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Abstract

Stereo matching, as many problems in computer vision,
has been addressed by a multitude of algorithms, each with
its own strengths and weaknesses. Instead of following the
conventional approach and trying to tune or enhance one
of the algorithms so that it dominates the competition, we
resign to the idea that a truly optimal algorithm may not be
discovered soon and take a different approach. We present
a novel methodology for combining a large number of het-
erogeneous algorithms that is able to clearly surpass the
accuracy of the most accurate algorithms in the set. At the
core of our approach is the design of an ensemble classi-
fier trained to decide whether a particular stereo matcher is
correct on a certain pixel. In addition to features describ-
ing the pixel, our feature vector encodes the agreement and
disagreement between the matcher under consideration and
all other matchers. This formulation leads to high accuracy
in disparity estimation on the KITTI stereo benchmark.

1. Introduction
Several decades of research on stereo matching [32, 11]

have led to undeniable progress, but also to the conclu-
sion that different stereo matching algorithms have different
strengths and weaknesses and that assigning correct dispar-
ities to pixels is a task that has a varying degree of diffi-
culty depending on properties of the scene and the images.
For example, early MRF-based stereo approaches [3] and
local, winner-take-all (WTA) methods using large aggrega-
tion windows work better on smooth surfaces of piece-wise
constant disparity at the expense of pixels on thin structures
that are often merged on nearby larger surfaces. On the
other hand, WTA methods with smaller aggregation win-
dows exhibit the opposite behavior.

In this paper we address binocular stereo matching from
a different perspective: instead of trying to improve the ac-
curacy of a single stereo matcher, we present an approach
for combining a large number of matchers to obtain one
with higher accuracy than any of the constituent matchers.
Similar research has been published [27], but the combina-

tion is based on handcrafted rules, which are designed ac-
cording to the intuition of the researchers. We would like
our approach to be extensible without manual intervention
when the pool of available stereo matchers is modified. This
pool may contain a large number of matchers, out of which
our algorithm would select an appropriate number of match-
ers, the active set, and then train one classifier per active
matcher to determine how disparity values should be auto-
matically assigned to pixels.

Our hypothesis is that a competitive stereo matching sys-
tem can be constructed by combining multiple local stereo
matching methods in a principled way. We pose the prob-
lem as multi-class classification in which the available class
labels for a pixel are disparity values proposed by different
matchers in the active set. In this process, the classifiers
are considered black boxes, in other words no information
from each matcher is used other than the disparity value as-
signed to each pixel. We describe an implementation of this
approach in Section 5 and validate it experimentally in Sec-
tion 6 using data from the KITTI stereo benchmark [11].

An important aspect of the approach is that we do not
treat the matchers in the active set, and the classifiers in the
ensemble, as independent. Instead, we capture the agree-

Figure 1: An input frame and a visualization showing pixels
colored according to the matcher that was selected for them
by the classifiers. Pixels from only two matchers are shown
for clarity.
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ment and disagreement among diverse stereo matching al-
gorithms. Given a set of m active matchers, we train m
one-against-all classifiers. Each classifier aims to predict
whether the disparity proposed by its primary matcher for a
particular pixel is correct or not. The feature vectors that are
used as inputs to these classifiers include variables that rep-
resent whether other stereo matchers agree with the dispar-
ity proposed by the primary matcher or not. As a result, our
model that jointly considers all matchers is a more accurate
representation of the underlying phenomena. This formu-
lation provides powerful information that increases the ac-
curacy of the classifiers. The final disparity value assigned
to the pixel is that of the matcher with the highest poste-
rior probability according to the classifiers after calibration
[39]. Figure 1 shows an example for one stereo pair. Each
pixel is colored according to the matcher with the highest
posterior. The disparity of the selected matcher is assigned
to the pixel. Our results show that the ensemble reduces the
error rate of the most accurate matcher by 38%.

2. Related Work
In this section, we review research on the application

of machine learning techniques on stereo and on algorithm
selection for stereo and other related problems. Relevant
to our research is the literature on confidence estimation
[18, 13, 28] and on learning optimization or regulariza-
tion parameters [41, 37] for stereo. The latter methods aim
to learn a small number of global parameters, such as the
weights of the data and smoothness terms of an MRF, while
our work aims to train classifiers that make a decision per
pixel based on local features and context.

In early work, Lew et al. [24] presented an approach for
selecting a set of features that form an effective descriptor
for stereo matching. Cruz et al. [6] addressed the prob-
lem of determining whether a match in edge-based stereo
was correct using four features extracted by filtering the
images and a perceptron. Sabater et al. [31] introduced
an a contrario approach for validating the correctness of
stereo matches. A user-specified acceptable number of false
matches determines the density of the final disparity map.
Zhu et al. [42] fit linear regression models to local image
regions. We view this approach as similar to ours since it
also assumes that a single model does not work well for
all pixels. Recently, Haeusler et al. [14] presented a learn-
ing approach that can predict the correctness of the output
disparities of the semi-global matching (SGM) stereo algo-
rithm [15]. It uses a number of features computed on the
images, disparity maps and matching cost volume and a ran-
dom forest classifier that is able to reject false matches with
high accuracy. Spyropoulos et al. [34] use a random for-
est to predict match correctness and to select ground con-
trol points which provide constraints that improve the over-
all accuracy. Zbontar and LeCun [40] trained a convolu-

tional neural network (CNN) to predict whether two image
patches match or not. The trained CNN generates matching
costs which are adaptively aggregated and optimized using
SGM.

Approaches using multi-class classification include the
following. Kong and Tao [21] used non-parametric tech-
niques to learn the probability of a potential match to belong
to three categories: correct, wrong due to foreground over-
extension or wrong for other reasons. Ladicky et al. [23] ad-
dress simultaneous semantic segmentation and dense 3D re-
construction from two images, but make strong assumptions
about the scene layout and composition in terms of types
of possible objects and surfaces. Gehrig and Scharwächter
[10] cast optical flow error prediction as multi-class classi-
fication where the classes are different ranges of the error.

Related to the above are methods for selecting the best
among multiple algorithms for a given task. Kong and Tao
[22] selected among 36 matchers which were variations
of normalized cross-correlation-based matching in differ-
ent window sizes and with different locations of the refer-
ence pixel in the windows. Motten et al. [27] presented a
decision tree classifier implemented on FPGA that selects
among multiple disparity hypotheses generated by trinocu-
lar stereo. Stenger et al. [35] select trackers either based on
maximum confidence or by forming a cascade and deciding
whether to accept the current tracker or proceed to the next
one, hence avoiding the execution of all trackers a priori.
Gao et al. [9] proposed a method for forming an ensem-
ble of trackers that considers the reliability of each tracker
individually and also the correlations of pairs of trackers.

The work of Mac Aodha et al. [26] is similar to ours, as it
uses a multi-class classifier that selects among four state of
the art methods for optical flow estimation. They also make
decisions at the pixel level using a random forest. The major
differences with our approach are that the complementarity
of the algorithms is not considered, the classes are defined
with respect to different thresholds on the endpoint error
and pixels are used for training only when the top two al-
gorithms disagree. Mac Aodha et al. train one classifier per
optical flow estimator to generate a confidence that the esti-
mated optical flow for a particular pixel is below some error
threshold. As shown in Section 5, we do not consider the
matchers independent but encode whether they agree or not.
This provides valuable information that makes our final dis-
parity assignments consistently better than all input match-
ers, while the combination of [26] is second best on all se-
quences. In subsequent work, Mac Aodha and Brostow [25]
proposed cost sensitive learning for selecting among multi-
ple experts. Incorporating example dependent costs instead
of binary correctness labels is an interesting direction for
future research.
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3. Problem Statement
The objective of our research is to test the hypothesis that

a competitive stereo matching system can be constructed by
combining multiple stereo matching algorithms in a princi-
pled way without requiring domain expertise from the users.
The combination is done in two stages. In the first stage
the set of active matchers is selected from a large pool of
matchers. In the second stage, a set of classifiers are trained
to select the disparity that is more likely to be correct for a
given pixel from a set of disparities proposed by the active
matchers. The first stage is necessary for practical purposes
since running hundreds of stereo algorithms on every input
stereo pair is cumbersome and unnecessary.

In Section 4, we present the algorithms we used to con-
struct the pool of matchers as well as the features we com-
pute on them. The features capture information on the cor-
rectness of each matcher for a given pixel.

One-against-all classifiers are trained on feature vectors
that combine information from all active matchers accord-
ing to Section 5. Each classifier corresponds to a primary
matcher and determines whether the disparity proposed by
the primary matcher for a given pixel is correct or not. The
novelty of our classification scheme is in the way we encode
agreement between different matchers in the feature vector
and in that we do not treat the predictions of the matchers
as independent. Its effectiveness was tested with a number
of experiments on the KITTI benchmark [11] (Section 6).

4. Stereo Matchers and Features
In Section 4.1 we present the stereo matchers that formed

the initial pool out of which a small number was selected for
the classifiers. We implemented several of these matchers
and used publicly available software for the others. In Sec-
tion 4.2, we present the features that were computed on the
disparity maps and used in the classifiers of Section 5.

4.1. Stereo Matchers

We implemented the following local stereo matching
techniques for gray-scale images, as in the KITTI data set.
In all cases we used square windows ranging from 3 × 3
to 21 × 21 increasing their width in steps of 2 pixels. Due
to space considerations, we do not provide implementation
details here, but refer readers to [16].

SAD: The sum of absolute differences (SAD) of intensity.
We denote SAD in 7 × 7 windows by SAD7, for example.

SSD: The sum of square differences (SSD) of intensity.

Sobel: The sum of absolute differences of the responses to
a vertical edge filter. Similarly to [30], we compute the in-
tensity gradient in the x direction using the Sobel filter. We
then treat filter responses as intensities and compute SAD
on them. Note that the cost does not include any direct com-
parison of intensity values.

ZNCC: Zero-mean Normalized Cross-Correlation. Un-
like the above matchers, ZNCC produces a score with larger
values indicating better matching.
SNCC: The Summed Normalized Cross-Correlation
method was proposed by Einecke and Eggert [8]. SNCC is
a two-stage process, where in the first stage ZNCC is com-
puted in small matching windows and in the second stage
the ZNCC values are aggregated by summation in windows
of potentially different size. This approach is more effective
than computing ZNCC in large windows because it miti-
gates an intrinsic drawback of ZNCC: the fact that it locks
on edges of high contrast which suppress the rest of the
signal in the matching window. By breaking up the large
matching window into smaller subwindows, this effect is
restricted to a small number of subwindows. Summing the
ZNCC scores of the subwindows results in the desired de-
gree of smoothness without suffering as much from errors
due to high contrast edges. In this paper, we adopt the prac-
tice of [8] and compute ZNCC in 3×3 or 5×5 subwindows.
SNCC3−11 in our notation denotes 3×3 ZNCC subwindows
and 11 × 11 summation windows.
Census: The census transform has been very effective in
stereo matching due to its robustness to illumination varia-
tions. We use the Hamming distance between census trans-
form descriptors of corresponding pixels and aggregate the
absolute values of these distances in a second stage by
adding them. As above, Cen3−11 in our notation denotes
the census transform computed in 3 × 3 windows around
each pixel and the final cost resulting from distance aggre-
gation in 11 × 11 windows.
Shiftable windows: To generate correct disparities near
discontinuities we applied shiftable windows on the above
methods. A shiftable window is one in which the reference
pixel that we are trying to match can shift inside the window
instead of being fixed to the center. The motivation is that
by using several windows that include the pixel we are try-
ing to match, and not just the window centered at that pixel,
we increase the probability of including only pixels from
one of the surfaces that are near the discontinuity, making
matching easier. The shiftable version of SAD3, for exam-
ple, is obtained by searching for the minimum cost in 3 × 3
windows and is denoted by SH-SAD3.

We also included the following advanced matchers.
MRF: This is an MRF with a data term computed using
NCC5 and edge weights modulated by the intensity differ-
ence between adjacent pixels to favor disparity discontinu-
ities aligned with image edges. The optimal disparity as-
signment is computed using the software of [20].
rSGM: Semi-Global Matching [15] is an efficient ap-
proximation for optimizing an MRF. We use the rSGM im-
plementation of Spangenberg et al. [33] which uses the
census transform to compute the data term. We denote by
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rSGM5 the version that uses Cen5 as the matching cost and
by rSGMC the version that uses census in 9 × 7 center-
symmetric windows with horizontal weights.

FCVF: The Fast Cost-Volume Filtering method [30, 17]
is based on a bilateral filter that operates on the cost volume
to adaptively aggregate costs and produces very competitive
WTA disparity maps. Here we use the Matlab implementa-
tion provided by the authors. The initial cost is a blend of
intensity and gradient differences.

ELAS: Geiger et al. [12] proposed ELAS which detects
an initial set of reliable matches and then forms a set of tri-
angles that cover the remaining ambiguous pixels. The im-
plementation of ELAS provided by the authors is included
to tackle textureless, planar surfaces.

DAISY: Tola et al. [36] proposed DAISY as a local de-
scriptor for dense wide-baseline matching. We apply the
authors’ implementation to our narrow-baseline inputs.

Superpixels: We also applied a simple superpixel-based
algorithm on all the above matchers as follows: we seg-
mented the reference images into SLIC superpixels [1] and
then fitted a plane to each segment using RANSAC on the
disparities of the segment. This step doubles the set of
matchers and further enhances its diversity, while in many
cases it also improves the accuracy compared to the original
disparity maps. We denote the new matchers by SUPER-
SAD11, for example.

We compute disparity maps using all of the above match-
ers and then reverse the role of the reference and target im-
age to compute right-to-left disparity maps. Disparity maps
from local matchers are filtered to generate their shiftable
counterparts, while all disparity maps from local, shiftable
and advanced matchers, are post-processed to generate the
superpixel versions of their outputs. In total, we generate
122 left-to-right disparity maps for each input stereo pair.

4.2. Features

In order to form the feature vectors for the classifiers, we
compute for each pixel a few simple features, separately for
each matcher, using only the disparity maps. It is impor-
tant to note here that matchers are treated as black boxes
that generate a single disparity for each pixel and provide
no access to intermediate results. We do this for practical
reasons: to avoid storing matching cost volumes for all lo-
cal matchers, but also because global optimization methods
produce neither posterior probabilities for the disparity as-
signed to a particular pixel nor ranked lists of likely dispar-
ities for each pixel. This causes features based on interme-
diate matching results, such as the ratio of best and second
best costs [18], to be unavailable. We also excluded the cost
maps of the WTA methods, since such maps are not pro-
duced by the global methods. According to Haeusler et al.

[14], it is very likely that features based on the cost volume
are more effective, but as shown in Section 6, our approach
is able to discern the correct disparities relying on consensus
and disagreement among different matchers without such
features. In this paper, we only used the following features
for individual disparities.

Distance from Discontinuity (DD): Pixels near depth
discontinuities are likely to be mismatched. Since we do
not know the true discontinuities, we use the WTA dispar-
ity estimates as a proxy and mark as discontinuous any pixel
whose disparity is not equal to the disparities of all of its
four neighbors. DD is equal to the horizontal distance from
the pixel to the nearest discontinuity.

Left-Right Consistency (LRC): Pixels with inconsistent
disparities in the left and right disparity maps computed by
the same matcher are likely to be unreliable. We imple-
mented LRC as a binary feature which was set to true when
the difference between the disparity d of a pixel (xL, y) in
the left image and the disparity at pixel (xL-d, y) in the right
image is less than or equal to 1.

Additional features, such as computing a matching cost
value for each given disparity using a common local match-
ing function (NCC5) and responses of filters such as the
median on the disparity map and several forms of priors
learned on the entire training set, did not appear to be effec-
tive in our experiments.

5. Classifier Design

Here, we describe the classifier ensemble we designed to
select among multiple candidate disparities for each pixel.
We begin with a technique to select which of the over 100
available matchers to use as inputs to the classifiers.

5.1. Matcher Selection

The objective of this stage is to limit the set of match-
ers for two practical reasons: to maintain the computational
cost at manageable levels and also to avoid having to solve
a multi-class classification problem with a very large num-
ber of classes. Using hundreds of matchers would result
in an unnecessarily complex, highly redundant processing
pipeline that would be hard to deploy. Here, we propose an
algorithm for selecting a small number of matchers, which
will be referred to as the active matchers. Their disparity
maps are the only inputs to feature computation and subse-
quently to the classifiers.

The obvious requirement for selecting the active match-
ers is high accuracy. This, however, is not sufficient since
our classifiers only select among the disparities proposed
by the active matchers. In order to raise the upper bound on
the accuracy of the ensemble, we should increase the num-
ber of pixels for which the correct disparity is among those
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proposed by the matchers. Therefore, including highly ac-
curate matchers with very large overlaps with the current
active set is not necessarily beneficial.

We form the set of active matchers as follows: we select
the matcher with the highest overall accuracy first and then
add the matcher that has the highest accuracy over the pix-
els on which the first matcher failed. We repeat this proce-
dure for a few rounds, each time selecting the matcher that
would result in the largest increase in the number of pixels
for which the correct disparity appears at least once. The
top matcher (SUPER-rSGM5) has a coverage of 91.9% of
all pixels of the validation set (last 97 stereo pairs of KITTI
training set). If all 122 matchers were to be considered,
the combined coverage would have been 99.55%. The first
eight matchers we selected for our experiments, using the
above technique, cover 98.57% of all pixels.

5.2. One-against-all Classifiers with Agreement
Features

We would like to train a classifier ensemble that can take
as input a number of disparity maps, along with the associ-
ated feature maps, and select one of the proposed dispari-
ties for each pixel. The challenge is that this is a multi-class
classification problem in which the classes are not mutually
exclusive since multiple active matchers can be correct at
the same time. Of course, in some cases none of the active
matchers may be correct. When this occurs, we cannot de-
termine the correct disparity without post-processing. This
is why it is important to maximize the fraction of pixels
on which at least one matcher is successful, as in Section
5.1. While we could have used error-correcting output cod-
ing [7] to handle non-mutually exclusive classes, this would
have resulted in over one hundred classifiers, many of which
would suffer from severe lack of training data.

We opt for a one-against-all design for our classifiers,
with each class corresponding to the selection of a particu-
lar active matcher and the disparity it proposes for the pixel
under consideration. Given m matchers in the active set,
we train m binary classifiers using features from all match-
ers as shown below. Each of these one-against-all classi-
fiers is tasked with estimating the likelihood of its primary
matcher being correct based on features describing its own
disparity estimate for a pixel, as well as features from the
other active matchers, referred to as secondary matchers,
for the same pixel. In this setup, the training label is true if
the primary matcher is correct regardless of whether other
matchers are also correct. The m classifiers assign scores to
the proposed disparities and the disparity with the highest
score is selected and assigned to the pixel. (Note that the
matchers provide no specific information for the majority
of possible disparity values for a pixel, since only at most
m disparities are selected. Using disparities as labels does
not lead to a well formulated problem.)

We propose a novel way to benefit from agreements
among the active matchers in a one-against-all scheme. This
is accomplished by introducing agreement features in the
feature vector of each classifier. These are binary vari-
ables indicating whether each secondary matcher agrees
with the primary matcher within a given tolerance. We ex-
perimented with different values of the tolerance and settled
on 3 which matches the evaluation protocol [11]. Differ-
ences with other small values of tolerance are small. In the
context of [19], this formulation does not assume indepen-
dence among the matchers and reasons on joint probabili-
ties. If we were to assume independence, Kittler et al. [19]
suggest combining the classifiers via majority voting since
only decision outcomes are available to us. We compare
majority voting with our formulation in Section 6.

The feature vector for each classifier then consists of the
following:

• agreement features ai for each secondary matcher.
ai is equal to 1, if the primary matcher agrees with
matcher i, and -1, otherwise. There are m-1 agreement
features.

• individual-matcher features for the primary and sec-
ondary matchers. There are f ·m such features that are
computed from the disparity maps as in Section 4.2.
represent In this paper we use two features (f = 2):
DD and LRC.

• product features which are the products of the agree-
ment features with the corresponding individual-
matcher features. As a result, feature values corre-
sponding to secondary matchers in disagreement are
negated. These features capture whether different
matchers strongly or weakly agree or disagree with the
primary matcher. There are f ·m such features.

• a total support feature (TS) defined as TS = Σai, for
ai > 0. TS encodes the support the primary matcher
has received from the secondary matchers, i.e. it is the
sum of all positive ai.

Due to the inhomogeneity of our feature vector, we
choose a random forest [4, 5] as the classifier since it does
not require a metric in feature space. We trained random
forests comprising 50 trees since increasing the number of
trees did not improve performance. All parameters were se-
lected by cross validation. RF averages the predictions of
the trees to assign a score between 0 and 1 to each test pat-
tern, a disparity proposed by an active matcher here. The
closer the score is to 1, the more confident are we that the
disparity of the primary classifier is correct. We train m
RFs on all pixels with ground truth in the training set. Dur-
ing testing, each pixel of the test set is presented to the m
RFs, with a different feature vector and potentially different
disparity for each one depending on the primary matcher for
that RF. Each RF assigns a score to the proposed disparity
and the maximum score is selected.
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While the scores computed by the RFs are supposed to
correspond to posterior probabilities of the disparities be-
ing correct, in practice they do not [29, 38]. This is mostly
due to the classifiers being optimized for classification ac-
curacy and not posterior estimation, and to inaccurate ap-
proximations such as independence assumptions. Uncali-
brated scores are still useful for ranking disparities for a sin-
gle matcher but they are suboptimal for performing compar-
isons across different classifiers. To rectify this situation we
perform classifier calibration using the pair-adjacent viola-
tors (PAV) algorithm [39]. PAV finds a step-wise constant
non-decreasing function that optimally maps the raw clas-
sifier scores to posterior probabilities in the mean square
sense. This leads to an improvement in the final disparity
selection step.

6. Experimental Validation
We perform experiments on the binocular KITTI data set

[11], which comprises 194 training and 195 test gray-scale
stereo pairs captured from a vehicle. The ground truth is
semi-dense covering approximately 30% of all pixels con-
centrated in the lower part of the images and it is only avail-
able for the training set. We further divide the training im-
ages into a training set that contains the first 97 stereo pairs
(or about 13 million non-occluded pixels) and a validation
set containing the last 97 stereo pairs of the data with pub-
licly available ground truth. This allows us to validate our
algorithms while complying with the submission policy of
the KITTI benchmark. According to the evaluation proto-
col of the benchmark, we consider a disparity correct if it is
within three levels from the ground truth.

Applying the procedure of Section 5.1 to the 122 match-
ers produces the sequence listed in Table 1 along with their
error rates on non-occluded pixels of the validation set. The
first eight matchers are shown. Note that these are not the
top individually performing matchers, other than the first
one, but their correct matches are complementary. A perfect
ensemble of m = 8 RFs would be able to achieve a mini-
mum error rate of 1.43% on all pixels by optimally combin-
ing these matchers. Our classifiers will attempt to reach this
lower bound by selecting among the disparities proposed
by the eight matchers with error rates ranging from 8.06%
to 54.78%. Our method must achieve an error rate below
8.06% to be useful, otherwise the best strategy would be to
abandon the ensemble and use the best individual matcher.
As our experiments show, the ensemble was indeed able
to achieve a lower error rate than that of the best matcher
(5.03% vs. 8.06%).

In the first set of experiments we train different random
forest classifiers to observe the effects of each feature type
on accuracy using the top six matchers from Table 1. Table
2 shows the error rate on all, as well as on non-occluded
only pixels, of the validation set (stereo images 97-193).

Matcher Error Rate Novelty
SUPER-rSGM5 8.06 % 11,558,271 px
MRF 10.82 % 416,122 px
FCVF 22.31 % 147,758 px
DAISY 11.14 % 90,369 px
SH-ZNCC21 29.01 % 41,837 px
SH-SOB21 44.05 % 23,989 px
SH-SSD5 54.78 % 18,159 px
ELAS 20.70 % 16,119 px

Table 1: The first eight selected matchers, their error rates
over non-occluded pixels and their contributions in terms of
previously unobserved pixels with correct disparity

The table reports which feature types were used for training
as well as the total number of features in the feature vec-
tor. Even ensemble A that uses only the agreement features
surpasses the accuracy of SUPER-rSGM5. Comparing clas-
sifier ensemble B to C or D and J to K on Table 2, we see
that our proposed agreement variables are more effective
than TS, which collects votes in favor of a given disparity
ignoring the identities of supporting matchers. However, re-
moving both the agreement and TS features – as in ensem-
ble M – shows a significant drop in accuracy in comparison
to ensemble N that has both features included.

After selecting the best ensemble, N , we expanded the
number of matchers to eight. Calibrating any of the en-
sembles leads to an error reduction in the order of 0.3%.
Table 3 shows the error rates on all, as well as the non-
occluded pixels, for experiments with varying number of
matchers with and without post-processing. In Table 3 we
also show results by the best individual matcher, SUPER-
rSGM5, for comparison. Two additional methods are in-
cluded: the Median method selects the median of the dispar-
ities proposed by the eight matchers, and the Majority Vot-
ing method which selects the disparity that is recommended
by the most matchers. In all three cases the error rate is
significantly higher than that of our best method’s, N8-C,
before post-processing.

N8-CP , the best-performing ensemble based on the re-
sults on Table 3, uses the full feature vector (ai, DD,
ai ·DD, LRC, ai · LRC and TS) on eight matchers with
their classifiers calibrated. We selected this ensemble to
generate the final results. Figure 2 shows a visualization
of the top performing ensemble on one of the input stereo
pairs. When, for example, FCVF is selected for a pixel, then
that pixel is colored orange in Fig. 2(c). The figure shows
that different matchers are better suited for different pixel
types, depending on their degree of smoothness and local
illumination conditions among other factors. More impor-
tantly it shows that our classifiers are able to determine that.
Note that there is variability in how often matchers are se-
lected from stereo pair to stereo pair.

Post-processing was applied to generate the final dis-
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Ensemble ai DD aiDD LRC aiLRC TS # of Features Out-Noc Out-All
A X 5 6.81 % 8.69 %
B X X 11 6.54 % 8.45 %
C X X 7 6.82 % 8.70 %
D X X X 17 6.94 % 8.70 %
E X X 11 6.49 % 8.38 %
F X X X 17 6.65 % 8.52 %
G X X 11 6.73 % 8.64 %
H X X 11 6.71 % 8.63 %
J X X X 17 6.58 % 8.50 %
K X X X X 18 6.68 % 8.59 %
L X X X X 23 6.42 % 8.33 %
M X X X X 24 6.69 % 8.56 %
N X X X X X X 30 6.42 % 8.32 %

Table 2: Error rates for classifier ensembles using six matchers and various feature combinations.

parity maps. We first determine which pixels require cor-
rection. For each pixel, we use the calibrated prediction
score of the winning classifier as a measure of confidence.
We then reject the disparities for all pixels that fall below
a certain threshold and replace them similarly to [2]. For
each pixel without a disparity value, we look for the nearest
matched pixel to its left, since occluding surfaces are to the
right in the left image, and copy its disparity. If there is no
such pixel to the left, as is the case near the left border of
the image, we search to the right. Finally, all disparities,
existing and filled in, are iteratively filtered with a 3 × 13
median filter. Using a validation set, we selected 0.64 as the
threshold on the prediction score. The top ensemble, N8-
C, achieved an error rate of 5.82% for non-occluded pixels.
After post-processing, the error rate was reduced further by
another 0.79% to 5.03% (or lower by 3.03% compared to

Ensemble Matchers Calibrated Out-Noc Out-All
SUPER-rSGM5 8 - 8.06 % 10.17 %
Median 8 - 8.63 % 10.64 %
Majority Voting 8 - 10.24 % 12.14 %
N 6 No 6.42 % 8.32 %
N8 8 No 6.21 % 8.21 %
N6-C 6 Yes 6.15 % 8.02 %
N8-C 8 Yes 5.82 % 7.68 %
N6-CP 6 Yes 5.36 % 6.87 %
N8-CP 8 Yes 5.03 % 6.48 %

Table 3: In the first three rows we show, for comparison
purposes, error rates of the best matcher, SUPER-rSGM5,
as well as results for the Median and Majority Voting meth-
ods. The next four rows show error rates for ensembles us-
ing the same features as ensemble N from Table 2, but with
a varying number of matchers. Suffix C represents experi-
ments with classifier calibration. Our best ensemble, N8-C,
is superior to all top three rows. The last two rows with suf-
fix P represent experiments where post-processing has been
applied to further reduce the error rate.

the best matcher).
We submitted results on the KITTI test data to the KITTI

evaluation page using the best performing ensemble, N8-
CP , which was trained on the complete set of 194 images.
Table 4 contains the automatically generated results. At the
3-pixel error level, the error rate of our submitted results
was 5.34%. Figure 3 shows two examples from the test set.

7. Conclusions
We have presented a novel approach for stereo match-

ing that combines the strengths of a diverse set of stereo
matchers in a supervised learning framework. A set of ac-
tive matchers is selected from a potentially very large initial
pool and random forest classifiers are trained to select the
disparity that is most likely to be correct for each pixel of the
left image. The classifiers, even with a small number of fea-
tures compared to [14, 34], are always able to surpass the
accuracy of the best matcher in the active set. Our method
combines eight matchers and achieves an error rate before
post-processing (5.82%) that is significantly smaller than
that of the best individual matcher (8.06%). Using the clas-
sifier predictions to guide post-processing further reduces
the error to 5.03%. We consider these as strong indications
that our approach is effective in this task and by extension in
our overarching goal: to develop a methodology that is able

Error Out-Noc Out-All Avg-Noc Avg-All
2 pixels 9.17 % 10.89 % 1.5 px 2.0 px
3 pixels 5.34 % 6.91 % 1.5 px 2.0 px
4 pixels 3.92 % 5.30 % 1.5 px 2.0 px
5 pixels 3.20 % 4.43 % 1.5 px 2.0 px

Table 4: Error rates on non-occluded and all pixels of the
test set generated by the KITTI website for various error
thresholds. The last two columns are independent of thresh-
old.
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(a) SUPER-rSGM5

(b) MRF

(c) FCVF

(d) DAISY

(e) SH-ZNCC21

(f) SH-SOB21

Figure 2: Each subfigure highlights the pixels that selected
the corresponding disparity of each matcher. The top six
(out of eight) matchers are shown. SUPER-rSGM5 and SH-
SOB21 dominated the disparity selection for this stereo pair.

to benefit from the different strengths of different matchers.
Compared to the work of Mac Aodha et al. [26] on

optical flow, we claim that our formulation using the one-
against-all classifiers is more effective in capturing the
agreement and disagreement between different matchers by

(a) Test image 4

(b) Test image 11

Figure 3: Left image, error and disparity maps for KITTI
test images 4 and 11

not assuming that they are independent. Evidence for this
can be seen by comparing ensembles M and N in Table 2.
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