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Abstract—Most computer vision applications require the reliable detection of boundaries. In the presence of outliers, missing data,

orientation discontinuities, and occlusion, this problem is particularly challenging. We propose to address it by complementing the

tensor voting framework, which was limited to second order properties, with first order representation and voting. First order voting

fields and a mechanism to vote for 3D surface and volume boundaries and curve endpoints in 3D are defined. Boundary inference is

also useful for a second difficult problem in grouping, namely, automatic scale selection. We propose an algorithm that automatically

infers the smallest scale that can preserve the finest details. Our algorithm then proceeds with progressively larger scales to ensure

continuity where it has not been achieved. Therefore, the proposed approach does not oversmooth features or delay the handling of

boundaries and discontinuities until model misfit occurs. The interaction of smooth features, boundaries, and outliers is accommodated

by the unified representation, making possible the perceptual organization of data in curves, surfaces, volumes, and their boundaries

simultaneously. We present results on a variety of data sets to show the efficacy of the improved formalism.

Index Terms—Tensor voting, first order voting, boundary inference, discontinuities, multiscale analysis, 3D perceptual organization.
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1 INTRODUCTION

WE address two complex issues that often arise in
perceptual organization problems; boundary infer-

ence and multiple-scale processing. The augmentation to the
original tensor voting framework [1] proposed here enables
us to simultaneously detect and extract curves, surfaces, and
volumes along with their terminations in 3D, even under
severe noise corruption. Since our method is model-free, the
treatment of arbitrary curves, surfaces, and volumes is not
harder or more computationally expensive than that of lines,
planes, and rectangular regions. Furthermore, we present a
scheme for multiscale analysis of the data that is founded on
our novel boundary detection technique. This paper com-
pletes the compact description of the topic, which appears in
[2], by providing full details for all cases of boundary
inference and more illustrative examples, as well as a more
detailed analysis of the multiple scale scheme.

The fundamental problem we address in this line of
research is the development of a methodology for the
perceptual organization of tokens. The tokens represent the
position of elements such as points, curvels (curve elements),
or surfels (surface elements) and can also convey other
information, such as curve or surface orientation. Token
generation is application specific and is not described in

detail here. Tokens can be generated by processes that detect
the presence of certain features, such as edges, corners, pixel
correspondences, surface patches, intensity within certain
thresholds, etc. Perceptual organization is achieved by
enforcing constraints, as suggested by Gestalt psychology
[3]. The inferreddescriptions are in termsof junctions, curves,
surfaces, volumes, and their boundaries. These structures are
representedbygrouped tokens that bear local estimates of the
structure’s orientation.

1.1 Boundary Inference

The first contribution of this paper deals with the funda-
mental smoothness versus discontinuities dilemma that
occurs in most nontrivial perceptual organization scenarios.
Many perceptual organization approaches operate either as
grouping or as segmentation processes. We believe that both
grouping and segmentation must be performed in order to
tackle challenging problems. In both cases, boundaries play a
critical part. Our strictly second order formalism [1] can be
viewed as an excitatory process that facilitates grouping of
the input data and is able to extrapolate and extract dense
salient structures. The integration of boundary inference, via
first order voting, provides amechanism to inhibit thegrowth
of the extracted structures. The addition of polarity vectors
(first order tensors) to the representation complements the
previously published second order representation that was
insufficient for encoding first order properties, such as
boundaries of perceptual structures. The new representation
exploits the essential property of boundaries to have all their
neighbors, at least locally, on the same side of a half-space.As
described in the remainder of the paper, the voting scheme is
identical to that of the second order case and the first order
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vector voting fields can be easily derived from the second
order fundamental tensor voting field.

Open surfaces in 3D often occur in stereo and other
computer visionproblems. For instance, inFig. 1, thedetected
motion layers of the “flower garden” sequence (as computed
by an algorithm such as [4]) are surfaces whose disconti-
nuities convey important information. Our original frame-
work fails to explicitly detect them, as illustrated in a simple
2D example in Fig. 2. Consider points A and A0, which are
smooth inliers of the contours. The second order tensors
associated with these points are identical in terms of both
saliencyandorientation. Theproblemappearswhencompar-
ing pointsB andCwithB0 andC0. The latter are inliers of the
closed contour,while the formerare the endpoints of theopen
contour. The second order tensor at B has identical orienta-
tion as the one atB0. Even though there is a difference in curve
saliency since B receives less support from its neighborhood
thanB0, the inferred description is very similar for two points
whicharequalitativelyverydifferent. Thisoccursbecause the
second order representation is inadequate to capture the key
property of endpoints: that all their neighbors in the contour
are on the same side. The first order augmentation to the
framework addresses this shortcoming by being sensitive to
the direction from which votes are received.

The second order part of the representation encodes the
preferred type of structure or structures of a token, the
orientation of these structures and discontinuities in

orientation. These can be viewed as second order disconti-
nuities since the structure remains continuous but its
orientation changes abruptly. For example, a contour is
continuous at a corner, but its orientation is not. On the other
hand, the first order part of the representation captures the
directions from which votes are cast to a token or, in other
words, the distribution of the token’s neighbors in space.
This information can be used to detect the terminations of
structures, such as the boundaries of the surfaces of Figs. 1c
and 1d.

1.2 Multiscale Analysis

A second issue that often arises is the selection of the proper
global scale for a data set, in case of single-scale methods, or
the selection of the manner in which multiscale analysis
should be performed. This usually occurs when dealingwith
data sets with varying density of data from region to region.
The conflict is between the preservation of details, on one
hand, and robustness to noise and completion of missing
data, on the other. Consider Fig. 3a, where one can observe
either anumberof curve segments consistingofpoints invery
close proximity or that these segments constitute a larger
contour. Since human perception of this figure is not unique,
but is a function of scale, an artificial perceptual grouping
mechanism should also be able to derive the alternative
groupings as the scale varies.At a small scale, the input canbe
grouped into the smaller segments and their endpoints canbe
detected as in Fig. 3b. Then, the gaps can be bridged using a
larger scale, while leaving the already grouped points
untouched (Fig. 3c). Alternatively, if the details and gaps of
the contour are assumed to be due to noise, a large scale that
guarantees smoothness and good continuation should be
applied to the data set (Fig. 3d).

Motivated by these observations and scale-space theory
[5], we present a multiscale implementation of our frame-
work. We propose a data-driven, adaptive scheme where
processing is performed at multiple scales according to local

TONG ET AL.: FIRST ORDER AUGMENTATION TO TENSOR VOTING FOR BOUNDARY INFERENCE AND MULTISCALE ANALYSIS IN 3D 595

Fig. 1. Flower Garden. A sample frame and velocity field (x-component) are shown. (c) and (d) show the extracted discontinuity curves, together with
the computed depth map.

Fig. 2. (a) Open contour. (b) Closed contour. Open contours have
endpoints where orientation still varies smoothly.



criteria. Our aim is to capture details where they exist and
bridge gaps due to missing data without oversmoothing the
rest of the input. We begin processing at a small scale and
proceed with larger scales only in regions where disconti-
nuities are detected. This hierarchical bottom-up scheme is
consistent with preattentive human perception ([6], [7], [8],
[9]) and offers many advantages over both symbolic and
signal processing techniques ([10]). Once organization at a
fine scale has been completed, we do not have to revisit these
parts of the data set, thus avoiding unnecessary computa-
tions. In addition, since no convolutions with isotropic
smoothing kernels are involved, features do not shift as scale
increases. Accurate boundary detection is critical for the
success of such a schemesince their presence is an indicator of
potentially missing data and gaps that need to be bridged.

1.3 Organization of the Paper

This paper is organized as follows: In Section 2, we review
related work. In Section 3, we present an overview of the
second order tensor voting framework and introduce the first
order representation, votingmechanism, andvoting fields. In
Section 4, the extraction of curve, surface, and region
boundaries is described in detail and, in Section 5, the
multiscale analysis of complex data sets is presented.
Section 6 contains results on complex real three-dimensional
data sets of various modalities. Finally, we discuss the
contributions of this paper along with possible directions for
future work in Section 7.

2 RELATED WORK

Surface and curve inference from 3D data has been an active
research area. Important issues include noise robustness,
detection of orientation and depth discontinuities, and
analysis at multiple scales. Since some of these issues have
not been addressed in 3D, 2D research is also included here.

For surfaces represented in terms of energy functions,
Terzopoulous andMetaxas [11] propose the deformable surface
model. An initial shape is iteratively deformed until the
surface parameters thatmaximize the fit are obtained. In [12],
Sethian proposed a level set approach under which surfaces
can be inferred as the zero-level iso-surface of a multivariate
implicit function. The technique allows for topological
changes, thus it can reconstruct surfaces of any genus as well
as nonmanifolds. Osher et al. [13] andOsher and Fedkiw [14]
proposed efficient ways of handling implicit surfaces as level
sets of a function. A combination of points and elementary
surfaces and curves can be provided as input to their

technique which can handle local changes as well as global
deformations and topological changes. The output however
is limited to surfaces only. Lorigo et al. [44] extended the level
set approaches in computer vision to codimension-two
manifolds. Previously, level sets were limited to codimen-
sion-one manifolds, i.e., surfaces in 3D, while this general-
ization allows the inference of curves which are lower
dimensional manifolds. All the implicit surface-based ap-
proaches are iterative and require careful selection of the
implicit function and initialization. Furthermore, only one
manifold type can be extracted at a time.

We now turn our attention to perceptual organization
techniques that aim at grouping the primitives contained in
the data set into perceptual structures. These primitives serve
as tokens in a symbolic framework that aims at inferring
meaningful groupings according to the Gestalt principles.
More relevant to the work presented in this paper are
methods that infer regions and their boundaries in 2D since,
as pointed out in [15], there are not many perceptual
organization methods that operate in 3D. Shashua and
Ullman [16] first addressed the issue of structural saliency
and how prominent curves are formed from tokens that are
not salient in isolation. They define a locally connected
network that assigns a saliency value to every image location
according to the length and smoothness of curvature of
curves going through that location. In [17], Parent andZucker
infer trace points and their curvature based on spatial
integration of local information. An important aspect of this
method is its robustness to noise. This work was extended to
surface inference in three dimensions by Sander and Zucker
[18]. Sarkar andBoyer [19] employ avoting scheme todetect a
hierarchy of tokens. Unlike our voting scheme, voting in
parameter space has to be performed separately for each type
of feature, thus making the computational complexity
prohibitive for generalization to 3D.

An important class of perceptual organization methods
are inspired by human perception and research in psycho-
physiology and neuroscience. Grossberg and Mingolla and
[20] and Grossberg and Todorovic [21] developed the
Boundary Contour System and the Feature Contour System that
can group fragmented and even illusory contours to form
closed boundaries and regions by feature cooperation in a
neural network. The cues they use are intensity edges and
corners in images. Parallel and orthogonal groupingmechan-
isms allow the completion of regular and illusory contours.
Heitger and von der Heydt [22], in a classic paper on neural
contour processing, showed how elementary edges can be
grouped into contours, including illusory ones, via convolu-
tion with a set of orientation selective kernels, whose
responses decay with distance and difference in orientation.
Both these approaches use terminations of image structures
(edges and corners) as cues for contour formation, but do not
explicitly detect the terminations of the contours being
inferred. Williams and Jacobs [23] introduced the stochastic
completion fields for contour grouping. Their theory is
probabilistic and models the contour from a source to a sink
as the motion of a particle performing a random walk.
Particles decay after every step, thus minimizing the like-
lihood of completions that are not supported by the data or
between distant points. Li [6] presented a contour integration
model based on excitatory and inhibitory cells and a top-
down feedback loop. What is more relevant to our research
that focuses on the preattentive bottom-up process of
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Fig. 3. Curve extraction at different scales. (a) Input data, (b) grouping at
a small scale (endpoints in gray), (c) gaps are bridged, and (d) grouping
at a large scale.



perceptual grouping is that connection strength decreases
with distance and that zero or low curvature alternatives are
preferred to high curvature ones. The model for contour
extraction of Yen and Finkel [24] is based on psychophysical
andphysiological evidence that hasmany similarities to ours.
It employs a voting mechanismwhere votes, whose strength
falls off as a Gaussian function of distance, are cast along a
preferred orientation that is the tangent of the osculating
circle. Review of perceptual grouping techniques based on
cooperation and inhibition fields can be found in [25], [26]. It
should be noted here that all these methods, unlike ours,
require oriented inputs.

Based on scale-space representations for 1D signals [27],
Mokhtarian [28] and Mokhtarian and Mackworth [29]
proposed a scale-space representation for planar and three-
dimensional curves. Special treatment for curvature singula-
rities, evenat straight lines, isnecessaryand the curves tend to
shift toward the center of curvature as they are convolved
with Gaussian kernels of increasing scale. Lowe [30]
proposed a technique to compensate for this unwanted
shrinking of the curves. Perona and Malik [31] used
anisotropic diffusion instead of convolution to address this
problem. Local differential properties are used to discourage
interregion diffusion and facilitate intraregion diffusion.
Lindeberg [5], [32] presented a framework for multiscale
image analysis and automatic selection of scale. The appro-
priate scale at which each feature should be represented is
found by selecting normalized measures of feature strength
in the three-dimensional scale-space (x, y,�). Theproblems of
shrinkage and curvature singularities do not affect our
approach that is symbolic, according to the computer vision
paradigm proposed by Marr [33]. Along these lines, Saund
[10], [34] has developed a framework that is symbolic, as
opposed to the signal/image-based representation of pre-
vious multiscale methodologies. The major advantages
gained by the symbolic representation are that features do
not shift with scale, curvature discontinuities, and open
curves do not pose additional difficulties and that features
that exist in coarse scales donot affect adjacent features in fine
scales andviceversa.Dolan andRiseman [35] alsoproposeda
hierarchical fine-to-coarse scheme for the representation of
curvilinear structure. Curve fragments are grouped by link
filters according to proximity, angular compatibility, and
continuation to form multilevel descriptions of the input.

Our method relates to the previous work in the following
ways: The inputs can be oriented, unoriented, or a combina-
tion of both, while many of the techniques mentioned above
require oriented inputs to proceed. Our representation is
symbolic (in the sense defined in [10]) and, in addition to the
advantages this brings,we are able to extract open and closed
surfaces, curves, and junctions in 3D simultaneously. To our
knowledge, the tensor voting framework is the only
methodology that can represent and infer all possible types
of structures in any dimension in the same space. Our voting
function has many similarities with other voting-based
methods, such as the decay with distance and curvature
[22], [24], [6], and the use of constant curvature paths [17],
[34], [19], [24] that result in an eight-shaped voting field (in
2D) [22], [24]. The major difference is that, in our case, the
votes cast are tensors and not scalars, therefore, they are a lot
richer in information.We applymultiple scale processing in a
fine-to-coarse fashion, in accord with the majority of the
multiscale techniques [33], [27], [36], [10], [35], [5]. Finally, as

in thework of Lindeberg [5], [32], we detect each feature in as
fine a scale as possible and then leave it unchanged as the
scale becomes coarser.

3 THE AUGMENTED TENSOR VOTING FRAMEWORK

In this section, we briefly review the original second order
tensor voting framework [1] and show how it is augmented
by first order representation and voting that enable us to
detect discontinuities or structure terminations in the data.
We begin by describing the representation, then illustrate
the voting mechanism and introduce the concept of voting
fields and how they are derived from the 2D second order
fundamental stick field. Finally, we briefly review the way
dense structures such as surfaces and curves can be
extracted from the sparse data. Pseudocode of the algo-
rithms is available in [38] and the Appendix.

3.1 Representation by Polarity Vectors and Second
Order Tensors

As mentioned in Section 1, we are interested in the
perceptual organization of generic tokens. Each token
represents the potential presence of a perceptual structure
at its position. The representation of a token consists of a
symmetric second order tensor that encodes saliency and a
vector that encodes polarity. The representation is com-
pleted by the signs and directions of the principal
curvatures that can be estimated as in [40]. Interested
readers should refer to that paper for details since curvature
estimation will not be described here. The tensor essentially
indicates the saliency of each type of perceptual structure
(surface, curve, or region in 3D) the token belongs to and its
preferred normal and tangent orientations. The polarity
vector, on the other hand, encodes the likelihood of the
token being on the boundary of a perceptual structure.

In 3D, there are three possible types of inputs: unoriented,
elementary curves, and elementary surfaces. Unoriented
inputs are the most general case, have no preference of
orientation, and the type of structure they may belong to can
onlybe inferredbasedon the configurationof their neighbors.
Their representation should be isotropic with respect to
orientation.Wechoose to represent oriented tokenswith their
normals instead of their tangents. Therefore, an elementary
surface patch is encodedwith a tensor that is alignedwith the
patch’s normal. A curve element, on the other hand, has a set
of normals that spana 2D subspace in 3D. The curve’s tangent
is orthogonal to this subspace. Curvels are represented by a
tensor that is orthogonal to its tangent, therefore belonging to
the normal subspace. These tensors are presented in the
following paragraphs. The first order representation for all
cases is initialized to zero, since no a priori information is
available.

A 3D, symmetric, nonnegative definite, second order
tensor can be viewed as a 3� 3 matrix or, equivalently, a
3D ellipsoid. Intuitively, its shape indicates the type of
structure represented and its size the saliency of this
information. The tensor can be decomposed as in the
following equation:

T ¼ �1êe1êe
T
1 þ �2êe2êe

T
2 þ �3êe3êe

T
3

¼ ð�1 � �2Þêe1êeT1 þ ð�2 � �3Þðêe1êeT1 þ êe2êe
T
2 Þ

þ �3ðêe1êeT1 þ êe2êe
T
2 þ êe3êe

T
3 Þ;

ð1Þ
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where �i are the eigenvalues in decreasing order and êei are
the corresponding eigenvectors (see also Fig. 4). Note that the
eigenvalues are nonnegative since the tensor is nonnegative
definite. For instance, when �1 ¼ 1; �2 ¼ �3 ¼ 0, only the first
term in (1) remains, which corresponds to a degenerate
elongated ellipsoid, termed hereafter the stick tensor, that
represents an elementary surface token with êe1 as its surface
normal. When �1 ¼ �2 ¼ 1; �3 ¼ 0, only the second term
remains, which corresponds to a degenerate disk-shaped
ellipsoid, termed hereafter the plate tensor, that represents a
curve (or a surface intersection) with êe3 as its tangent or, in
other words, with êe1 and êe2 as the two normals that span the
subspace of orientations that is orthogonal to the curve.
Finally, when all eigenvalues are equal, only the third term
remains, which corresponds to a sphere, termed the ball
tensor, that corresponds to an unoriented token which can be
a volume inlier or a junction. The size of the tensor indicates
the certainty of the information represented by the tensor. A
generic tensor can be decomposed as in (1) and each type of
saliency can be evaluated. The size of the stick component
(�1 � �2) indicates surface saliency, the size of the plate
component (�2 � �3) indicates curve saliency, and that of the
ball component (�3) junction or volume saliency. The
interpretation of the inferred saliencies is described in
Section 3.4.

The tensors can be initialized as ballswith nopreference of
orientation or, if prior knowledge is available, with some
preferred orientation. But, in general, after voting, a generic
tensor comprising all three components will be the repre-
sentation for each token. The benefit of having this repre-
sentation is that the likelihood of the token belonging to each
type of structure can be encoded simultaneously and carried
throughout the processing stages without having to make
premature hard decisions or maintain separate maps for
every token type.

The advantages of using the above representation come at
the cost of being insensitive to the direction from which the
information is propagated to each token. As shown in
Section 3.2, the second order votes are also symmetric,
nonnegative definite, second order tensors. It leads to equal
vote contributions at locations ~uu and �~uu from a voter. The
second order representation is adequate for representing
tokens that belong to smooth structures or are located at

orientation discontinuities; it fails, though, at structure
discontinuities suchas surfaceboundariesor curveendpoints
since the surface boundaries, for instance, have a preferred
normalthat isagoodcontinuationof the interiorof thesurface.
What discriminates between the interior points of the surface
and points on its boundaries is the fact that the former are
surrounded by neighbors of the same surface,while the latter
are not. The polarity vector is used to collect precisely this
information since it is sensitive not only to the orientation of
the vote, but also to the direction fromwhich it is coming. Its
magnitude is an indicationof the likelihoodof the tokenbeing
on a boundary. A token on the boundary of a perceptual
structure has a large polarity vector directed toward the
majority of its neighboring tokens. On the other hand, a token
in the interior of a surface or a curve has a locally nonmaximal
polarity vector associated with it.

3.2 Tensor Voting

The core of our framework is the way information is
propagated from token to token. The question we want to
answer is: Assuming that a token at O with normal ~NN and a
token at P belong to the same smooth perceptual structure,
what information should the token at O cast at P? We first
answer the question for the 2D case of a voterwith a pure stick
tensorand showhowall other cases canbederived from it.We
claim that, in the absence of other information, the arc of the
osculating circle at O that goes through P is the most likely
smooth path since it maintains constant curvature. The
osculating circle is the circle that shares the same normal as
a curve at the given point. In case of straight continuation
from O to P , the osculating circle degenerates to a straight
line. It has enough degrees of freedom to connect two
locations given only one orientation, that of the voter. Since
voting is a pairwise operation, nothing suggests the use of
smooth connections with varying curvature. Similar use of
primitive circular arcs can also be found in [17], [34], [19].

As shown in Fig. 5, the second order vote is also a stick
tensor and has a normal lying along the radius of the
osculating circle atP , whichhasC as its center. The first order
vote is a vector along the tangent of the same circle atP .What
remains to be defined is the magnitude of these votes. Since
nothing suggests the opposite, the first and second order
votes should have the same magnitude and this should be a
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Fig. 4. Second order generic tensor and its decomposition into the stick, plate, and ball components in 3D.



function of proximity and smooth continuation. The saliency
decay functionwe have selected has the following form:

DF ðs; �; �Þ ¼ e�
s2þc�2

�2

� �
; ð2Þ

where s is the arc lengthOP , � is the curvature, c is a constant
which controls the decay with high curvature1 and � is the
scale of analysis, which determines the effective neighbor-
hood size.2 Note that � is the only free parameter in the
system. For a more detailed analysis on the selection of the
smoothest paths and the saliency decay function, see [1].

In summary, the secondorder vote is a secondorder tensor
that indicates the preferred orientation at the receiver
according to the voter, while the first order vote is a first
order tensor (a vector) that points toward the voter along the
smooth path connecting the voter and receiver. Pseudocode
for the voting functions is available in the Appendix. What
should be noted is that both first and second order votes are
generated by the secondorder part of the representation. This
is because polarity vectors can only be initialized as zero
vectors and because the second order tensor defines the type
of structure and the way it should vote. The following
equationsdefine the secondand first order votes cast byaunit
stick tensor as functions of the parameters already defined.

S2ðd; �Þ ¼ DF ðs; �; �Þ �sinð2�Þ
cosð2�Þ

� �
½�sinð2�Þcosð2�Þ�: ð3Þ

S1ðd; �Þ ¼ DF ðs; �; �Þ �cosð2�Þ�sinð2�Þ

� �
: ð4Þ

Asimple example to illustrate polarity is depicted in Fig. 6.
The input consists ofa setof coplanarunoriented tokens.They
are encoded as ball tensors and cast first and second order
votes to their neighbors. Figs. 6b and 6c show the maximum
surface saliency and polarity at every ðx; yÞ position. Cuts of
these 2D maps can be seen in Figs. 6d and 6e. The surface
saliency map indicates that there are salient surfaces formed
by the tokens, but, since saliency is an excitatory process and

its value drops gradually, detectingwhere the surface ends is
not an easy task. However, when the surface saliency map is
complemented by the polarity map, the surface boundaries
can be detected as surface inliers that are also maxima of
polarity along the direction of the polarity vectors.

3.3 Voting Fields

In this section, we will show how all the necessary votes can

be cast in the same way as described in the previous section
for the 2D stick tensor case and how all first and second order
fields in any dimension can be derived. Finally, wewill show

how the votes cast by an arbitrary tensor can be computed
given the voting fields.

The second order stick voting fieldS2ðP Þ is a second order
tensor field. At every position, it contains a tensor that is the

vote cast there by a unitary stick tensor located at the origin
and alignedwith the y axis. The shape of the field in 2D can be
seen in Fig. 7a, which is generated by considering all P in the

2Dspace (Fig. 5). Depicted at everyposition is the eigenvector
corresponding to the maximum eigenvalue of the second
order tensor contained there. Its size is proportional to the

magnitude of the vote. To compute a vote cast by an arbitrary
stick tensor, we need to align the field with the orientation of
the voter, andmultiply the saliency of the vote that coincides

with thereceiverby thesaliencyof thearbitrarystick tensor,as
in Fig. 7c. The same alignment holds for the first order case,
where the voting fields are vector fields. Since the locationsO

and P and the unitary stick tensor define a plane in 3D, the
generation of stick votes is identical in 2D, 3D, and ND. The
stick voting fields in higher dimensions, therefore, can be

derived by a simple rotation of the 2D stick field with respect
to theaxisalignedwiththestick tensor.Specifically,note thata
cut of the 3D stick voting field that contains the origin is

identical toFig.5asince thevotingstick tensorandthereceiver
define a plane in 3D where the voting takes place.

At the other end of the spectrum is the ball voting field
B2ðP Þ, a cut of which can be seen in Fig. 7b. The ball tensor
has no preference of orientation, but still it can cast
meaningful information to other locations. The presence of
two proximate unoriented tokens, the voter and the receiver,
indicates a potential perceptual structure. In the 3D case, this
can either be a curve segment or a pencil of planes
intersecting on that segment. Even though the voters are
unoriented, surfaces can be inferred since the accumulation
of votes from point to point with one degree of freedom in
terms of surface orientation, from neighbors in the same
surface, results in a high certainty for the correct surface
normal and eliminates the degree of freedom. The case for
curves is similar. The ball voting fields allow us to infer
preferred orientations from unoriented tokens, thus mini-
mizing initialization requirements.

To show the derivation of the ball voting fields from the
stick voting fields, we can visualize the vote at P from a
unitary ball tensor at the origin O as the integration of the
votes of stick tensors that span the space of all possible
orientations. In 3D, this can be simulated by a rotating stick
tensor that spans the unit sphere. The 3D ball fields can be
derived from the stick fields SiðP Þ, as follows: The first
order ball field is derived from the first order stick field and
the second order ball field from the second order stick field.
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Fig. 5. Second and first order votes cast by a stick tensor located at the

origin.

1. In fact, c is a function of �. Typical values of c range from 35.7 to
110.363 for � ranging from 10 to 30. In our experiments, the results are not
sensitive to the choice of c.

2. Since we use a Gaussian decay function for DF ð�Þ, the effective

neighborhood size is about 3�. The derivation is as follows: let k be the

effective neighborhood size. Then, we can set e�
k2

�2 ¼ �, a small number,

which is the lower bound of significant magnitude. We can then derive the

effective neighborhood size k given �.



BiðP Þ ¼
Z �

0

Z �

0

R�1���SiðR���P ÞR�T���d�d�j�¼0

i ¼ 1; 2; the order of the field;

ð5Þ

where R��� is the rotation matrix to align Si with êe1, the

eigenvector corresponding to the maximum eigenvalue (the

stick component) of the rotating tensor at P , and �; �; � are

rotation angles about the x; y; z axis, respectively.
In practice, the integration is approximated by a summa-

tion which, in the second order case, is performed as tensor

addition,while, in the first order case, it is performed as plain

vector addition. Normalization has to be performed in order
tomake the energy emitted by a unitary ball equal to that of a
unitary stick. As a result of the integration, the second order
ball field does not contain purely stick or purely ball tensors,
but arbitrary second order symmetric tensors. The first order
ball field holds a vector at each position as a result of vector
addition. Both fields are radially symmetric, as expected,
since the voter has no preferred orientation.

To complete the description of the voting fields for the
3D case,weneed to describe the plate voting fieldsPiðP Þ. Since
the plate tensor encodes uncertainty of orientation around
oneaxis, it canbederivedby integrating thevotesof a rotating
stick tensor that spans the unit circle, in otherwords, the plate
tensor. The formal derivation is analogous to that of the ball
voting fields and can be written as follows:

PiðP Þ ¼
Z �

0

R�1���SiðR���P ÞR�T���d�j�¼�¼0

i ¼ 1; 2; the order of the field;

ð6Þ

where �; �; �, and R��� have the same meaning as in the
previous equation.

We have derived six voting fields for the 3D case, namely,
the first and secondorder stick, plate, andball fields. They are
functions of the position of the receiver relative to the voter
and a single parameter, the scale of the saliency decay
function. After these fields have been precomputed at the
desiredresolution, computing thevotescastbyany3Dsecond
order tensor is reduced to a few look-upoperations and linear
interpolation.These fieldsareadequate forvotegenerationby
anysecond-ordernonnegativedefinite tensor.Asdescribedin
Section 3.1, any 3D tensor can be decomposed into the stick,
plate, and ball components, according to its eigensystem.
Then, the corresponding fields can be aligned with each
component. Votes are retrieved by simple look-up operations
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Fig. 6. (a) Input. (b) Surface saliency magnitude. (c) Polarity magnitude. (d) Cut of surface saliency. (e) Cut of polarity. Surface saliency and polarity
for (a) a set of unoriented coplanar tokens. (b) Detection of the plane’s boundaries using surface saliency alone is not clear. (c) Incorporating polarity
information makes boundary detection straightforward. (d) and (e) are cuts of the surface saliency and polarity maps.

Fig. 7. (a) Two-dimensional stick voting field. (b) Two-dimensional ball
voting field. (c)A casts a stick vote toB, using the 2Dstick voting field.Due
to symmetry, theorthographic projectionof a sliceof the3Dball voting field
viewed along the direction parallel to the êe3 component of the tensor at the
center of the field looks the sameas (b). The fields are definedeverywhere
where the empty areas denote very small and negligible tensor votes.



and their magnitude is multiplied by the corresponding
saliency. Recall from (1) that the saliency of the stick
component is �1 � �2, of the plate component �2 � �3, and of
the ball component �3.

3.4 Vote Collection and Interpretation

Votes are cast from token to token, as described in the
previous section, and they are accumulated by tensor
addition in the case of the second order votes, which are,
in general, arbitrary second order tensors, and by vector
addition in the case of the first order votes, which are
vectors. Voting takes place in a finite neighborhood within
which the magnitude of the votes cast remains significant.

Analysis of the second order votes can be performed once
the eigensystemof the accumulated secondorder 3� 3 tensor
has been computed. Then, the tensor can be decomposed into
the stick, plate, and ball components:

T ¼ð�1 � �2Þêe1êeT1 þ ð�2 � �3Þðêe1êeT1 þ êe2êe
T
2 Þ

þ �3ðêe1êeT1 þ êe2êe
T
2 þ êe3êe

T
3 Þ;

ð7Þ

where êe1êe
T
1 is a stick tensor, êe1êe

T
1 þ êe2êe

T
2 is a plate tensor, êe1êe

T
1 þ

êe2êe
T
2 þ êe3êe

T
3 is a ball tensor. The following cases have to be

considered: If �1 � �2; �3, this indicates a dominant stick

component, thusapreference foranormalorientationand the

token most likely belongs on a surface. In case of a token that

belongs on a curve, or surface intersection, the uncertainty in

normal orientation spans a plane perpendicular to the

tangent. Hence, the inferred tensor is plate-like, that is,

�1 � �2 � �3. If the token has no preference of orientation,

�1 � �2 � �3 and the dominant component is the ball. Tokens

that belong to volumes have high �3 values. Junctions can be

discriminated fromvolume inliers since they aredistinct local

maxima of �3. That is, their �3 values are considerably larger

than those of their neighbors. An outlier receives only

inconsistent votes, so all eigenvalues are small.
Vote collection for the first order case is performed by

vector addition. The accumulated result is a vector whose
direction points to a weighted center of mass from which
votes are cast and whose magnitude encodes polarity. Since

the first order votes areweighted by the saliency of the voters
and attenuate with distance and curvature, their vector sum
points to the direction from which the most salient contribu-
tions were received. A relatively low polarity indicates a
token that is in the interior of a curve, surface, or region,
therefore surrounded by neighbors whose votes cancel out
each other. On the other hand, a high polarity indicates a
token that is on or close to a boundary, thus receiving votes
from only one side with respect to the boundary, at least
locally. The interpretation of polarity vectors for boundary
inference is done in conjunction with second order tensors
and is described in Table 1. A detailed analysis for each case
can be found in Section 4.

3.5 Dense Structure Extraction

Nowthat themost likely typeof feature at each tokenhasbeen
estimated, we want to compute the dense structures
(connected curves and surfaces in 3D) that can be inferred
from the tokens. This can be achieved by casting votes to all
locations,whether they contain a token or not, using the same
voting fields and voting mechanism. Then, each site contains
a 2-tuple ðs; v̂vÞ, indicating feature saliency and direction.
Given this dense information, a modified marching algo-
rithm [38] is used to extract surfaces and curves which
correspond to the loci of zero crossings in s along v̂vs. Junctions
are isolated and, therefore, are extracted as maxima of
junction saliency. Extraction stops at boundaries, thus over-
coming the inherent limitation of the Marching Cubes
algorithm [39] that only extracts closed surfaces. Interested
readers are referred to [1] or [38] for more details.

4 BOUNDARY INFERENCE

In this section, we describe how the theory developed in the
previous section can be used to infer boundaries of
3D perceptual structures. We begin with surface boundary
detection (surface end-curves) and then turn our attention to
curve endpoint detection and region boundary inference
(volume boundary). The optimality of these extracted
structures is explained by ourmodifiedmarching algorithms
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TABLE 1
Summary of First and Second Order Tensor Structure for Each Feature Type in 3D



[38] formaximal surface and curve extraction, which extracts
maxima along the detected polarity direction.

4.1 Surface Boundary Inference

We are interested in extracting surface end-curves that, in
some applications, may indicate depth discontinuities or
occlusion boundaries. In the case of surfaces, both interior
points and points on boundaries are characterized by a
dominant stick component. Our objective is to associate
each input point Q with a 2-tuple ðs; v̂vÞS , where s denotes
surface boundary saliency and v̂v is a unit vector which
indicates the normal direction to the underlying boundary
curve. The curves depicted in Fig. 1 are points with large
s values. When all ðs; v̂vÞS are available, we extract the curves
corresponding to maxima in s along the polarity vector
direction, using a modified curve marching process [38].

Assumewe are given an open smooth surface patch in 3D,
encoded as a sparse set of tokens, possibly containedwithin a
larger data set. The tokens are initially encoded as ball tensors
since their preference of orientation is unknown. After a pass
of second order voting, the tokens that lie on the surface, both
in the interior and on the boundaries, have accumulated
second order tensors with dominant stick components
consistent with the normal of the surface at each location.

With orientednormal vectors, tokens propagate first order
votes to their neighbors. As seen in Section 3.2, these votes
will be along the tangent of the circular arc connecting the
voter and the receiver. Therefore, the resultingpolarity vector
at the receiver after vote accumulation lies on a plane
perpendicular to the estimated local surface normal. In case
of a token in the interior of the region, the first order votes
come from all directions and cancel each other out. On the
otherhand, close to the surfaceboundaries, a largevector sum
is accumulated, pointing toward the average direction
(weighted by vote saliencies) from which the votes came.
This polarity direction is locally orthogonal to the boundary
by definition. If the detected polarity vector is not exactly
orthogonal to the estimated surface normal that is an
indication of interference by noise, we use its projection on
the plane orthogonal to the normal. The tensor is robust
against this kind of interference since it contributes to the ball
component and does not affect the estimated normal.

Fig. 8 shows the input and output and Fig. 9 illustrates a
complete rundown of the major steps in surface end-curves
extraction. The range scan of a human face is courtesy of the
Signal Analysis and Machine Perception Laboratory, Ohio

State University. To make the input more difficult, we add
random noise to it, making the signal-to-noise ratio 1:2.
After applying the procedure described, we extract the end-
curves of the surfaces.

4.2 Curve Endpoint Inference

Besides the usefulness curve endpoints exhibit by themselves
as the boundaries of smooth curves, they are also very useful
in a hierarchical grouping scheme, under which elementary
curve segments are grouped into extended curves and gaps
are bridged as scale increases [35], [41], [34], [8]. In the context
of single-scale tensor voting, the detection of curve endpoints
is important since they indicate where the dense curve
extraction process should be terminated. As in the case of
surface boundaries, the second order representation alone
cannot conveywhether a point is in the interior of a curve or a
curve endpoint since they are both characterized by a
dominant plate component with curve saliency �2 � �3 and
preferred tangent parallel to êe3, the eigenvector correspond-
ing to the minimum eigenvalue.

After second order voting, the eigenvector corresponding
to the smallest eigenvalue (êe3), of the tensor inferred at each
location gives the tangent orientation. Signs of curvature are
also detected. Then, we extract curve endpoints by casting
first order votes and inferring a 2-tuple ðs; v̂vÞC at each point: s
encodes curve endpoint saliency and v̂v is parallel to the tangent.
At tokens that lie in the interior of the curve, first order votes
come from both directions and cancel each other out. At the
endpoints, all first order votes are cast from the same
direction, thus combining into a large vector sum pointing
toward the interior of the curve. Since curve endpoints are
isolated in space, no marching process is needed for their
extraction. The exterior tokens with respect to the curve
tangent that have accumulated high polarity are selected as
the endpoints. Fig. 10 shows the input and the salient curve
endpoints extracted for the end-curves of the surfaces
inferred from the noisy data.

An example of simultaneous inference of surfaces,
curves, surface intersections, junctions, surface boundaries,
and curve endpoints is presented in Fig. 11.

4.3 Volume Boundary Inference

Given a noisy set of points that belong to a 3D volume, we
infer its boundaries by associating a 2-tuple ðs; v̂vÞV to each
point after noise removal: s denotes region boundary saliency
and v̂v is the normal pointing to the “inside” of the point
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Fig. 8. (a) Noisy input (only one out of three points is correct) and the extracted curves. (b) Three-dimensional curve saliency map of surface
boundaries, where white indicates high saliency and black indicates low saliency.



cluster. Note that, in this case, the normal refers to the vector
inferred by first order voting since the characteristic second
order tensor of a region is a ball that has no orientation
preference.

In terms of second order tensors, regions are characterized
by adominant ball component since they collect secondorder
votes from all directions in 3D. The same holds for tokens
close to the region boundaries since second order votes are a
function of orientation but not direction. Once second order
information is available at each token, first order votes are

cast. The bounding surface of a 3D region can be extracted by
themodified surfacemarching algorithm [38] as themaximal
isosurface of s along v̂v.

Fig. 12 shows input and results on surface boundary
extraction. The input is a set of approximately 600,000 un-
oriented tokens uniformly distributed inside a peanut-like
shape. A number of random points, ranging from 600,000 to
2.4million, drawn fromauniformdistribution is added to the
data set. Fig. 12a shows the noise free input, while Fig. 12b
shows the input with 600,000 random points added. Inputs
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Fig. 10. Two results: (a) Face and (b) frog on curve endpoint inference. The noisy data set is obtained by adding two random points for every true
data point. The result of surface boundary inference of the objects of interest are marked in white and points with high curve endpoint saliency are
coded in in dark gray. (The face scan data is courtesy of the Signal Analysis and Machine Perception Laboratory, Ohio State University.)

Fig. 9. Complete rundown of the major steps in end-curve detection. (a) A magnified portion of the point data in Fig. 8 (after noise rejection by tensor
voting). (b) The result after the first pass. Surface saliency is indicated by the length of each normal. (c) Sign of curvature is used to orient normal
vector. (d) Polarities obtained by first order voting.



with more random points are too noisy to be displayed.
Second and first order voting is performed using the same
scale in all cases and the bounding surfaces of the peanut are
extracted based on their highpolarity. Table 2 reports the true
positive rates for the extracted boundaries. Tokens labeled
volume boundaries are considered correct if they are within
1 percent of the peanut’s size from the actual boundary as
defined by the equations used to generate the input. The
processing time for thedata setwith 3million total pointswas
43 minutes on a Pentium 4 PC at 2.8GHz.

5 MULTISCALE ANALYSIS

In this section, we present an algorithm that uses first and
second order voting to adjust the scale of analysis, a natural
application of the first order augmented framework. Our
approach operates in a fine-to-coarse fashion, much like
most other multiple scale methods in computer vision [33],
[27], [36], [10], [35], [5]. This allows the preservation of fine
details where they exist, while it delays the enforcement of
global smoothness as long as possible. Tokens that have
already been processed at a fine scale are left untouched at
subsequent larger scales that are only applied to regions
with discontinuities. Accurate boundary detection, there-
fore, is a critical module in such a scheme.

A technique for automatic scale selection based on the
existence of discontinuities at the previous scale will be
illustrated in the running example of this section that comes
from the field of medical imaging. In medical image
analysis, we usually assume the absence of junctions. Even
though the surfaces of organs and tissues can sometimes be
very convoluted, they should still be smooth. Taking
advantage of this domain-specific knowledge, voting is
first performed with a small scale and we can determine
whether it is sufficient for each region based on the
presence or absence of junctions.

We first use a 2D synthetic image to illustrate a complete
rundown of ourmultiscale algorithm. By thresholding image
intensity,weproducean initial setof tokens shown inFig. 13a.
The desired feature is a ribbon-like structure. However,
intensity thresholding is inaccurate and misses some data in
the middle. We begin by detecting region boundaries in 2D.
Weobtain estimates of polaritydirections that indicate region

boundary saliency by second and first order tensor voting

(Fig. 13b). Then, using the detected region boundaries as
inputs, these estimates are refined intomore accurate normal
directions of the bounding curves. Tokenswith high junction

saliency indicate highly convoluted features or errors result-
ing frommissing data (both cases are characterized by a set of

inconsistent normals violating the continuity constraint). A
fixed size neighborhood (e.g., 3� 3� 3, independent of the
scale �) with high junction saliency is removed around each

detected junction (Fig. 13c). Then, we perform 2D endpoint
detection on the remaining region boundaries, (Fig. 13d).
These will serve as interfaces where gaps will be bridged as

the scale is increased. Scale is further increased until the
detected endpoints are connected smoothly or we reach the
largest permissible scale (Fig. 13e). Finally, the same march-

ing curve process [38] is applied to produce a dense
continuous curve (Fig. 13f).

5.1 Multiscale Algorithm

The algorithm for 3D presented below is a generalization of
the 2D case. Scales �1 and �n are the smallest and largest

permissible scales, respectively. The sensitivity of this
selection is very low and any reasonable range of scales
should produce very similar results. b denotes a token and

neighborhoodðbÞ is a fixed size neighborhood around it.

SURFACEEXTRACT(�1; �n)
1. Threshold intensity (Fig. 13a)
2. Vote for the bounding surfaces of 3D regions

using �1 (Fig. 13b)
3. For each neighborhoodðbÞ do

� �1

repeat
Vote for bounding surface normals

using � (Fig. 13c)
Vote for signs of curvatures using � [40]
if (maxðneighborhoodðbÞ:JunctionSaliencyÞÞ > 	j)

(Fig. 13c)
Remove tokens around b’s neighborhood

Vote for surface end-curves using � (Fig. 13d)
if (maxðneighborhoodðbÞ:SurfaceBoundarySaliencyÞÞ

> 	e)
� �þ k

Vote for bounding surfaces of regions
(Figs. 13e and 13f)

until (neighborhoodðbÞ:SurfaceBoundarySaliency < 	e)
or (� > �n)

The other parameters are: 	j is the maximum acceptable
junction saliency, below which a token is not classified as a
junction; 	e is the minimum volume boundary saliency,
above which a token is classified as a boundary; k is the step
by which scale is incremented at each iteration.

In Step 3 above, we want to find the smallest � 2 ½�1; �n�
such that continuity is satisfied at the smallest possible scale
and, at the same time, the finest details are preserved. At each
iteration, smoothness andcontinuity are examinedby the two
conditional statements in the algorithm. Smoothness is
ensured if no junctions can be detected and continuity is
ensured if no structural boundaries exist. We have exactly
four cases (recall the saliency definitions in Table 1):
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Fig. 11. Results on simultaneous inference of multiple types of
structures. (a) Unoriented data set that consists of two intersecting
planes, two intersecting curves, and random outliers. (b) Output after
voting. Outliers have been rejected due to very low saliency. Surface
inliers are marked in gray, curves and boundaries in black. Curve
endpoints and junctions have been enlarged.



1. High junction saliency and high end-curve saliency. Since
no junction exists and a token with high end-curve
saliency also has high surface saliency, this scenario
indicates the presence of highly convoluted surface,
where many surface normals exist in the neighbor-
hood. This scenario is very possible for the brain data
or complicated tissue we test in the next section. As
continuity and smoothness constraints are violated at
the current scale �, we increase � by k to enforce more
smoothness in a larger scale in the next scale iteration.

2. High junction saliency and low end-curve saliency. This
scenario indicates a salient junction, where end-
curve (and, thus, surface) saliency is low. A salient
point junction should be absent from real medical
data. Therefore, the reason why the smoothness
constraint is violated at the current scale � is very
possibly due to missing or noisy data. Therefore, we

remove a small, fixed size neighborhood at this
point, which should automatically result in high
end-curve saliency at the current scale due to the
breaking of continuity. The resulting gap can be
bridged as the scale is increased in the next scale
iteration.

3. Low junction saliency and high end-curve saliency. With-
out any salient junction, a salient end-curve indicates
the presence of erroneous data because, supposedly,
only smooth and continuous organ/tissue structure
exists. In this case, we increase the scale so that the
fragmented data can be connected smoothly in the
next scale iterations.

4. Low junction saliency and low end-curve saliency. The
current scale of analysis is acceptable for maintain-
ing both smoothness and continuity. Therefore, the
repeat loop stops if this condition is true.
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Fig. 12. (a) Results on volume boundary inference. The unoriented inliers form a peanut. Noise-free input. Large numbers of random points are
added to the data set. (b) Input with 600,000 random. (c) Boundaries with 1.2 million outliers. (d) Boundaries with 2.4 million outliers.

Fig. 13. Illustration of our multiscale technique (a) initial set of tokens, (b) polarities; a junction is labeled, (c) removal of tokens around the detected

junction, (d) endpoint detection, (e) missing tokens are inferred during the multiscale analysis, and (f) final curve extraction result.

TABLE 2
Correct Detection Rates for the Boundaries of the “Peanut” of Fig. 12



Atypical value of k is 1 in a 150� 150� 150quantized grid
for medical data. Experiments in [1] show that the step size k
is not critical since tensor voting has low sensitivity over a
reasonable range in [�1; �n]. If k is too large, oversmoothing
may occur. The step size has a marginal effect on the
performance of the system.

6 EXPERIMENTAL RESULTS

We apply the augmented framework on medical images, as
the data objects exhibit smooth structure and would benefit
the most from our method that enforces/facilitates smooth-
ness. Since CT and MRI scans are 2D images, we prepare the
3Ddata by applying intensity segmentation on the images by
thresholding and stacking the thresholded points to produce
a 3D point set. First order region inference as well as the
augmented surface extractionmethodare thenapplied on the
3D data. As we shall see, with minimal knowledge, our
methodcan refine andextract accurate results.Running times
aremeasured on aPentium III at 600MHz,with 384MBRAM.

Fig. 14 shows the reconstruction result of theTHORAXdata
set. This is a set of real CT scans (courtesy of the University of
Washington Health Science Center). Only 12 interleaved
slices, whose z-coordinates range unevenly from 110 to 180,
are used. To make the example more challenging, we add a

total of 12,000 noisy points to the volume (signal: noise = 1:2).
After intensity thresholding, we initialize the tokens as ball
tensors and perform 2D first order voting on the 12 slices to
infer the region boundaries.3 The segmentation results on
three sample slices are shown in Fig. 14a. Next, we stack
together the resulting thorax boundaries into a 3D volume of
dimensions 170� 114� 70 (Fig. 14b). The complete surface is
then extracted by the augmented version of 3D tensor voting,
which consists of 3D second order voting to refine the normal
of the sparse boundary points, inference of sign of curvature,
followed by surface extraction. Two views of the segmented
surface are shown in Fig. 14c. We do not use any assumption
other than the smoothness and continuity requirements
mentioned in the second paragraph of Section 5 in our
reconstruction. Processing times are shown in Table 3.

The MCGILL BRAIN, from the Brainweb [42], is used to
evaluate our algorithm. The dimensions of the MRI data set
are 181� 217� 181, with resolution set at 1mm3. We are
interested in three types of tissues: the cerebrospinal fluid or
CSF, the graymatter orGM, and thewhitematter orWM.We
perform initial intensity segmentationon theMRI images and
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Fig. 14. Results on the 12 slices of the CT scan of the Thorax data set. (a) Three slices of the CT scan showing the inferred boundaries of the thorax

(the bright curves), (b) 3D boundary points before surface extraction, and (c) result of the surface extraction using our method.

3. In most situations, region boundary inferences are performed in the
3D volume except here when the input consists of widely separated and
interleaved slices, region inferences will be more stable in 2D. Surface
extraction is, however, always performed in 3D.



stack them up into three 3D tissue point sets. This is a very

challenging data set since all surfaces are very convoluted.

Without any a priori assumption or initialization, we can still

robustly separate two closely spaced surfaces that define the

boundaries of the CSF ribbon (or CSF ), the gray matter

ribbon (or GM), and white matter (or WM) (Figs. 15a, 15b,
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TABLE 3
Processing Times for the THORAX Data Set

Fig. 15. Results on the MCGILL BRAIN data set. The sagittal, transversal, coronal views of the extracted (a) CSF, (b) gray matter, and (c) white matter
boundaries are shown. The inner cortical surface and the outer cortical surface are shown together in (d). In (e) and (f), three views of the inner and
outer cortical surface mesh are shown.



and 15c) by using 3D first order voting for region boundary

detection for the respective tissue volume. To further

delineate the two bounding surfaces of the gray matter, we

perform two additional operations, based on the knowledge

that CSF encloses GM which, in turn, encloses WM. Thus,

CSF \GM gives the outer cortical surface, whereas GM \
WM produces the inner cortical surface. Fig. 15d shows the

resulting intersections for both the inner and the outer

surface. Finally, Figs. 15e and 15f show the result of the inner
andouter cortical surface using the augmented tensor voting,

which consists of 3D secondorder voting to refine thenormal,

inference of sign of curvature, followed by surface extraction.
While only the continuity and smoothness constraints are

usedwhenwe apply our first order augmented tensor voting

framework, there exist other specialized methods in the
medical image computing literature that make use of prior

knowledge. The use of prior models to extract brain surfaces

is however out of the scope of this paper. Table 4 summarizes
the processing times for the MCGILL BRAIN data set.
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TABLE 4
Processing Times for the MCGILL BRAIN Data Set

Fig. 16. Algorithm 1.



We perform a simple error analysis on the resulting gray
matter surfaces obtained above (Fig. 15), for which ground
truth is available. Qualitatively, the results are very
satisfactory. Our quantitative comparison is as follows:
The true bounding surfaces of gray matter are first derived
from the set of pixels known to be gray matter (ground
truth) by manual expert tracing. We count the number of
pixels classified as cortex surfaces, and check against the
true boundary pixels. Let TP% be the true positive
percentage that indicates our correct classification. Let
FP% and FN% be the false positive and negative
percentage, respectively. We obtained the following results:
TP ¼ 89:76%, FP ¼ 4:36%, FN ¼ 5:10%. We have approxi-
mately 90 percent correctness, which is comparable to the
results reported in [43] for the same example. Their focus is
the correctness of tissue volume labeling and a TP% of 92 is
reported. On the other hand, our interest is the correctness
of tissue surface labeling, which could be a more sensitive
metric and, hence, we have a slightly lower TP%. We
indicate the cortical bounding surface tokens in our figures.

7 DISCUSSION AND CONCLUSION

In this paper, we have presented a first order augmentation
to the tensor voting framework that fits naturally within the
theory described in [1]. It was illustrated in 3D, but it
provides a boundary detection mechanism for manifolds of
dimension 1 to N in any N-dimensional space. We have
shown how the first order vector fields can be derived from
the fundamental 2D first order stick field, in the same way as
the second order tensor fields. Our new representation
maintains all the critical properties of the strictly second
order one, including reasonable computational complexity,
and, at the same time, provides a richer description for

perceptual structures in any dimension. In the same way
that the second order tensor simultaneously encodes the
saliency of the token as an elementary surface patch, an
elementary curve segment, a junction, or noise, thus
allowing the decisions to be made at a later stage, the
polarity vector encodes the saliency of the token as a
boundary of a perceptual structure without labeling the
token as a boundary before the local neighborhood is
considered. The voting fields allow tokens with different
tensor structures to interact with each other and provide the
means for junctions, curves, surfaces, volumes, and their
boundaries to emerge from the same space. We claim that
this is an important contribution and that results should be
superior with unified processing as opposed to treating each
type of structure separately.

Putting the capability to detect discontinuities to use, we
have also opened the door to multiscale data analysis using
tensor voting. The results we have obtained are encouraging
and they justify both the fine-to-coarse manner in which we
process the data, as well as the automatic scale selection
techniqueweuse.Theseallowus to locally resolve the conflict
between detail preservation, on one hand, and smoothness
and continuity, on the other. Scale adaptation based on local
criteria bypasses the need for computing the entire scale-
spaceof large three-dimensional data sets and the subsequent
need for searching for the proper output in scale-space. A
major axis of our future work will be along further
experiments on multiscale data analysis. There is a plethora
of issues that areworthyof investigation, such as the selection
of the range of scales as a function of the level of noise, the
choice of the local criteria used for scale adaptation, and the
development of multiresolution representations for the data.
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Fig. 17. Algorithm 2.



APPENDIX

ALGORITHMS FOR 3D TENSOR VOTING

We detail the general second order tensor voting algorithm
[37] in this section. The voter uses GENTENSORVOTE to cast
a tensor vote to the vote receiver (votee). Votes generated by
GENNORMALVOTE are accumulated using COMBINE. A
3� 3 outTensor is the output. The votee thus receives a set
of outTensor from voters within its neighborhood. The
resulting tensor matrices can be summed up by ADDTEN-

SOR, which performs ordinary 3� 3 matrix addition. The
final matrix after accumulation describes an ellipsoid in 3D.
For first order voting, ADDVECTOR is used for vote
accumulation, which is plain vector addition. See Figs. 16,
17, 18, and 19.
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