: Input image from a sequestered camera [17] at time instant t (left), visual-

ization of predicted flow using MOF, and prediction of RGB at time t+1, and Middlebury color

coding [18].

prediction using the MOF algorithm is very similar in quality to predicted frames using

data from the validation camera itself. This is an indication that scene flow has been

estimated well.

2 Related Work

In this section, we review the scene flow literature. We categorize prior work according

to whether the shape and motion estimation is joint or decoupled, whether they operate

on pixels or surfaces, and whether they consider the topology of the shape fixed through-

out the sequence. We include methods operating on RGB-D inputs, but not methods that

segment N rigid bodies, e.g., [20].

We begin with joint shape and motion estimation. In the paper that defined the term,

Vedula et al. [1] formulate and analyze three algorithms depending on the degree to

which scene geometry is known. In a separate paper, Vedula et al. [21] extend space

carving [22] to the 6D space of all shapes and flows, resulting in a tight approxima-

tion to shape and scene flow. Other joint estimation approaches that consider optical

flow fields or temporal derivatives in multiple images have represented spatio-temporal

shape using subdivision surfaces [4], surfels [3], level sets [23], watertight meshes [24],

probabilistic occupancy-motion grids [25], and spatiotemporal orientation distributions

[26].

Viewpoint-based methods for joint scene flow estimation include variational meth-

ods [5, 7, 27–29]. Typically, the shape is initialized by stereo matching and then shape

and motion are jointly estimated resulting in convergence to the nearest local minimum

of an appropriate energy function. Other viewpoint-based methods explore the high di-

mensional search spaces using Markov Random Fields [30], winner-take-all or dynamic

programming [6], or by growing correspondence seeds [31].

An alternative approach is to segment the reference image in a set of patches and

estimate their 3D motion from frame to frame [32–34]. Unlike points that only allow

a 3D displacement estimation, patches allow the rotational motion estimation and also

provide a basis for regularization. A more recent approach by Vogel et al. [9] models

occlusion and relationships among neighboring patches.

To reduce computational complexity, authors decouple shape and motion estimation

[8, 35–37]. Wedel et al. [8] take into account stereo image pairs from two consecutive

times and compute both depth and 3D motion associated with each point in the image.



4

This is equivalent to our OF+D paradigm. On the other hand, Li et al. [38] extract a

watertight mesh from point clouds reconstructed by variational stereo and address scene

flow as volumetric deformation using [1] to estimate scene flow at each vertex.

If the topology of the shape can be recovered in the first frame and remains fixed

throughout the sequence, methods that can track the shape over time have been pro-

posed. The primitives to be tracked can be meshes [15, 39–41], patches [42, 43], volu-

metric elements [44, 45] or sparse features followed by motion propagation to the rest

of the mesh [46–51].

Recently, the emergence of consumer depth cameras has lead to the development of

decoupled depth and motion estimation methods leveraging the accurate depth provided

by these sensors. Due to the availability of a single viewpoint, most of these methods

fall under the OF+D paradigm [10, 11, 52–54] Methods that operate on patches [55],

layers [14], meshes [12], local twist motions [56] and 6D volumetric motion fields [13]

have also been reported, but in all cases a single flow field is available.

None of these publications includes quantitative evaluation on videos of dynamic

scenes. Some show results on synthetic [5] or static scenes [57]. The KITTI bench-

mark [58], used by [9], depicts static scenery. The exception is the work of Sizintsev

and Wildes [59, 26] who present quantitative evaluation of scene flow using a motorized

stage to generate ground truth. Ground truth is acquired using structured light sensors on

stop motion sequences. While this study is unprecedented and valuable, the experimen-

tal setup is not ideal since the fiducial markers that are placed on each independently

moving surface to aid motion estimation also aid the algorithms being evaluated.

3 Problem Statement

The objective of this work is to compare two methods that isolate the fundamental 3D

scene flow estimation of dynamic scenes captured by multiple, calibrated, stationary,

synchronized cameras without any form of post-processing or optimization. Through-

out we use the term view to indicate a viewpoint, or a specific camera, and frame to de-

note an image taken at a specific time t. We implement two different methods. They both

need 2D optical flows and depth estimates as inputs. In order to compute the depths, we

generate the cost volume using plane-sweeping stereo [60] and we extract the final

depth estimates using SGM [61] on the cost volume. We compute optical flows for all

cameras using the software of Sun et al. [62].

The first method is OF+D. It is a straightforward implementation of decoupled

3D shape and motion estimation. Given an optical flow estimate for a pixel u, we can

approximate the scene flow that corresponds to the 3D point that pixel u projects to, as

the summation of the optical flow vector with the depth difference between pixel u at

time t and pixel u’ at time t + 1. u’ is the location of pixel u according to the optical

flow. The details are presented in Section 4. Second, we propose the MOF method that

estimates the 3D scene flow using multiple 2D optical flows and depth estimates. An

optical flow estimate provides two linear constraints on the three unknowns in the scene

flow (Vx, Vy, Vz of the 3D motion). If we have two or more views of the same part of

the scene that are not coplanar, we can recover the scene flow. Assuming we have more

than two cameras, we apply MSAC [63] to remove outlying optical flows. We then use
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the method of Vedula et al [1, 2] as a solver on the selected candidate optical flows in

order to extract the scene flow. Implementation details are given in Section 5.

Due to lack of publicly available multi-view datasets with scene flow ground truth,

we evaluate the accuracy of the estimated scene flows for both methods first by com-

paring the projected scene flow on a novel view, that was excluded by all steps of the

scene flow estimation, with the optical flow estimated using the data of the novel view.

Second, we measure the quality of predicted frames on the novel view at time t + 1
generated from frames at time t using the projected scene flow. While novel view syn-

thesis as an evaluation metric is forgiving in textureless areas, it has been shown to be

an effective evaluation strategy in general [64–66] and specifically for free viewpoint

video [67].

Inputs The depth maps used as inputs for both methods, OF+D and MOF, for the

ballet and breakdance datasets were provided by the creators of the videos [16]. For

Cheongsam and Redskirt [17], depths are computed in a multi-view configuration (See

Section 7 for details on the datasets used). The depth estimation combines the plane-

sweeping algorithm with Semi-Global matching (SGM) optimization. In plane sweep-

ing stereo, we define a family of planes parallel to the image plane of the reference

view. For each pixel, depth hypotheses are formed by intersecting the corresponding

ray with the set of planes. We then define a square window centered at that pixel in the

reference view and warp it to the target views using the homographies from the refer-

ence view to the target views through the current plane. We compute the normalized

cross-correlation (NCC) between the window on the reference view and each warped

window on the target views, and store the average as the likelihood of assigning to the

pixel the depth corresponding to the current plane. Target images in which the match-

ing window falls out of bounds are excluded. The likelihood volume is converted to a

cost volume by negating the NCC scores. SGM is used for extracting a depth map that

approximately optimizes a global two-dimensional energy function by combining 1D

minimization problems in 8 or 16 directions. We use eight paths for dynamic program-

ming and 256 discretized depths per pixel. We use the rSGM implementation provided

by Spangenberg et al. [68]. The second input used for the methods of this work are the

optical flow estimates. They are computed using the software of Sun et al. [62], which

is a modern implementation of the Horn and Schunck model [69].

4 Scene Flow estimation using Optical Flow and Depth Difference

(OF+D)

In this section, we describe multi-view scene flow estimation, using the optical flow

for a single camera, and the depth difference between two consecutive frames for the

same camera. The 2D optical flow is the projection of the scene flow onto the images.

Respectively, the back-projected 2D optical flow onto the 3D space at the depth of the

3D point, represents the scene flow that is parallel to the image. What is missing to

complete the scene flow vector is the change of depth, which is perpendicular to the

image plane.
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We use as inputs the optical flow OFt, and the depths Dt and Dt+1 of the current and

the next frame for the reference camera. For each pixel (u,v), we project the 2D optical

flow vector onto the reconstructed 3D point x at the depth Dt(u,v). The resulting vector

SFp(x) represents the scene flow component parallel to the image. In order to compute

the change of depth, we first need to estimate the depth of the same point in the second

frame. (u,v) at time t+1 will be located at (u+OFt(u, v, 1), v+OFt(u, v, 2)). Given

that the target image location does not have integer pixel coordinates, we estimate the

depth by applying bilinear interpolation. The vector SFo(x), which is orthogonal to the

camera plane has norm equal to the difference of the depths:

|SFo(x)| =Dt+1(u+OFt(u, v, 1), v +OFt(u, v, 2))

−Dt(u, v) (1)

Finally, the scene flow estimate for the 3D point x that corresponds to the initial pixel

(u,v) at time t is computed as:

SF (x) = SFp(x) + SFo(x) (2)

5 Scene Flow estimation using multiple Optical Flows (MOF)

This section describes the second scene flow estimation paradigm. The inputs to MOF

are the optical flows of the reference and the neighboring cameras on the left and on

the right of the reference camera and the depths of the reference cameras. These are

computed as described in 3. Depending on the configuration of each of the multi-view

datasets tested during this project, we use optical flows for 1 or 2 cameras on each side

of the reference camera. The main idea is that since we have a number of 2D optical

flows from different viewpoints, we can leverage them in order to estimate scene flow

accurately.

Based on the work of Vedula et al [1, 2], the relationship of a 3D point x = (x, y, z)T

and the 2D image coordinates ui = (ui, vi)
T of its projection in a camera Ci is described

by the following formulas:

ui =
[Pi]1(x , y , z , 1)

T

[Pi]3(x , y , z , 1)T
, (3)

vi =
[Pi]2(x , y , z , 1)

T

[Pi]3(x , y , z , 1)T
, (4)

where [Pi] is the jth row of the 3 x 4 projection matrix Pi of camera Ci. If we know the

3D geometry, at time t, the differential relationship between x and ui is represented by

a 2 x 3 Jacobian ðui

ðx
. This Jacobian describes the relationship between a small change

in the point on the surface and its image in camera i. Now, if x = x(t) is the 3D path of

a point in the world, its scene flow is dx
dt

. The image of this point in camera Ci is ui =

ui(t). The relationship between the optical flow and the scene flow is given by:
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dui

dt
=

ðui

x

dx

dt
(5)

This equation shows how optical flow can be computed if the scene flow is known.

On the other hand, an optical flow estimate provides two linear constraints on the three

unknowns in the scene flow. Thus, if we have two or more non-parallel cameras viewing

the same part of the scene, the scene flow can be recovered. We use all the available

optical flows in order to get more accurate scene flow estimates. The method of Vedula

et al. gives the solution that minimizes the sum of least squares of the error obtained by

reprojecting the scene flow onto each of the optical flows.

Given N >= 2 cameras observing the same surface of the scene, we can solve for
dx
dt

by setting up the system of equations Bdx
dt

= U, where

B =
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However, in our problem there are outliers that lead to high errors in the resulting scene

flow. To prevent these outliers from corrupting the least squares estimate, we apply the

m-estimator sample consensus (MSAC) algorithm [63] to find the set of inlying optical

flows that minimize the maximum likelihood error, starting from minimal samples of

two optical flows. The selected inliers are then used in the least squares method (Eq.

6) in order to extract the scene flow. The capability of MSAC to discriminate between

strong and weak inliers, compared to RANSAC that does not discriminate, leads to

significant improvement in the solutions.

6 Evaluation Methodology

In the absence of ground truth, we perform two tests to evaluate the different scene flow

estimation techniques. As a first test, given depth, we project the estimated 3D scene

flow onto a novel view and compute the errors of the projected optical flow compared to

the optical flow estimated using the data of the novel view. For the second test, we use

the color prediction error in a novel view. The novel view prediction error was initially

proposed by Szeliski [64] and later by other authors [19, 65–67]. In all cases, we use a

completely separate validation camera for evaluation and completely exclude its frames

from optical flow and depth estimation. We always choose an extrapolating view with

regards to each reference camera and its neighboring cameras used for the computation

of scene flow, for validation so that errors are more pronounced in it. According to

Szeliski [64], synthesizing extrapolating views is more challenging due to increased

sensitivity to depth and other errors.
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Fig. 2. An example of the multi-view setup used. S is the observed surface. For both sides of

the validation camera we use a reference camera with two supporting cameras for the optical

flow and depth estimation. Ref1 has c1 and c2 as supporting cameras, and Ref2 has c3 and c4.

The importance of having this symmetric setup is illustrated by the fact that occlusions in one

reference camera can be recovered by the symmetric reference camera. For example, point A is

occluded in Ref2, but the correct flow at A in the validation camera can be projected from Ref1.

Yet, if we compute the scene flow of a reference camera on the one side of the

validation camera, this creates an asymmetry in the noise of the projected optical flow

on the opposite side of the validation camera. Thus, we compute the scene flow based

on a second reference camera on the other side of the validation camera leading to more

accurate and symmetric results. The configuration used can be seen in Fig. 2. It can

be easily seen that occlusions could create noise in the estimation of the scene flow if

only one reference camera is used. For example, in Fig. 2, Ref1 can see point A, that

is what the validation camera sees as well, while A is occluded in Ref2. Ref2 sees

point B instead. Figure 3 shows the importance of symmetry using data from the ballet

sequences. All optical flows of the figure are shown in the validation camera. The left

and right subfigures show the projected scene flows estimated for reference cameras on

the left and right of the validation camera respectively. It is obvious that there are white

parts (missing scene flow estimates) due to occlusions on each side of the dancer. Using

both reference cameras lead to more accurate and dense scene flow estimates.

Fig. 3. Symmetric reference cameras on ballet data. Left to right: projected scene flow estimated

from a reference camera to the left of validation camera, optical flow estimated for the validation

camera using the software of Sun et al. [62], projected scene flow estimated from a reference to

the right of validation camera, and Middlebury color coding [18].
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“Ground truth” optical flow: In order to have a comparison for both tests, we estimate

the optical flow of the novel view using the data of this “excluded” validation camera.

We name this “ground truth” optical flow or OF.

6.1 Novel view optical flow prediction test

We project the 3D scene flow onto the validation camera in order to predict the optical

flow for this excluded view. The resulting 2D optical flow is estimated without the use

of the validation view data. We compare the projected optical flow from the MOF and

OF+D estimated scene flows with the “ground truth” optical flow. The hypothesis here

is that if the projected optical flow is similar to the “ground truth” optical flow, then

the scene flow estimates are accurate and consistent between different views. When we

project the scene flow to the validation view, it falls at non-integer pixel locations. In

order to overcome this issue, we apply a bilateral filter, based on the implementation of

Yoon and Kweon [70], to get a dense optical flow projection.

For each integer pixel location in the validation view, we find the k nearest 3D

points that project close to the pixel. We then apply the bilateral filter, as the weighted

summation of the neighbors based on color similarity and proximity, to compute optical

flow at integer pixel coordinates. Let p and q be the target pixel and the neighbor pixel

to be weighted respectively. We do not use data (colors) from the novel view in any step

of this process. In order to represent the color of the target pixel, we find the 3D points

that project close to the target pixel, and we use the color information of the nearest

neighbor. Now p has been assigned a color and ∆cpq and ∆gpq represent the color

difference and the spatial distance between pixels p and q. f(∆cpq, ∆gpq) represents

the strength of grouping by similarity and proximity. The color difference is computed

as the Euclidean distance between two colors in RGB space.

∆cpq =
√

(Rp −Rq)2 + (Gp −Gq)2 + (Bp −Bq)2 (7)

The strength of grouping by color similarity is defined using the Laplacian kernel as

fs = exp(−∆cpq

γc
) (8)

where γc is determined empirically. Correspondingly, the strength of grouping by prox-

imity is defined using the Laplacian kernel as

fp = exp(−∆gpq

γp
) (9)

and γp is also determined empirically. According to (8) and (9), the weights can be

written as

w(p, q) = k · exp(−∆cpq

γc
− ∆gpq

γp
) (10)
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where k is a normalizing factor. Applying the bilateral filter described by the equations

(7-10) we obtain dense optical flow. In Section 7, we present quantitative results using

the two of the most commonly used measures of flow accuracy, namely the endpoint

(pixel distance) and angular errors, as defined in [18].

6.2 Novel view future image prediction test

For the second test, given a current frame of the validation camera, we use the projected

optical flow, densified as above, to predict the RGB values of the image in the next

frame. We need to apply a filter again to predict RGB values at integer pixel locations

of the target frame at time t+1. We once again find the nearest neighbors for each pixel

and we average the optical flow of the neighbors with weights based on proximity.

Equation (10) this time is modified to use proximity only as

w(p, q) = k · exp(−∆gpq

γp
) (11)

Following this process, and given a current frame of the validation camera, we get

a dense RGB prediction of the next frame. We then use the Manhattan distance in RGB

over all pixels between the predicted image and the actual image of the next frame.

Results are shown in Section 7.

7 Experimental Results

In this section, we present and evaluate the estimated scene flows computed by both the

techniques described in this paper. We use four different multi-view video sequences

made publicly available by their authors in widely different configurations. Cheongsam

[17] is captured in a dome of diameter equal to 4.2 m by twenty cameras in a ring

around the scene. It has 20 cameras and every video is 30 frames long, but one of them

had to be dropped due to missing frames. Redskirt [17] is captured in the same dome,

but the videos are 20 frames long. The ballet and breakdance data [16] are acquired by

eight cameras forming a 30◦ arc, thus with much narrower baselines. The depth range

in this scene is 7.6 m. Depth maps are provided for the ballet and breakdance videos.

All experiments are performed using constant parameters for all parts of the meth-

ods tested, except the number of neighboring views in the computation of the scene

flow using multiple candidate optical flows (Section 5). We use two neighboring views

on each side of the reference camera for the ballet and breakdancer datasets, and one

neighboring view on each side for the Cheongsam and Redskirt datasets, due to the wide

angle between the neighboring views. The NCC window size for the plane-sweeping

algorithm is 5×5 and 256 fronto-parallel planes with subpixel spacing are used for all

datasets. For SGM, we use the rSGM implementation [68] with 8 paths, P1 = 11, α =

0.5, γ = 35 and P2,min = 17. In the bilateral filter, we use γc = 7 and γp = 4.

For the Cheongsam and Redskirt data we create cost volumes for every frame using

the plane-sweeping algorithm. Using these cost volumes and SGM, we extract the depth

maps that were used as inputs to both scene flow estimation methods. The optical flows
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Endpoint Angular

OF+D MOF OF+D MOF

Cheongsam 8.61 0.64 29.79 5.73

Redskirt 4.95 0.75 25.21 7.45

ballet 4.42 3.22 33.80 26.93

breakdance 4.11 1.89 42.40 37.24

Table 1. Average Endpoint and Angular errors of OF+D and MOF estimated scene flows, pro-

jected (resulting in optical flows) on novel views that were excluded from all estimation steps. In

lieu of ground truth data, the errors are estimated based on the “ground truth” optical flows com-

puted using the data of the novel views (OF). The average is taken over all pixels of all frames of

a single evaluation camera. Angular errors are displayed in degrees.

“GT” OF OF+D MOF

Cheongsam 4.57 7.23 4.95

Redskirt 5.69 7.81 6.56

ballet 6.67 8.37 7.56

breakdance 8.30 9.88 9.13

Table 2. Average RGB L1 distance of next frame prediction on novel views compared to actual

images. The average is taken over all pixels of all frames of a single evaluation camera. The

column labeled GT OF is the prediction using the “ground truth” optical flow.

between consecutive frames needed as input to the methods described in this paper are

estimated using the software of Sun et al. [62]. Then, we compute scene flow estimates

for every frame in the videos tested using both methods as described in Sections 4 and

5. We evaluate quantitatively the scene flows by projecting to 2D optical flows on a

novel view according to Section 6.

Tables 1 and 2 summarize the accuracy of all methods tested. Table 1 presents the

errors in optical flow prediction, while Table 2 shows the results on novel view synthesis

as described in Section 6. These errors are averaged over all frames for all datasets. It

has to be noted here, that the angular errors between a flow vector (u, v) and the “ground

truth” flow (uGT , vGT ) were computed as defined in [18] according to the following

formula

AE = cos−1

(

1.0 + u× uGT + v × vGT√
1.0 + u2 + v2

√

1.0 + u2
GT + v2GT

)

(12)

This metric aims to provide a relative measure of performance that avoids the ”divide

by zero” problem for zero flows. Errors in large flows are penalized less in AE than

errors in small flows. Accuracy, in general is worse on the ballet and breakdance videos

which have a lower frame rate than Cheongsam and Redksirt making motion estimation

harder. The hypothesis for both tests, is that if accuracy using projected scene flows onto

a novel view, whose data were not used to estimate the scene flows, is not degraded

significantly compared to the one using the “ground truth” optical flows, then the scene

flow estimation is considered successful. MOF presents significantly better and more
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Fig. 4. Novel view next frame predition for cheongsam, redskirt, ballet and breakdance data. First

column: Four instances of current frames of the validation camera. Second column: Next frames.

Third column: Next frame prediction based on “ground truth” optical flow estimation OF. Fourth

column: Next frame prediction based on estimated SF using OF+D. Fifth column: Next frame

prediction based on estimated SF using MOF. Data from the novel views were not used for OF+D

and MOF methods. Corresponding quantitative results shown in Table 2.
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robust performance than the OF+D method, and is always quite close to the “illegal”

prediction using the “ground truth” optical flow.

Figure 4 shows instances of a current frame, the next frame, the estimated next

frame using the scene flow computed by the two methods, and an estimation of the next

frame using the “ground truth” optical flow computed of the software of Sun et al. for

all datasets tested.

8 Conclusion

We have compared the two most prevalent core computations for scene flow estimation

in multi-view videos. OF+D, which is also common in RGB-D scene flow estimation,

may fail because it relies on a single optical flow field. MOF is more robust because it

uses multiple measurements. Depending on data-specific factors, the average improve-

ment of MOF compared to OF+D can be as high as 35%, as in the Cheongsam se-

quence. The increase of the error compared to the OF that actually uses the data from

the novel view can be as low as 10%, as in the breakdance sequence, but it never gets

higher than 15%. The data-specific factors include the mutli-view configuration of the

cameras such as the angle between the neighboring cameras, and the baseline, as well

as the frequency content of the images, and the speed of the objects in the scene.

The evaluation methodology using view and optical flow field synthesis proposed

in this work, enables quantitative analysis of scene flow in cases where there are no

ground truth data available. We claim that this analysis is more informative than tests

on synthetic or static (stereo) data, e.g. from [57].
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