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Abstract

We present an integrated approach to the derivation of scene descriptions from two or

more stereo images, where evaluation of feature correspondences and grouping into perceptual

structures are addressed within the same framework. Special attention is given to the

development of a methodology with general applicability. In order to handle the issues of noise,

lack of image features, surface discontinuities and half occluded regions, we adopt a tensor

representation for the data, and introduce a robust computational technique called tensor voting

for information propagation. The major contributions of our approach are the fact that all

processing is done in 3-D, the choice of saliency instead of cross-correlation as the criterion for

determining the correctness of correspondences, and the integration of feature matching with

surface and curve extraction. We have obtained promising results on synthetic and real data, as

well as random dot stereograms.

Principles of our approach at Binocular Stereo

We will first briefly describe our approach at the case of binocular stereo [1], and then

show how it can be extended to multiple views. Given that the problem of binocular stereo is ill-

posed, several constraints that should be imposed on the solution have been proposed. Besides

the epipolar constraint, the most widely used among these constraints include the continuity

constraint, the uniqueness constraint and the ordering constraint ([3], [4], [6]). Our framework

allows us to impose the smoothness constraint locally in three dimensions, rather than one or

two. It makes use of the epipolar constraint by forcing matches to only occur along these lines,

but computes saliency across epipolar lines. It enforces uniqueness of matches locally, but allows

this constraint to be overridden globally, leading to the inference of overlapping regions. We do
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not impose the ordering constraint explicitly because it is violated by thin or small objects,

transparent surfaces and acute concavities.

The steps from the image pair to the description of the scene in terms of perceptual

structures, surfaces and curves, are the following. First points of interest, or features, are

extracted from each image. These are pixels with non-zero intensity variance within a small

window. The next step is feature matching between two images, along corresponding epipolar

lines. We retain all local maxima of cross-correlation, which are potentially correct matches, as

inputs to the next step; encoding of potential matches as second-order symmetric tensors.

Tensor representation is capable

of capturing a location’s position along

with the likelihood of its role as part of a

smooth surface, a curve, or as an outlier.

Geometrically, the second-order

symmetric tensor is equivalent to an

ellipsoid whose shape encodes the

location’s orientation information, and

whose size encodes the perceptual saliency, or confidence, of this information. Tensor voting [5]

is the means for communicating information among neighboring locations in order to determine

the amount of local support a feature receives. The votes are cast in the form of second-order

symmetric tensors that can be accumulated at the receiving location by a simple addition of 3x3

matrices. The eigensystem of the resulting matrix contains information on the surface and curve

saliency of the location along with the orientation of the corresponding elementary surface or

(a) Input images

(b) Views of the extracted surfaces

Figure 1. The Arena
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curve going through the location. If a location displays very low saliency, it can be discarded as

an outlier.

Surface and curve extraction are performed using a modified Marching Cubes process

[2]. Perceptual structures are extracted as the zero-crossings of the first derivative of surface or

curve saliency with sub-voxel accuracy. Fig. 1 shows results from a binocular example.

3-D processing, implemented by the tensor voting framework, eliminates the problems

associated with the 2 ½-D sketch, which is view-centered, suffers at discontinuities, and cannot

support multiple layers or transparency. Tensor voting enables us to perform all the necessary

processing in three dimensions at a manageable computational cost.

The novelty of our method is the fact that we delay decisions on the correctness of

matches and do not make them at a premature stage. From our perspective, high cross-correlation

values between image intensities are indications of potential matches, but not very reliable as a

criterion for resolving the correctness of matches. We propose the use of saliency for that

purpose. Saliency represents the likelihood that a location belongs to a perceptual structure,

which could be a surface, a curve, or a junction. This enables us to integrate feature matching

with surface and curve extraction. The matches, that are considered inliers, are used to guide the

extraction process, and hence, their correctness can be judged by the surfaces they produce.

Extension to Multiple Views

The design of the binocular system was made in a way that the system could be extended

to multiple views with no modifications of its principal concepts. Three-dimensional processing

is even more crucial in the case of multiple views, where the 2 ½-D representation is inadequate.

The fact that decisions for the correctness of matches are not made prematurely becomes more

important, since there is more information stemming from more than two views that should be
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utilized before such decisions can be made. We process images in pairs, under the principles of

the binocular system, and increase the initial saliency of matches that are consistently supported

by multiple pairs.

In order to maintain the general applicability of our method, we do not treat any images

as privileged and do not require that features appear in all views. The only requirement for a

feature to be used as input to the tensor voting process is that it appears in at least two views, so

that an estimate of its depth can be obtained. The main additional requirement for processing

multiple views is that correspondences have to be reconstructed in real world coordinates since

disparity space is no longer sufficient. Fig. 2 (a) shows three of the 36 input images of the

Dragon sequence, while Fig. 2 (b) shows some views of the output surfaces.
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Figure 2. Input images and output surfaces of the Dragon


