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Abstract Machine learning has been instrumental in

most areas of computer vision, but has not been ap-

plied to the problem of stereo matching with similar

frequency or success. In this paper, we present a su-

pervised learning approach by defining a set of fea-

tures that capture the various forms of information of

each pixel, then using them to predict the correctness

of stereo matches based on a random forest. We show

highly competitive results in predicting the correctness

of matches and in confidence estimation, which allows

us to rank pixels according to the reliability of their

assigned disparities. Moreover, we show how these con-

fidence values can be used to improve the accuracy

of disparity maps by integrating them with an MRF-

based stereo algorithm. This is an important distinc-

tion from current literature that has mainly focused on

sparsification by removing potentially erroneous dispar-

ities to generate quasi-dense disparity maps. Finally, we

demonstrate domain generalization of our method by

applying the classifier of a dataset to a different dataset

with equally successful results.
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1 INTRODUCTION

Stereo matching is an inverse problem and, as such, it

is notoriously prone to errors, mostly due to occlusion,

lack of texture and repeated structures. Since the com-

mon causes of the errors are well known, one would

expect that learning methods could have been used to

detect them. Helpful cues are available in the neighbor-

hood of a pixel as well as in information generated dur-

ing the matching process. Surprisingly, very few publi-

cations have attempted to tackle stereo matching from a

learning perspective [8,16,17] and they have not gained

much traction. In this paper we address exactly that.

Given a training set of stereo pairs with ground truth

disparity, the goal of this paper is to answer the follow-

ing questions:

1. Is it possible to predict whether a stereo correspon-

dence is right or wrong based on features extracted

from the stereo pair for that pixel and a trained

classifier?

2. Is it possible to use these predictions to improve the

disparity map?

3. Can a stereo algorithm based on supervised learning

generalize to a dataset different than the one it was

trained on?

To answer the first question, we formulate a binary

classification problem and tackle it using a random for-

est (RF) classifier [5]. We argue that this problem is

more fundamental than confidence estimation without

the ability to decide on correctness [13,26] or selection

of a hypothesis among a set generated by a mixture of

experts [17,20]. Ranking stereo matches accurately ac-

cording to confidence is valuable, but does not imply

the capability to determine which of the matches are

correct, since the error rate may fluctuate from image
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to image making the selection of a threshold hard with-

out knowledge of the priors. We show that we are able

to predict the correctness of matches on disparity maps

with very different error rates at nearly optimal levels.

To address the second question, we, first, use the

results of the RF classifier to identify Ground Control

Points (GCPs), that is points for which we are very con-

fident that their calculated disparity is correct. For the

identified GCPs, we modify the matching cost volume

in such a way as to favor their already assigned dispar-

ity values. The modified cost volume is then used as

input to a Markov Random Field (MRF) optimization

that returns an improved disparity map.

We intentionally select features for our classifiers

that are not domain-specific but capture general prop-

erties of successful and unsuccessful matching. In this

paper, we show for the first time experiments in which a

classifier is trained on a source dataset and then it is ap-

plied on a different target dataset. We demonstrate that

our approach incurs minimal loss of accuracy when ap-

plied on a domain different than the one it was trained

on. This type of generalization is useful in cases where

ground truth depth maps may not be available for one

Fig. 1 Left column: Input image, ground truth, WTA dispar-
ity map using NCC for Wood2 from the Middlebury dataset
[28], prediction map (bright intensities correspond to WTA
matches that are likely to be correct), and final disparity af-
ter MRF optimization. Right column: Similar maps for image
102 from the KITTI dataset [9].

of the datasets. It also ascertains the fact that we made

every effort to keep the algorithm non-domain-specific.

Our results show that we are able to successfully ad-

dress all three questions. Figure 1 shows the inputs to

our algorithm: the original image and a Winner-Take-

All (WTA) disparity map, as well as its outputs: a cor-

rectness prediction map and an improved disparity map

after MRF optimization. WTA is a local method for dis-

parity computation, in which the disparity associated

with the minimum cost value is selected at each pixel,

independently of other pixels.

What separates our approach from recent literature

on confidence estimation [26,10,13,27,11], regardless of

the use of learning, is that the main objective of these

methods is sparsification. They can indeed generate dis-

parity maps with progressively fewer errors by removing

matches starting from the least reliable ones. What has

not been shown, however, is how this capability can be

used to correct the initially wrong matches. Haeusler et

al. [11] presented an approach for learning a confidence

measure from several features, some of which are sim-

ilar to those proposed by us. Haeusler et al. also use a

random forest for classification, but, unlike this paper,

they do not propose ways of leveraging the estimated

confidence to generate dense disparity maps of higher

accuracy.

Our contributions are:

– an algorithm that achieves high accuracy in predict-

ing the correctness of stereo matching by training a

classifier on stereo pairs with ground truth disparity,

– an approach for leveraging the above classifier to

generate dense disparity maps of higher accuracy

by detecting ground control points and for inserting

them as soft constraints into an MRF-based opti-

mizer, leading to improved disparity maps,

– a diverse set of features that enable accurate classi-

fication,

– a confidence measure that greatly outperforms all

competing methods based on a recent survey [13],

– confirmation that it is feasible to apply the training

results of a source dataset to improve the disparity

maps of a target dataset that has completely differ-

ent image characteristics.

This paper extends our previous work that was pub-

lished in CVPR 2014 [30]. It includes additional details

on the features used by our classifier, along with anal-

ysis of each feature on the 2006 Middlebury dataset.

It shows that our algorithm can be applied on an ad-

ditional (and completely different) dataset, the KITTI

stereo benchmark [9], without any modifications and be

equally accurate as in the Middlebury dataset. Finally,

it validates our hypothesis that our classifier can be
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trained on a dataset and applied to a different dataset

with negligible loss of accuracy.

The paper is organized as follows. Section 2 presents

related work. Section 3 describes the two datasets we

used in our experiments. Section 4 describes the fea-

tures of our classifier in detail along with information of

each feature’s accuracy. Sections 5, 6 and 7 present the

classifier, a method to establish ground control points

and the MRF optimization, respectively. Sections 8, 9

and 10 present the results on predicting the correctness

of stereo matches, ground control point accuracy and

MRF optimization, including comparisons with numer-

ous baselines. Finally, in Section 11 we show the results

of applying classifiers trained on a source dataset to a

different target dataset.

2 RELATED WORK

For a review of stereo methods we refer readers to sur-

veys [29,6]. Relevant to our research is the literature on

confidence estimation [26,13,10,25] from which we se-

lect features for our classifiers. Also, somewhat relevant

are methods for and on learning optimization or reg-

ularization parameters [39,32,23,34] for stereo. These

methods aim at learning a small number of global pa-

rameters, such as the weights of the data and smooth-

ness terms of an MRF, while our work aims to train

classifiers that make decisions per pixel. In this section,

we focus on research that aims at inferring the correct-

ness of correspondences using learning, or at detecting

ground control points (GCPs).

Early work on applying machine learning to stereo

includes that of Lew et al. [18] who presented an ap-

proach for selecting a set of features that form an ef-

fective descriptor for stereo matching. Cruz et al. [8]

addressed the problem of determining whether a match

in edge-based stereo was correct or not. Classification

relies on four features extracted by filtering the images

and uses a perceptron to determine which feature map-

pings from the left to the right image are indications of

correct matching. This approach, however, does not ad-

dress challenges in textureless regions, since it is only

applied to edge pixels, and also does not model mis-

matches due to repeated structures.

Kong and Tao [16] used non-parametric techniques

to learn the probability of a potential match to belong

in three categories: correct, wrong due to foreground

over-extension or wrong for other reasons. They used

features extracted from image appearance and match-

ing cost estimates, while final disparity assignments to

fronto-parallel superpixels were made via simulated an-

nealing on an MRF. The integration of the correctness

probabilities into the MRF improved accuracy on the

Middlebury benchmark, but the accuracy of the stand-

alone classifier was not reported in the paper. This ap-

proach was extended [17] to select among 36 experts in

the form of different normalized cross-correlation (NCC)

matching windows using similar features and optimiza-

tion technique. Motten et al. [22] presented a classi-

fier using decision trees implemented on FPGA for se-

lecting among multiple disparity hypotheses generated

by trinocular stereo. A different approach based on a

Conditional Random Field (CRF) formulation was pub-

lished by Li and Huttenlocher [19]. It learns linear dis-

criminant functions that compute the data and smooth-

ness terms of the CRF based on discretized values of

the matching cost, image gradients and disparity differ-

ences among neighboring pixels. These linear functions

are learned using a structured support vector machine.

Alahari et al. [1] formulated a similar learning problem

using the same node and edge features as [19] and con-

vex optimization to obtain the solution more efficiently.

We would be remiss if we did not include the work of

Mac Aodha et al. [20] on optical flow, which shares some

characteristics with ours, such as an emphasis on being

applicable to general scenes and operating on individual

pixels. A multi-class classifier that selects among four

state of the art methods is used to learn the posterior

of each expert being correct. The estimated posteriors

are then used as confidence measures. Other recent re-

search on confidence estimation, from which we draw

inspiration and borrow features, includes the work of

Reynolds et al. [26] on time-of-flight data and of Hu

and Mordohai [13] on stereo. Haeusler and Klette [10]

also considered several confidence measures, as well as

the product of all measures, demonstrating good per-

formance in sparsification. Pfeiffer et al. [25] integrated

three confidence measures into a mid-level representa-

tion for 3D reconstruction and showed that Bayesian

reasoning outperforms sparsification by thresholding.

Contrasted with methods for selecting among a set

of experts, such as those of Kong and Tao for stereo [17]

and Mac Aodha et al. for optical flow [20], our research

addresses the more fundamental problem of verifying

whether a prediction from a single expert is correct.

Sabater et al. [27] introduced an a contrario approach

for validating the correctness of stereo matches. The ap-

proach relies on a stochastic background model, named

the a contrario model, that corresponds to the proba-

bility that the similarity score between two patches has

arisen by chance and not due to true correspondence.

To reduce dimensionality and capture the correlations

among pixels in an image patch the a contrario model

is estimated by applying PCA to the set of all patches

of a given size in an image. A user-specified acceptable

number of false matches determines a threshold on sim-
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ilarity that is used to accept meaningful matches and

as a result also determines the density of the final dis-

parity map.

The most similar prior work to ours was presented

by Haeusler et al. [11] who also train a random for-

est to predict the correctness of the output disparities

of the semi-global matching (SGM) stereo algorithm

[12]. It uses a number of features computed on the im-

ages, disparity maps and matching cost volume, which

aim to capture the likelihood of a disparity being incor-

rect. A minor difference between [11] and our approach

is that some of the features are computed at multiple

scales. The two major differences are the stage of pro-

cessing at which the classifier is invoked and the way its

predictions are used. Haeusler et al. train the random

forest to detect errors after SGM optimization, that is

in disparity maps with very high accuracy. The classi-

fier’s predictions are then used to sparsify the disparity

maps by removing potential errors. On the other hand,

we train a classifier to detect errors in low-accuracy dis-

parity maps generated after WTA disparity assignment.

The output of the classifier is used to guide global op-

timization and improve the accuracy of the final, dense

disparity maps. (We show sparsification results to eval-

uate our classifier in isolation in Section 8.)

Recently, Park and Yoon [24] published an approach

similar to ours which also uses a number of confidence

measures as features in a random forest classifier that

predicts the correctness of WTA disparities. They use

the classifier predictions to modulate the data term of

each pixel in SGM-based optimization. The modula-

tion leads to 1.22% reduction in matching error on the

KITTI benchmark compared to regular SGM stereo.

This is slightly larger than the improvement we obtain

on MRF-based stereo with the addition of ground con-

trol points on the same dataset. (See Sec. 10.) Park and

Yoon re-implemented the method of [11] and ours and

performed a comparison of the three methods in terms

of AUC on the same data. Their method ranks first fol-

lowed by ours and that of Haeusler et al. [11] in that

order.

Zbontar and LeCun [37] trained a convolutional neu-

ral network (CNN) to predict whether two image patches

match or not. The CNN generates matching costs which

are adaptively aggregated [38] and optimized using SGM

to obtain the top-ranking results on the KITTI bench-

mark. Zagoruyko and Komodakis [36] compared multi-

ple CNN architectures applied to a wide range of match-

ing problems including stereo matching. Both papers

demonstrate that CNNs are more effective than manu-

ally designed descriptors and matching functions. While

both the approaches of [37,36] and ours address binary

classification problems, theirs take as input only the im-

ages and computes a matching cost volume, while ours

takes as input the images, the matching cost volume

and the WTA disparity map and predicts whether the

assigned disparities are correct.

Methods for selecting GCPs typically rely on heuris-

tics that are strongly correlated with correctness, but

make hard decisions based on multiple thresholds. Bo-

bick and Intile [3] imposed several constraints on GCPs:

lower cost than all competing matches in both images,

low matching cost, sufficient image texture and pres-

ence of nearby GCPs to suppress outliers. Kim et al. [14]

use left-right consistency (LRC) and comparison of the

matching cost against a threshold for selecting GCPs.

Wang and Yang [33] pick GCPs by running three dif-

ferent Winner-Take-All (WTA) stereo algorithms and

require that the disparities be consistent among all the

matchers in each image, as well as left-right consistent.

Sun et al. [31] used LRC and the ratio of the best to

the second best matching cost in a disparity propaga-

tion framework.

Our approach integrates numerous criteria in a prin-

cipled way via supervised learning and learns how to

make decisions based on labeled data rather than intu-

ition.

3 DATASETS

We used two datasets for our experiments:

The extended Middlebury stereo dataset [28] con-

sists of six stereo pairs from the 2005 data (the remain-

ing three do not have ground truth disparity maps avail-

able) and all 21 images from the 2006 data, for a total

of 27 stereo pairs. The images were captured indoors
in a lab environment and depict objects with varying

complexity, as shown in Fig. 2.

We use the one third-size RGB images with resolu-

tions varying from 413×370 to 465×370. The maximum

disparity at that size is 85 with a minimum disparity

of 0. As per the dataset’s specifications, the values of

the calculated disparities are considered correct if the

difference to the true ground truth is within ±1.

The stereo benchmark of the KITTI Vision Bench-

mark Suite [9] consists of a training set of 194 stereo

pairs for which ground truth disparity maps are avail-

able, as well as a test set of 195 stereo pairs without

ground truth. Since we required ground truth disparity

maps for the evaluation of our algorithm, we used the

194 stereo pairs of the training set in our experiments.

Images were captured by a properly equipped vehicle

while driving around in rural areas and highways. Ex-

amples are shown in Fig. 3.

All images are grayscale with resolutions approxi-

mately 1240×370. The maximum disparity is 255 with
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(a) Aloe (b) Cloth3

(c) Books (d) Laundry

Fig. 2 Sample images from the Middlebury dataset

(a) Frame 0

(b) Frame 6

Fig. 3 Sample images from the KITTI dataset

a minimum disparity of 0. As per the dataset’s spec-

ifications, the values of the calculated disparities are

considered correct if the difference to the ground truth

is within ±3. However, for the KITTI dataset, due to

the way the data were captured, there are no ground

truth values for the top one third of each image. The

average density of ground truth disparity values is 35%.

4 FEATURES

In this section, we describe the features we selected for

our classifier, as well as the rationale behind them. This

set of features is by no means exhaustive, but it aims

at extracting useful information from various sources

including the cost curve for each pixel and the pixel’s

neighbors in the disparity map. The label for each pixel

indicates whether the disparity with the minimum cost,

that would have been assigned to it by a WTA stereo al-

gorithm, is correct or not. The definition of correctness

that is appropriate for each dataset is used.

Before describing the features, we introduce some

notation. Given a pair of rectified images, we compute

the cost volume c(xL, xR, y) that contains a cost value

for each possible match from a pixel in the left image

(xL, y) to a pixel in the right image (xR, y). Disparity

is defined conventionally as d = xL − xR and we as-

sume that the minimum and maximum values it can

take, dmin and dmax, are externally provided. For con-

venience, we define the disparity of a pixel in the right

image to be equal to d, dR = xL − xR. Values in the

cost volume for matches beyond the disparity range are

flagged as invalid and ignored in all computations. If a

similarity, instead of a cost function, is used to assess

matches, we negate its output to convert it to cost. The

cost curve of a pixel is the set of cost values for all al-

lowable disparities for the pixel. We use c1 and c2 for

the minimum and second minimum values of the cost

curve, without requiring c2 to be a local minimum. The

disparity value corresponding to c1 is denoted by d1.

We used the following eight features for the experi-

ments in this paper. Four of them (MMN, AML, LRC,

LRD) were considered individually as confidence mea-

sures in [13]. Note that all evaluations shown below were

based on the 2006 Middlebury dataset.

4.1 Cost

The first feature is the minimum matching cost over

all disparities for a given pixel and it captures the fact

that low cost often corresponds to high likelihood of

correct matching. We selected the negated Normalized

Cross-Correlation (NCC) in a 5× 5 window as the cost

function. The choice of matching function and window

size is not optimized in any sense, but produces rea-

sonable results. The resulting accuracy is shown in Fig.

4.

fcost =
−
∑
i∈W (IL(xi, yi)− µL)(IR(xi − d, yi)− µR)

σL · σR
(1)

where IL and IR are the two images of the stereo pair,

µL and µR are the means and σL and σR are the stan-

dard deviations of all pixels in the square window W in

the left and right image, respectively. Means are com-

puted separately per RGB channel, but a single stan-

dard deviation is estimated for the 3×N×N vector ob-

tained by stacking all the elements in the window after

the mean RGB values have been removed. This reduces

sensitivity to image regions with small variance in any

one channel. All positive cost values are truncated to 0.
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Fig. 4 Percent of pixels with correct disparity by negated
NCC value (cost) in a 5x5 window. Average accuracy across
all the Middlebury images is 67.2% All positive cost values
are truncated to 0.

4.2 Distance from Border (DB)

This feature measures the distance in pixels from the

nearest image border. It is based on the assumption

that pixels near the borders are likely to be outside the

field of view of the other camera and that fact causes

mismatches. We also experimented with four separate

features measuring the distance from the left, right, top

and bottom borders, but no improvement was observed.

Figure 5 displays the error rates at various distance

ranges. Since pixels with a distance of less than or equal

to 5 pixels from any border are most likely to be wrong,

we implemented DB as a binary feature that takes a

value 0 (if the distance is within the 5 pixel range), or

1 (if the distance exceeds 5 pixels).

4.3 Maximum Margin (MMN)

This feature measures the difference between the two

smallest cost values, c1 and c2, of a pixel [13] as shown

in Eq. 2. The rationale here is that a large difference

may indicate an unambiguous disparity assignment.

CMMN = c2 − c1 (2)

Figure 6 illustrates the MMN definition by displaying

the cost of a single image pixel for all possible disparity

values (here 0 to 85). The lowest cost, c1, which has the

highest probability of belonging to the correct disparity

value, is observed at a disparity value of 21. The second

best, c2, appears at a disparity value of 22. The absolute

difference between the two costs (approximately 0.9 −
0.6 = 0.3) is defined as the MMN value.
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Fig. 5 Error rate by distance from border for each of the
Middlebury images. The outer red line represents the error
rate (in %) for pixels with a distance of up to 5 pixels away
from the image’s borders, an error that in most cases exceeds
70%. Areas located at distances over 5 pixels from a border
exhibit significantly lower error rates, as the remaining plot
lines demonstrate.

4.4 Attainable Maximum Likelihood (AML)

This feature is based on the conversion of the cost

curve to a probability density function over disparity.

It has been shown that subtracting the minimum cost

c1(xL, y) from all cost values leads to higher discrimi-

native power [21,13]. This is based on the observation

Fig. 6 The cost curve of a single pixel for each of the possible
disparities (0 to 85 for Middlebury). The difference between
c1 and c2 is defined as the Maximum Margin.
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that correct matches are often associated with match-

ing costs that are far from optimal. For these pixels, the

costs of all disparities are elevated and when costs are

converted to likelihoods and normalized, the resulting

probability mass function appears more uniform than it

actually is. This leads to pixels with unambiguous dis-

parities that have lower confidence than more ambigu-

ous pixels with lower minimum matching costs. Sub-

tracting the minimum observed for a given pixel from

all cost values alleviates this problem. First we use the

cost curve of a pixel across all possible disparity values

(Fig. 7, top) to calculate the likelihood (Fig. 7, middle)

of each disparity value using Eq. 3.

fLikelihood(xL, y, d) = exp(− (c(xL, y, d)− c1(xL, y))2

2σ2
AML

)

(3)

AML models the cost for a particular pixel using a

Gaussian distribution centered at the minimum cost

value that is actually achieved for that pixel (c1 in our

notation). The likelihood is then normalized (Fig. 7,

bottom) as follows:

fAML(xL, y, d) =
fLikelihood(xL, y, d)∑
d fLikelihood(xL, y, d)

(4)

AML of a pixel (xL, y) is defined as the normalized

likelihood of the disparity with the minimum cost:

fAML(xL, y) =
1∑

d exp(−
(c(xL,xR,y)−c1(xL,y))2

2σ2
AML

)
(5)

Notice that fLikelihood is 1 for the disparity with the

minimum cost.

4.5 Left-Right Consistency (LRC)

A good indicator of the correctness of a match from the

left to the right image is whether the match is confirmed

in the opposite direction. LRC, here, is a binary feature

set to 1 when the absolute value of the difference be-

tween the disparity d at pixel (xL, y) in the left image

and the disparity at pixel (xL−d, y) in the right image

is less than or equal to 1. LRC is 0 when the difference

is greater than 1. Figure 8 depicts LRC accuracy on the

Middlebury stereo pairs. The average accuracy over all

stereo pairs is 78.3%.
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Fig. 7 Calculation of AML from cost function (top), to like-
lihood (middle), to AML (bottom) for a range of probable
disparities of a given pixel.

4.6 Left-Right Difference (LRD)

This confidence measure [13] favors a large margin be-

tween the two smallest minima of the cost for pixel

(xL, y) in the left image and also consistency of the

minimum costs between the left-to-right and right-to-

left disparity maps.
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Fig. 8 Average Accuracy by stereo pair for LRC value equal
to 1.

fLRD(xL, y) =
c2(xL, y)− c1(xL, y)

|c1(xL, y)−minx′{c(x′, xL − d, y)}|
(6)

The intuition is that truly corresponding pixels should

result in similar cost values and thus a small denomina-

tor. LRD can be small for two reasons: if the margin is

small, or if the margin c2−c1 is large, but the pixel has

been mismatched causing the denominator to be large.

4.7 Distance from Discontinuity (DD)

Pixels near depth discontinuities are likely to be mis-

matched due to pixel blending. Pixels away from dis-

continuities show remarkable disparity accuracy. As a

matter of fact, most errors occur on pixels very close to

discontinuities, making this measure a significant ad-

dition to our classifier. Since we do not know the true

discontinuities, we use the WTA disparity estimates as

a proxy and declare as discontinuous any pixel whose

disparity is not equal to all of its four neighbors. DD

is then equal to the horizontal distance of each pixel to

its nearest discontinuity.

4.8 Difference with Median Disparity (MED)

Pixels with disparity values that are consistent with

their neighborhood are more likely to be correct. We

capture this by computing the median disparity in a

5 × 5 window centered at each pixel and taking the

absolute value of the difference between the median and

the pixel’s own disparity. This difference is truncated

at 2 in our current implementation, as values above 2

correspond to a uniformly low accuracy. The possible

values are, then, 0 (if the actual difference is 0), 1 (if

the actual difference is 1), or 2 (if the actual difference

is greater than 1). A plot of MED accuracy is depicted

in Fig. 9.
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Fig. 9 Difference with Median Disparity. MED values of 0
correspond to almost 80% accuracy and MED values of 1 to
about 45%. An obvious drop of accuracy is observed for values
above 1.

We experimented with additional features, but none

of them appeared to contribute towards higher predic-

tion accuracy. For example, we were not able to ex-

tract useful information from image appearance using

gradient or color variance-based features. We speculate

that the reason is that large gradients are associated

with discontinuities that have large mismatch proba-

bility, but also with highly textured pixels that can be

reliably matched. We also tried a feature that indicates

whether a pixel is occluded according to current dis-

parity estimates, but it also appears to offer little addi-

tional benefit. Other features from [13] are either weak

predictors or strongly correlated with the ones above.

5 CLASSIFIER

Our feature design was not done with any learning al-

gorithm in mind, an approach that allowed us to ex-

periment with different options. We have selected a

Random Forest (RF) [5,7] among alternatives, such as

linear and nonlinear Support Vector Machines (SVM),

methods that performed worse in our tests. Random

forest classifiers are ensembles of classification and re-

gression trees that have gained popularity due to their

high accuracy and ability to generalize. They are well

suited for inhomogeneous feature spaces, such as ours,

because, unlike SVMs for example, they do not require

a distance metric in feature space. Scaling the features
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to make them amenable to an SVM is often a daunt-

ing task. The key idea during training is to generate

decision trees that partition the feature space separat-

ing the training data according to their labels, which

are correct and incorrect disparities, in our case. We

believe that the non-parametric nature of the random

forest and its resilience to noisy labels make it a good fit

for our data. Boosting, may have also been successful,

but we did not attempt it.

We begin by splitting the data into a training and

a test set. The training set can be viewed as a col-

lection of pixels with assigned disparities, feature vec-

tors and correct/incorrect labels coming from all stereo

pairs. Each of the image’s pixels was associated with

a feature vector containing eight values (one for each

of the eight features described in the previous section),

as well as one binary label indicating whether the dis-

parity assigned to that pixel was correct (1) or not (0).

Occluded pixels are ignored during training. Training

sets for each tree were chosen by bagging, that is by

sampling from the entire training set with replacement

[5]. At each node of a tree, a feature is randomly se-

lected and a split that separates the pixels according to

the correctness of their disparity, their label, is found.

Splitting continues until the resulting nodes would have

less than a pre-determined number of samples. Nodes

that are not split are leaves of the tree. This process is

repeated for each tree without any pruning.

Once the RF has been trained, the pixels of the

test set with their assigned disparities and feature vec-

tors are presented to each trained tree in the RF. The

current pixel is run down each tree and decisions are

made at every node based on the optimal splits com-

puted during training. This process continues until a

terminal node (leaf) is reached and a decision is made

about the current pixels class label. The RF averages

the predictions of the trees to assign a score between 0

and 1 that serves as a soft prediction of the correctness

of each pixel. A number closer to 1 represents a high

prediction accuracy. These predictions can be viewed as

confidence measures. They can be used to rank dispar-

ity assignments, or they can be thresholded to classify

them. Since we cannot expect to know whether a pixel

is occluded during testing, we included the occluded

pixels in the test set without distinguishing them from

non-occluded pixels. The ground truth labels for the

occluded pixels were treated identically to those of the

non-occluded ones.

We estimate feature importance by measuring the

increase in prediction error on a validation set if the

values of that feature were permuted as in [5]. As a val-

idation set for each tree, we use the out-of-bag samples,

that is the samples not selected for the training set of

that tree during the bagging process. If a feature is ir-

relevant for prediction, perturbing its values would lead

to no change in the accuracy of each tree and the ran-

dom forest. On the contrary, if a feature is important,

perturbing its values leads to increases in prediction er-

ror on the out-of-bag samples. Table 1 reports feature

importance for an RF trained on the Middlebury data.

The values shown are increases in prediction error av-

eraged over all trees and normalized by the standard

deviation over the entire random forest. While there

is some variability among different RFs trained on the

same data due to the randomness of the procedure, the

ordering and approximate magnitude of the importance

values is stable.

As expected, not all features are equally important

to the classifier. Six features have a very similar impor-

tance with values around 1.0, while two (DB and AML)

have lower importance. DB is relevant for a small frac-

tion of pixels near image borders.

We further experimented with an RF that uses only

five of the eight features by removing DB, AML, and

LRD, since their RF classifier importance values were

lower than those of the other five features. Although

the error rate for the Middlebury dataset was about

the same as when using eight features, in the KITTI

dataset there was an increase of the error rate by 0.10%.

This demonstrates that despite their lower importance

value, additional features can be useful by providing

some redundancy and stability to the classifier.

6 GROUND CONTROL POINT SELECTION

Having calculated a prediction accuracy for each pixel,

we present next an approach for selecting ground con-

trol points (GCPs). The GCPs are used in the next

section to improve WTA disparity maps via global op-

timization. Consistent with earlier definitions [33] [14],

a GCP is defined here as a pixel with a disparity assign-

ment that is assumed to be very reliable and, therefore,

can be used to influence neighboring pixels. The goal is

to achieve the highest possible density of GCPs while

# Feature Importance
1 Cost 0.9707
2 DB 0.4102
3 DD 1.4169
4 LRC 1.1404
5 MED 1.0872
6 MMN 0.9274
7 AML 0.5857
8 LRD 0.8365

Table 1 RF classifier importance values for each of the eight
features in the Middlebury dataset. See text for details.
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including a small number of wrong matches. If GCPs

are not accurate and contain many pixels with wrong

disparities, these errors will be propagated to neigh-

boring pixels and can have a strong negative effect on

overall accuracy. On the other hand, if GCP detection is

overly conservative, the small number of selected GCPs

has little effect on overall accuracy, since they do not

appear in uncertain regions of the images.

Since the random forest has proven very effective

in ranking disparity assignments in order of reliabil-

ity, we chose GCPs by learning a threshold on the RF

prediction that resulted in the highest overall disparity

accuracy after MRF optimization, as shown in Section

10. The threshold was learned using binary search on a

range of RF values from 0.50 to 0.95. However, we chose

not to impose them as hard constraints. Among sev-

eral alternatives, we decided on the following that was

proven to be superior experimentally: when the random

forest predicted that a given disparity assignment to a

pixel is reliable, we set the cost of all other disparities

for the pixel to a constant value cGCP , leaving the cost

for the selected disparity unchanged. This allowed the

MRF to override the GCPs at a higher cost. Figure 10

depicts the transformation of the original cost values

of a GCP to the cost values that were used as input to

MRF. The cost of all disparities of non-GCPs remained

unchanged in the [-1, 1] range of negated NCC.
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Fig. 10 Cost curve: Original cost curve (top) of a single GCP
across all possible disparity values and as modified for MRF
input (bottom).

7 GLOBALLY OPTIMIZED DISPARITY

MAPS USING GCPs

With the selection of the GCPs and the modification of

the cost curves of each GCP as described in the previous

section and in Fig. 10, we proceeded to use this modified

cost as input to 4-connected MRF. The MRF minimizes

an energy function with data and smoothness terms of

the disparity map D as follows:

E(D) = Edata(D) + Esmooth(D) (7)

where:

Edata(D) = fcost(D) (8)

with fcost(D) as defined in Eq. 1. Esmooth follows a

simple Potts model with edge weights modulated by

the strength of the intensity edges between neighboring

pixels. The smoothness energy is defined as:

Esmooth(D) = λ
∑
p∈IL

∑
q∈N4(p)

ωpq[dp 6= dq], (9)

where p is a pixel in the left image IL with disparity

dp, q is a pixel in p’s neighborhood with disparity dq,

λ is a parameter. The edge weights, partially adopting

the settings of Wang and Yang [33], are defined as:

ωpq = max{e−
∆cpq
γc , 0.0003}, (10)

with ∆cpq the Euclidean distance of the RGB values of

p and q, and γc equal to 3.6. These settings are constant

regardless of how the GCPs were chosen.

We use the Fast-PD optimization algorithm of Ko-

modakis et al. [15] to generate the final disparity maps

given these energy functions as inputs. As all multi-

label MRF optimization algorithms relying on graph-

cuts, Fast-PD solves a number of max-flow problems on

a series of graphs but in addition to the original, primal

MRF problem, it also considers its dual. Intermediate

solutions of the dual problem enable the algorithm to

reduce the complexity of the max-flow problem solved

at each iteration until convergence is achieved. Fast-

PD guarantees the same solution as the α-expansion

algorithm, which can be obtained substantially faster,

and it also guarantees an almost optimal solution for

a much wider class of NP-hard MRF problems. The

former property is important for the types of problems

encountered in this paper, since the energy function is

of the same form as the one in the seminal work of

Boykov et al. [4]. Their α-expansion algorithm could
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have been used to produce the same disparity maps at

the expense of additional computational time. The re-

sulting optimized disparity maps are shown in Section

10.

8 EXPERIMENTAL VALIDATION OF

PREDICTION ACCURACY

In this section, we present results that show the ability

of our approach to classify and rank matches without

modifying them. The output of WTA stereo is used as-

is in this section.

All experiments were performed on cost volumes

computed using normalized cross-correlation (NCC) in

5× 5 windows and negating the NCC values to obtain

costs. The window size was selected arbitrarily because

it achieves reasonably accurate WTA disparity maps.

σAML in Eq. 5 was set to 0.2. We trained random forests

comprising 50 trees using the Matlab TreeBagger pack-

age. Each forest has 50 trees, since increasing this value

did not improve performance. All parameters were set

to their default values, except for the minimum number

of samples per leaf which was set to 5,000 and the num-

ber of variables from which to sample a weak learner

which was set to 1. These values were set empirically us-

ing validation data to test that overfitting was avoided.

The resulting decision trees have average depth equal

to 12.5 for the Middlebury data and 17 for the KITTI

data. The maximal depths are 18 and 21 respectively.

The larger trees for KITTI are due to the availability

of more training data.

It is important to distinguish between disparity er-

rors, which are defined as pixels with incorrect dispar-

ities, and prediction errors, which are errors made by

our classifier by considering a disparity assignment as

incorrect, when it was correct and vice versa.

Following recent publications on evaluating the con-

fidence of stereo [13], time-of-flight data [26] and optical

flow [20], we evaluated the accuracy of the ranking of

disparity assignments using receiver operating charac-

teristic (ROC) curves of error rate as a function of dis-

parity map density. We ranked all matches in decreasing

order of prediction and produced disparity maps of in-

creasing density by selecting pixels according to rank.

The area under the curve (AUC) quantifies the ability

of a confidence measure to predict correct matches. Bet-

ter confidence measures result in lower AUC values. The

optimal AUC can be achieved by selecting all correct

disparities before starting to fill the quasi-dense dispar-

ity maps with the remaining wrong ones. As shown in

Eq. 11, the optimal AUC is given by:

(a) Input Image (b) NCC Disparity

(c) Prediction Map (d) MRF Disparity

Fig. 11 Middlebury dataset: Input image, disparity map us-
ing NCC, prediction map and final disparity map using MRF
optimization for Rocks1. Notice the low predictions (dark pix-
els) for occluded regions and other errors. The error rates for
NCC and MRF were 5.9% and 2.6% respectively.

Aopt =

∫ 1

1−ε

dm − (1− ε)
dm

ddm = ε+(1−ε)ln(1−ε) (11)

where ε is the disparity error rate [13].

The results of our experimentations on each dataset

are presented in the following sub-sections. All errors

shown are test errors.

8.1 Middlebury Dataset

Three-fold cross-validation was used by training a ran-

dom forest on 18 stereo pairs and testing on the 9 re-

maining pairs. A stereo pair is always tested using the

random forest that did not consider it during training.

Figure 11 contains an example that shows the ability

of the RF to assign low prediction scores to unreliable

pixels.

In Table 2, we report number of pixels with correct

disparity that were found to be correct by our classifier.

Similarly, we report the number of pixels with incorrect

disparity that were found to be incorrect by our classi-

fier on the 27 stereo pairs.

We classify disparity assignments of WTA stereo by

thresholding the prediction of the random forest at 0.5.

Our method is effective for disparity maps with both

low and high error rates. Low sensitivity to input vari-

ability differentiates our work from confidence estima-

tion methods which may be able to rank matches ac-

curately, but are unable to determine which ones are

correct without knowledge of the disparity error rate.
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Fig. 12 Middlebury dataset: AUC values for Bowling1 at
various intervals. Curves for NCC, AML, LRD and the RF
prediction are displayed. The RF curve (solid red curve) has
the lowest value at every point of the curve.

The overall prediction error for pixels with correct dis-

parity is 4.72% and for pixels with incorrect disparity

it is 16.01%, for a combined prediction error of 7.2%.
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Fig. 13 Middlebury dataset: AUC values obtained by sort-
ing the disparity assignments according to NCC, AML, LRD
and the RF prediction (solid red curve) in comparison to the
optimal curve (dotted line). The optimal curve is obtained
with perfect knowledge of the correct matches. Please see Eq.
11 and text for details. Disparity maps have been sorted in
order of increasing RF AUC to aid visualization.

Correct Incorrect
Disparity Disparity

Total Pixels 2,687,850 670,333
Prediction Accuracy 95.28% 83.99%

Table 2 Middlebury dataset: Total number of pixels with
correct/incorrect disparity that were found to be cor-
rect/incorrect by our classifier on WTA disparity assignments
for non-occluded pixels over all 27 stereo pairs. Prediction was
thresholded at 0.5. The overall accuracy of the classifier is
92.8%.

Method NCC AML LRD RF Optimal
AUC 0.1245 0.1034 0.0987 0.0618 0.0386

Table 3 Middlebury dataset: AUC values for the various
methods

Figure 12 shows the AUC values obtained for a sin-

gle image and at various pixel densities for NCC, AML,

LRD and the RF prediction. Figure 13, on the other

hand, shows the total AUC values obtained by each

method for all images in comparison to the optimal

curve (dotted line). Our method achieves the minimum

AUC for every Middlebury stereo pair.

Table 3 shows the corresponding numeric AUC val-

ues for each method. Our method (RF) has an average

AUC that is roughly one half of that of the baseline

methods. Is is also superior to all other methods on ev-

ery stereo pair. In fact, the average AUC generated by

our method is closer to the optimal average AUC than

that of the second best method (LRD).

8.2 KITTI Dataset

For the KITTI dataset, we split the available stereo

pairs equally in training and test sets. We trained a

random forest on 97 stereo pairs (images 0 to 96) and

tested on the 97 remaining pairs (images 97 to 193).

Figure 14 displays a similarly noisy example from the

KITTI dataset to emphasize the ability of the RF to

assign low prediction scores to unreliable pixels.

In Table 4, we report the total number of pixels with
correct/incorrect disparity that were found to be cor-

rect/incorrect by our classifier on the 97 stereo pairs.

Similarly to Middlebury, we classify disparity assign-

ments of WTA stereo by thresholding the prediction of

the random forest at 0.5. The overall prediction error

for pixels with correct disparity is 14.3% and for pix-

els with incorrect disparity it is 11.6%, for a combined

prediction error of 13%.

Correct Incorrect
Disparity Disparity

Total Pixels 5,513,918 5,192,949
Prediction Accuracy 85.72% 88.39%

Table 4 KITTI dataset: Total number of pixels with
correct/incorrect disparity that were found to be cor-
rect/incorrect by our classifier on WTA disparity assignments
for non-occluded pixels over the 97 stereo pairs. Prediction
was thresholded at 0.5. The overall accuracy of the classifier
is 87%.
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(a) Input Image

(b) NCC Disparity

(c) Prediction Map

(d) RF-GCP MRF Disparity

Fig. 14 KITTI dataset: Input image, disparity map using
NCC, prediction map and final disparity map using MRF
optimization for 000105. Disparity maps were enhanced to
aid in visualization.

Figure 15 shows the AUC obtained by each method

for the complete KITTI test set (97 stereo pairs). Our

method achieves the minimum AUC for every stereo

pair in the KITTI dataset as well. Moreover, its average

AUC is closer to the optimal one than to that of the

best baseline method. Table 5 shows the corresponding

numeric AUC values for each method.

Method NCC AML LRD RF Optimal
AUC 0.4919 0.3360 0.3074 0.1896 0.1248

Table 5 KITTI dataset: AUC values for the various methods

9 GROUND CONTROL POINT ACCURACY

As discussed in Section 6, our goal was to achieve the

highest number of GCPs (Density) while including as

many correct matches as possible (Accuracy). We define

Density as the number of pixels we selected as GCPs

versus the total number of pixels. We define Accuracy

as the number of correct GCPs (pixels with disparity

within the appropriate threshold) over the number of

GCPs that our method selected. In both definitions, we

only counted non-occluded pixels and pixels with avail-

able ground truth disparity. We determined thresholds

for both the Middlebury and KITTI datasets. However,

sensitivity to the threshold was very low as we estab-

lished during our experiments. Table 6 displays the op-

timum Accuracy and Density values for both datasets.

We compared the GCPs selected by our approach

with several alternatives, both in terms of accuracy and

density of the GCPs and in terms of accuracy of the re-

sulting, MRF-optimized, disparity maps. Through ex-

perimentation, we also established thresholds for each

of the alternatives. Our results show that the RF pre-

dictions are superior in terms of final disparity map

accuracy, but also in terms of GCP accuracy. In fact,

the very small fraction of errors in the GCPs is what

enables our method to outperform the baselines after

MRF optimization. For example, on the Middlebury

dataset the density of GCPs was above 90% for the

easy Cloth images and below 50% for harder images,

such as Midd1, Midd2 and Plastic. The KITTI dataset

density was much lower ranging from 8.8% to 47.2%,

but the accuracy remained at a hight 97.56%.

Our method was successful in addressing a major

challenge in GCP selection: on one hand, stereo pairs,

for which WTA stereo works well, often have their accu-

racy degraded by regularization which may over-smooth

details, while, on the other hand, stereo pairs for which

WTA stereo performs poorly require more regulariza-

tion and small GCP sets to avoid including errors in

them. The RF scores are more flexible in automatically

adapting to the inherent difficulty of each stereo pair.

Baseline methods lack this flexibility. The large differ-

ence in GCP density between the two datasets (see Ta-

ble 6) illustrates the adaptability of our method. KITTI

images contain large texture-less regions, such as walls,

sky and oftentimes the road (see Figs. 1 and 17). Plac-

ing GCPs in these regions would be detrimental to the

overall accuracy since disparities in these regions are

most likely incorrect. Without any intervention from

Dataset GCP Selection Accuracy Density
Middlebury RF 96.5 % 72.6 %
KITTI RF 97.6 % 25.3 %

Table 6 Average Accuracy and Density of GCPs (GCPs are
pixels with an RF value > 0.70 for the Middlebury and > 0.82
for the KITTI dataset).
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Fig. 15 KITTI dataset: AUC values obtained by sorting the disparity assignments according to NCC, AML, LRD and the
RF prediction (solid red curve) in comparison to the optimal curve (dotted line). The optimal curve is obtained with perfect
knowledge of the correct matches. Please see Eq. 11 and text for details. Disparity maps have been sorted in order of increasing
RF AUC to aid visualization.

the user, our GCP selection technique stays away from

these parts of the images.

10 MRF RESULTS

Having experimentally established a prediction accu-

racy threshold for our GCP selections and a method

to modify the costs of the GCPs, we have now new

cost values that can be used as input to the MRF op-

timizer. The MRF implementation of Komodakis et al.

[15] was used in our experiments and the following sub-

sections present the results on both datasets. The value

of cGCP was set to 2, which is twice the maximum cost

that could have been observed for regular pixels.

10.1 Middlebury Dataset

We compared our method (RF) to five MRF baselines:

without GCPs, using NCC, LRC or LRD values to se-

lect GCPs and finally using the algorithm of Wang and

Yang [33]. The values for cGCP , where applicable, λ and

the threshold for each method were learned via cross-

validation on the final disparity maps after global op-

timization. As discussed, sensitivity to the parameters

has been low, as changing the RF prediction thresh-

old from 0.7 to 0.6 resulted in an average error rate of

6.285% instead of 6.289%. Pixels were chosen as GCPs

if NCC>0.5, LRC=1, LRD>1.5, or RF>0.7, respec-

tively.

We re-implemented the method of Wang and Yang

[33] which requires the agreement of three matching

functions in both the left-to-right and the right-to-left

disparity map for a pixel to be considered a GCP. Specif-

ically, the three matching functions are NCC in 5 × 5

windows, the Birchfield and Tomasi dissimilarity mea-

sure [2] without any aggregation and the adaptive sup-

port weight method of [35] in 39 × 39 windows. Pix-

els are retained if the variance of the disparities that

are estimated independently by the three methods is at

most one. This test is applied on both left-to-right and

right-to-left disparity maps. Pixels that pass the test

in one disparity map but are not left-right consistent

are rejected. Finally, pixels that are within one pixel

of intensity edges detected by the Canny edge detec-

tor or have disparities at the two extremes of the dis-

parity range are also precluded from being GCPs. The

density of GCPs that survive this sequence on tests

is 15.6%, which is similar to the results presented in

[33] on Version 2 of the Middlebury benchmark. Con-

veniently, Wang and Yang used NCC in 5× 5 windows

as one of their matching functions. This allowed us to

define the data term for regular pixels and GCPs de-

tected by their method in a way that is identical to

ours. Optimization of the resulting energy function is

performed as described in Section 7.

We also tested a variant of our method that uses

the GCPs detected by the RF as hard constraints. This

is implemented by setting cGCP , the cost of overriding

the disparity of a GCP, to 100,000. Table 7 presents the

error rates of the final disparity maps after MRF op-
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(a) Input Image (b) MRF-no GCP (c) NCC-GCP MRF

(d) Wang MRF (e) RF-GCP MRF (f) Selected GCPs

(g) Input Image (h) MRF-no GCP (j) NCC-GCP MRF

(k) Wang MRF (m) RF-GCP MRF (n) Selected GCPs

Fig. 16 Middlebury dataset. Top: Input image and final disparity maps using an MRF without GCPs, MRFs with GCPs
determined according to NCC prediction, the Wang et al. method, and RF prediction for Baby2. The last image depicts (in
red) the GCPs selected using the RF prediction values. Only non-occluded GCPs and GCPs with available ground truth
disparity are shown. The corresponding error rates were: (b) 8.4%, (c) 5.7%, (d) 6.2%, and (e) 3.6%.
Bottom: Similar disparity maps and RF prediction values for Plastic. The corresponding error rates were: (h) 19.2%, (j) 36.5%,
(k) 21.5%, and (m) 15.8%. Despite the low GCP density, RF was able to improve the no-GCP disparity map where others
failed.
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timization. Our method has an improvement of 21.3%

over the second best method (Wang MRF). Represen-

tative disparity maps are shown in Fig. 16.

GCP type Average Error
WTA 22.0%
MRF-no GCP 9.8%
NCC-GCP MRF 10.0%
LRC-GCP MRF 10.3%
LRD-GCP MRF 8.7%
Wang MRF 8.0%
RF-GCP MRF 6.3%
RF-GCP MRF/hard 6.6%

Table 7 Middlebury dataset: The first row shows the WTA
error rate. The second row shows the error rate for the plain
MRF where no GCPs were selected. The next five rows show
error rates after MRF optimization with pixels chosen as
GCPs if NCC>0.5, LRC=1, LRD>1.5, using the method of
[33] or RF>0.7, respectively. The last row shows the error
rate when all GCPs with RF>0.7 were considered as hard
constraints in the MRF.

10.2 KITTI Dataset

Similarly to the Middlebury dataset, using the KITTI

training set we established thresholds for our method

(RF), as well as the baselines. GCPs were chosen if

NCC>0.5, LRC=1, LRD>15, or RF>0.82. Table 8 presents

the relative error rates of the final disparity maps for

the KITTI dataset. Representative disparity maps are

shown in Fig. 17.

Finally, we experimented with treating the GCPs

as hard constraints by setting the cost of all disparities,
other than of the selected disparity, to 100,000, hence

ensuring that the selected disparity would not be al-

tered by MRF. This resulted to an increase of the error

rate by 0.3% on the Middlebury dataset and by 6.6%

on the KITTI dataset.

11 GENERALIZATION

In the previous sections we outlined a process that al-

lows us to predict whether a disparity is correct, detect

GCPs and, subsequently, use them to improve the accu-

racy of stereo matching. We have shown experimentally

that in both cases (Middlebury and KITTI datasets)

we have produced improved results. In this section we

demonstrate that the results of learning on a domain

can be applied to other domains. In the following ex-

periments, we used the classifier obtained from a source

dataset to test the accuracy on a target dataset. More-

over, the parameters cGCP and λ that were established

GCP type Average Error
WTA 48.1%
MRF-no GCP 11.0%
NCC-GCP MRF 14.7%
LRC-GCP MRF 16.5%
LRD-GCP MRF 11.0%
RF-GCP MRF 10.5%
RF-GCP MRF/hard 17.1%

Table 8 KITTI dataset: The first row shows the WTA error
rate. The second row shows the error rate for the plain MRF
where no GCPs were selected. The next four rows show error
rates after MRF optimization with pixels chosen as GCPs if
NCC>0.5, LRC=1, LRD>15, or RF>0.82, respectively. The
last row shows the error rate when all GCPs were considered
as hard constraints in the MRF.

during training and testing on the source dataset were

maintained intact in the target dataset. No information

or training data of the target dataset were used during

these experiments.

11.1 Middlebury Dataset

We used the features outlined in Section 4 to train on

the 97 stereo pairs of the KITTI dataset. We then used

the results of the RF to test on all 27 stereo pairs of the

Middlebury dataset. Table 9 shows a comparison of the

accuracy of the two test results: a) training and testing

on Middlebury, and b) training on KITTI and testing

on Middlebury.

MB → MB KITTI → MB
Prediction Accuracy 92.79% 90.26%
MRF Error 6.29% 6.55%

Table 9 Middlebury: Comparison of Prediction Accuracy
and final MRF Error using our method to train and test on
Middlebury in comparison to training on KITTI and testing
on Middlebury.

11.2 KITTI Dataset

Similarly, we used the features outlined in Section 4 to

train on the 18 stereo sets of the Middlebury dataset.

Then, we applied the results of the RF to the KITTI

dataset. Table 10 shows a comparison of the two test re-

sults. Although the Middlebury images have completely

different characteristics, the error rate remained prac-

tically the same.

As the experiments attest, despite the fundamen-

tal differences of the datasets, we are able to general-

ize our approach across domains. Using the exact same
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(a) Input Image 000149 (b) MRF-no GCP

(c) NCC-GCP MRF (d) LRC-GCP MRF

(e) RF-GCP MRF (f) Selected GCPs

(g) Input Image 000121 (h) MRF-no GCP

(j) NCC-GCP MRF (k) LRC-GCP MRF

(m) RF-GCP MRF (n) Selected GCPs

Fig. 17 KITTI dataset: Top three rows: Input image and final disparity maps using an MRF without GCPs, MRFs with
GCPs determined according to NCC, LRC and RF predictions for image 149. The last image depicts (in red) the GCPs selected
using the RF prediction values. Only non-occluded GCPs and GCPs with available ground truth disparity are shown. The
corresponding error rates were: (b) 17.1%, (c) 22.6%, (d) 24.4%, and (e) 16.3%. Bottom three rows: Similar disparity maps and
RF prediction values for image 121. The corresponding error rates were: (h) 3.8%, (j) 6.4%, (k) 8.6%, and (m) 3.7%. Disparity
maps were enhanced to aid in visualization.
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KITTI → KITTI MB → KITTI
Prediction Accuracy 86.99% 81.73%
MRF Error 10.50% 10.70%

Table 10 KITTI: Comparison of Prediction Accuracy and
final MRF Error using our method to train and test on
KITTI in comparison to training on Middlebury and testing
on KITTI.

features on both datasets, we were able to generate er-

ror rates comparable to those reported in Section 10,

namely 6.3% on the Middlebury dataset and 10.5% on

the KITTI dataset.

12 CONCLUSIONS

We have presented a supervised learning approach that

is able to classify and rank stereo matches according to

the likelihood of being correct. Experiments on stan-

dard data with ground truth demonstrate high clas-

sification accuracy, as well as ranking accuracy that is

much closer to being optimal than any single confidence

measure in isolation.

We have also presented a stereo algorithm that builds

upon the aforementioned capabilities and global opti-

mization techniques to improve disparity estimation ac-

curacy. To our knowledge, these are the first results that

show that disparity maps can be improved using confi-

dence. Being able to achieve the right balance between

density and accuracy of the GCPs and their use as soft

constraints are important factors in the overall accu-

racy of our final disparity maps.

Finally, we have shown that the supervised learning

approach is dataset agnostic, as the training results of
a dataset can easily be applied to other datasets with-

out loss of accuracy. In the case of applying learning

from Middlebury to KITTI, we demonstrated a differ-

ence of only 0.20% in the MRF error. In the case of

applying learning from KITTI to Middlebury the MRF

error difference was also a low 0.26%. This is an impor-

tant finding that can potentially be applied in domains

such as driver assistance or autonomous driving. Appli-

cations in these domains would benefit from learning-

based stereo algorithms that have good generalization

properties.
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