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Stereo Using Monocular Cues within
the Tensor Voting Framework

Philippos Mordohai, Member, IEEE, and Gérard Medioni, Fellow, IEEE

Abstract—We address the fundamental problem of matching in two static images. The remaining challenges are related to occlusion
and lack of texture. Our approach addresses these difficulties within a perceptual organization framework, considering both binocular
and monocular cues. Initially, matching candidates for all pixels are generated by a combination of matching techniques. The matching
candidates are then embedded in disparity space, where perceptual organization takes place in 3D neighborhoods and, thus, does not
suffer from problems associated with scanline or image neighborhoods. The assumption is that correct matches produce salient,
coherent surfaces, while wrong ones do not. Matching candidates that are consistent with the surfaces are kept and grouped into smooth
layers. Thus, we achieve surface segmentation based on geometric and not photometric properties. Surface overextensions, which are
due to occlusion, can be corrected by removing matches whose projections are not consistent in color with their neighbors of the same
surface in both images. Finally, the projections of the refined surfaces on both images are used to obtain disparity hypotheses for
unmatched pixels. The final disparities are selected after a second tensor voting stage, during which information is propagated from more
reliable pixels to less reliable ones. We present results on widely used benchmark stereo pairs.

Index Terms—Stereo, occlusion, pixel correspondence, computer vision, perceptual organization, tensor voting.

1 INTRODUCTION

THE premise of shape from stereo comes from the fact that,
in a set of two or more images of a static scene, the same
world point appears at a different position in each image.
Given the images, the position of the point in the world can
be determined as the intersection of at least two rays that go
through the point’s projections in the images and the optical
centers of the cameras. Thus, two pixels that are the
projections of the same point in different images and camera
calibration information are sufficient for 3D reconstruction.
Establishing pixel correspondences in real images, though, is
far from trivial. Projective and photometric distortion, sensor
noise, occlusion, lack of texture, and repetitive patterns make
matching the most difficult stage of a stereo algorithm. Here,
we focus on occlusion and insufficient or ambiguous texture,
which are inherent difficulties of the depicted scene, and not
of the sensors. We assume that camera calibration is
provided to us.

To address these problems, we propose a stereo algorithm
that operates as a perceptual organization process in the
3D disparity space, keeping in mind that false matches will
most likely occur in textureless areas and near depth
discontinuities. Since binocular processing has limitations in
these areas, we use monocular information to overcome them.
We begin by generating matching hypotheses for every pixel
within a flexible framework that allows the use of matches
generated by several matching techniques. These matches are
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placedina3D (z,y, d) space, where d denotes the disparity. In
this space, the correct matches align to form surfaces, while
the wrong ones do not form salient structures. We can infer a
set of reliable matches based on the support they receive from
their neighbors as surface inliers via tensor voting [1]. These
reliable matches are grouped into layers. Note that the term
layer is used interchangeably with surface since by layer we
indicate a smooth, but not necessarily planar, surface in
3D disparity space. The surfaces are refined by rejecting
matches that are consistent in color with their neighbors in
both images. The refined, segmented surfaces serve as the
“unambiguous component,” defined in a way similar to [2], to
guide disparity estimation for the remaining pixels.
Segmentation using geometric properties is arguably the
most significant contribution of our research. It provides very
rich information on the position, orientation, and appearance
of the surfaces in the scene. Moreover, grouping in 3D
circumvents many of the difficulties of image segmentation. It
isalso a process that treats both images symmetrically, unlike
other approaches where only one of the two images is
segmented. Candidate disparities for unmatched pixels are
generated after examining the color similarity of each
unmatched pixel with its nearby layers. If the color of the
pixel is compatible with the color distribution of a nearby
layer, disparity hypotheses are generated based on the
existing layer disparities and the disparity gradient limit
constraint. Tensor voting is then performed locally and votes
are collected at the hypothesized locations. Only matches
from the selected layer cast votes to each candidate match. The
hypothesis that is the smoothest continuation of the surface is
kept. In addition, assuming that the occluded surfaces are
partially visible and that the occluded parts are smooth
continuations of the visible ones, we are able to extrapolate
and estimate the depth of monocularly visible pixels. Under
this scheme, smoothness with respect to both shape, in the
form of surface continuity, and appearance, in the form of
color similarity, is taken into account before disparities are
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Fig. 1. Left images from the “Sawtooth,” “Tsukuba,” “Venus,” “Map,”
“Cones,” and “Teddy” stereo pairs of the Middlebury Stereo Evaluation.

assigned to unmatched pixels. We present results on widely
used, benchmark stereo pairs taken from the Middlebury
Stereo Evaluation Web page (http://cat.middlebury.edu/
stereo/), as well as less-controlled, outdoor images. The left
image of the six image pairs of the Middlebury database can
be seen in Fig. 1.

The work presented here is different from that of Lee and
Medioni [3] and Lee et al. [4], where the focus is on showing
that the problem of stereo can be addressed from a perceptual
organization perspective. The earlier tensor voting-based
approach gives little attention to problem specific constraints,
but rather attempts to demonstrate the capability to infer the
scene surfaces from initial matches generated by a naive
operator. Surface smoothness is the dominant factor in all
stages, with obvious side-effects at sharp discontinuities and
small objects. The use of monocular information only occurs
at the last postprocessing stage. On the other hand, mono-
cular cues are taken into account at all stages of this paper and
contribute significantly in increasing the performance, espe-
cially at the most difficult parts of the input images.
Specifically, we propose a way of combining various
sophisticated matching techniques that take occlusion and
image sampling explicitly into account. We also explicitly
address the systematic matching errors that occur next to
depth discontinuities and in uniform regions. Finally,
disparities for unmatched pixels are generated after examin-
ing their compatibility with nearby scene surfaces and notjust
by surface smoothness. The entire algorithm presented in [4]
is essentially the second stage of the current algorithm. A
preliminary version of this research appears in [5].

The paper is organized as follows: Section 2 reviews
related work. Section 3 is an overview of the algorithm.
Section 4 describes the initial matching stage, Section 5 the
selection of correct matches using tensor voting, Section 6 the
segmentation and refinement process, and Section 7 the
disparity computation for unmatched pixels. Section 8
contains experimental results. Section 9 offers an analysis of
computational complexity. Section 10 concludes the paper.

2 RELATED WORK

In this section, we review research on stereo related to ours.
We focus on area-based methods since their goal is a dense
disparity map. Feature-based approaches are not covered,
even though the matches they produce could be used in our
framework. We also focus on approaches that handle

discontinuities and occlusions explicitly. The input images
are assumed to be rectified.

The problem of stereo is often decomposed as the
establishment of pixel correspondences followed by surface
reconstruction. These two processes, however, are strongly
linked since the reconstructed pixel correspondences form
the scene surfaces, while, on the other hand, the positions of
the surfaces dictate pixel correspondences in the images. In
the remainder of this paper, we describe how surface
saliency is used as the criterion for the correctness of
matches, as in [3] and [4]. Arguably, the first approach
where surface reconstruction does not follow but interacts
with feature correspondence is that of Hoff and Ahuja [6].
Matching and surface interpolation are integrated to ensure
surface smoothness, except at depth discontinuities and
creases. Edge points are detected as features and matched
across the two images at three resolutions. Planar and
quadratic surface patches are successively fitted and
possible depth or orientation discontinuities are detected
at each resolution. The patches that fit the matched features
best are selected while the interpolated surfaces determine
the disparities of unmatched pixels.

Research on dense area-based stereo with explicit treat-
ment of occlusion includes numerous approaches (see [7] and
[8] for comprehensive reviews of stereo algorithms). They can
be categorized as follows: local, global, and approaches with
extended local support, such as the one we propose. Local
methods attempt to solve the correspondence problem using
local operators in relatively small neighborhoods. Kanade
and Okutomi [9] use matching windows whose size and
shape adapt according to the intensities and disparities of the
pixels included in them in order to include as many pixels
from the same disparity level as possible. In [10], Veksler
presents a method that takes into account the average
matching error per pixel, the variance of this error, and the
size of the window to define new matching costs and adapt
the window size. Birchfield and Tomasi [11] introduce a new
pixel dissimilarity measure that alleviates the effects of image
sampling, which are a major source of errors when one
attempts to establish pixel correspondence. Their experi-
ments, as those of [12] and ours, demonstrate the usefulness
of this measure. Unlike all previous approaches that attempt
to include in the window a large number of pixels that share
the disparity of the pixel under consideration, Agrawal and
Davis [13] use the matching cost of [11] for windows that can
contain up to two different disparity values. The assignment
of disparities to the pixels in each window is a bilabeling
problem that can be efficiently solved using graph cuts.

On the other hand, global methods arrive at disparity
assignments by optimizing a global cost function that
usually includes penalties for pixel dissimilarity and
violation of the smoothness constraint. The latter introduces
a bias for constant disparity at neighboring pixels, thus
favoring fronto-parallel planes. Chronologically, the first
global optimization approaches for stereo were based on
dynamic programming. Since dynamic programming ad-
dresses the problem as a set of 1D subproblems on each
epipolar line separately, these approaches suffer from
inconsistencies across epipolar lines that appear as streak-
ing artifacts. Ohta and Kanade [14] use edges to provide
interscanline constraints in order to mitigate streaking.
However, the problem has not been entirely eliminated
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despite the attention it has received from numerous
researchers, including [15], [16], [17], [18], [19], [20].

Belhumeur and Mumford [15] propose a Bayesian
approach to stereo which has been extended by Belhumeur
[18]. After a Bayesian formulation of image formation, the
authors consider three “worlds” as prior models for the scene,
with each model being more complicated than the previous
one. Optimization is performed by dynamic programming,
taking into account depth, surface orientation, depth dis-
continuities, surface creases, and occlusion. The disparity
gradientlimit constraintis used to determine occluded pixels.
A second stage of optimization, termed “iterated stochastic
dynamic programming,” is necessary to achieve interscan-
line smoothness. Bobick and Intille [16], [20] use highly
reliable matches, which they termed ground control points, to
constrain the path of dynamic programming in the disparity-
space image (DSI) representation. The authors observe that
edges in the DSl indicate likely occlusion edges, as well as that
the presence of an occluded region in the left image should
correspond to an intensity edge in the right image and vice
versa. Geiger et al. [17] address stereo in a Bayesian frame-
work with a smoothness prior that models occlusion and
treats both images equally. It is based on the fact that a
discontinuity in disparity must correspond to an occluded
region in one of the images. Two off-center matching
windows that avoid discontinuities either to the left or the
right of the current pixel are used and the one with the
minimum cost is selected as the correct match. The solution is
found in matching space using dynamic programming. Cox
et al. [21] propose a maximum likelihood formulation that
requires fewer assumptions and prior models than the
Bayesian treatments. They also propose a novel way to avoid
traditional regularization by minimizing the total number of
horizontal and vertical disparity discontinuities instead of
adding a term in the cost function. A postprocessing step that
enforces consistency between adjacent epipolar lines is
necessary to limit the appearance of streaking artifacts.
Birchfield and Tomasi [19] propose an approach based on
dynamic programming with disparity propagation along
columns according to reliability labels that are assigned to
each pixel. Since the use of matching windows and intensity
preprocessing are not valid at discontinuities, the algorithm
operates at the pixel level using the pixel dissimilarity
measure of [11]. The novelty of the cost function is that it
rewards pixel matches, while penalizing the number of
occlusions and not the total number of occluded pixels. Thus,
it avoids the staircase-like results that are often produced by
dynamic programming.

Consistency across epipolar lines is guaranteed by using
graph cuts, which operate in 2D, to optimize the objective
function. Roy and Cox [22] find the disparity surface as the
minimum cut of an undirected graph. In this framework,
scanlines are no longer optimized independently, with
interscanline coherence enforced later in a heuristic way,
but smoothness is enforced globally over the entire image.
Ishikawa and Geiger [23] advance graph-cut stereo by
explicitly modeling occlusion and uniqueness, using a
directed graph. Pixels are classified as ordinary, edges, and
junctions, with the latter two categories providing additional
constraints. The set of energy functions that can be optimized,
however, is limited to convex functions which do not perform
well at discontinuities. Kolmogorov and Zabih [24] propose
an optimization technique based on graph cuts that was first

published by Boykov et al. [25], which is applicable to more
general objective functions. This allows a better handling of
occlusion, symmetric treatment of both images, and enforce-
ment of the uniqueness constraint. In addition, unlike the
majority of the methods presented so far in this section, the
ordering constraint, which is violated by certain scene
configurations, is no longer necessary. The authors extend
their work to multiple images and at the same time improve
its binocular performance in [26].

Between these two extremes of local “winner-take-all”
methods and global optimization methods are approaches
that use more reliable matches to propagate information that
guides disparity estimation for less reliable pixels. Following
Marr and Poggio [27], Zitnick and Kanade [28] employ the
support and inhibition mechanisms of cooperative stereo to
ensure the propagation of correct disparities and the
uniqueness of matches with respect to both images without
having to rely on the ordering constraint. Reliable matches,
without competitors, are used to reinforce matches that are
compatible with them, while, at the same time, they eliminate
the ones that contradict them, progressively disambiguating
more pixels. Luo and Burkhardt [29] propose a Bayesian
cooperative stereo approach based on the minimization of a
nonconvex cost function by deterministic relaxation. Inhibi-
tion is implemented based on the observation that the
occlusion map of one image can be derived from the disparity
map of the other image and not from its own disparity map.
Zhang and Kambhamettu [30] extend the cooperative frame-
work from single pixels to image regions, segmented in the
reference image. Disparities are propagated within and
among image segments according to a confidence measure.
The size and shape of local support areas for each match are
based on image segmentation. Occlusions are detected if the
converged matching score is below a threshold indicating
that no good match for the pixel was found.

A different method of aggregating support is nonlinear
diffusion, proposed by Scharstein and Szeliski [31], where
disparity estimates are propagated to neighboring points in
disparity space until convergence. The disparity space
contains the matching cost for all possible disparity values
for each pixel. If a diffusion operation does not increase the
certainty of a match it is not performed. This avoids the
oversmoothing that would be caused by effectively increas-
ing the support region at each iteration. Sun et al. [32]
formulate the problem using an MRF with explicit handling
of occlusions. In the belief propagation framework, informa-
tion is passed to adjacent pixels in the form of messages
whose weight also takes into account image segmentation.
The process is iterative and has similar properties with
nonlinear diffusion. This work is extended in [33] by
reformulating the problem in a way that both images are
treated symmetrically and the visibility constraint, which is
more general than the uniqueness and ordering constraints, is
employed. Processing alternates between computing dispar-
ity maps given occlusion maps and vice versa.

Sara [2] formally defines and computes the largest
unambiguous component of stereo matching, which can be
used as a basis for the estimation of less reliable disparities.
Other similar approaches include those of Szeliski and
Scharstein [12] and Zhang and Shan [34] who start from the
most reliable matches and allow the most certain disparities
to guide the estimation of less certain ones, while occlusions
are explicitly labeled. A different approach employing
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geneticalgorithms is proposed by Goulermas and Liatsis [35].
The image is uniformly divided into rectangular blocks and a
symbiotic genetic algorithm operates on each block. The
population of each block has two objectives: its self score,
which is based on image intensities and gradients as well as
geometric constraints, and the symbiotic score that enforces
continuity between the blocks. Processing is parallel with
interactions between adjacent blocks.

The final class of methods reviewed here utilizes mono-
cular color cues (image segmentation) to guide disparity
estimation. Birchfield and Tomasi [36] cast the problem of
correspondence as image segmentation followed by the
estimation of affine transformations between the images for
each segment. The objective energy function does not favor
constant disparity and fronto-parallel surfaces, but can
account for affine warping and slanted surfaces. Initially,
the image is segmented and then the affine parameters are
estimated for each segment. The final disparity map is
produced after a few iterations. Tao et al. [37] introduce a
stereo matching technique where the goal is to establish
correspondence between image regions rather than pixels. It
achieves outstanding results in cases where traditional stereo
fails, namely, in scenes with large uniform regions that lack
any meaningful intensity variations. The parameters of the
affine transformation of each image segment are optimized
according to the projection of the segment on the targetimage,
taking into account possible occlusions. Both these methods
are limited to planar surfaces, unlike the one of Lin and
Tomasi [38], who propose a framework where 3D shape is
estimated by fitting splines, while 2D support is based on
image segmentation. Processing alternates between these two
steps until convergence.

Recently, Wei and Quan [39] proposed a region-based
progressive algorithm where reliable matches are used as
ground control points to provide disparity estimates for
image regions, which are obtained from color segmentation
of the reference image. Since the assumption is that regions
have constant disparity, they are split if they contain ground
control points with multiple disparities. Then, disparities are
propagated from more to less reliable regions. Hong and
Chen [40] also start by performing color segmentation of the
reference image. Planes are fitted to each region and their
disparities and parameters are optimized within a graph cut
framework that operates on regions instead of pixels. The last
two methods achieve outstanding performance on the
Middlebury Stereo Evaluation data sets, with the exception
of the “Map,” where the failure of image segmentation proves
to be catastrophic, especially near depth discontinuities. This
problem occurs because all these approaches, except that of
[32] and [33], use image segmentation as a hard constraint,
whereas segmentation itself is by no means a trivial problem.

3 OVERVIEW OF OUR APPROACH

Our approach for the derivation of dense disparity maps from
rectified image pairs falls into the category of area-based
stereo since we attempt to infer matches for every pixel using
matching windows. It has four steps, which are illustrated in
Fig. 2, for the “Sawtooth” stereo pair. The steps are:

e Initial matching, where matching hypotheses are
generated for every pixel by a combination of different
matching techniques. The data set after this stage

() U]

Fig. 2. Overview of the processing steps for the “Sawtooth” data set. The
initial matches have been rotated so that the multiple candidates for
each pixel are visible. Black pixels in the error map indicate errors
greater than one disparity level, gray pixels correspond to errors
between 0.5 and 1 disparity level, while white pixels are correct (or
occluded and, thus, ignored). (a) Left image. (b) Initial matches in 3D.
(c) Disparities after uniqueness enforcement. (d) Reliable matches.
(e) Final disparities. (f) Error map.

includes multiple candidate matches for each pixel in
a 3D diaprity space and can be seen in Fig. 2b.

e  Selection of correct matches, which uses tensor voting
to infer the correct matches from the unorganized
point cloud of the previous stage as inliers of salient
surfaces. After tensor voting, uniqueness is enforced
with respect to surface saliency and the data set
contains at most one candidate match per pixel. The
disparity map can be seen in Fig. 2c.

e  Surface grouping and refinement, during which the
matches are grouped into smooth surfaces, using the
estimated surface orientations. These surfaces are
refined by removing points that are inconsistent
with their color distribution resulting in the dis-
parity map of Fig. 2d.

e  Disparity estimation for unmatched pixels, where the goal
is the assignment of disparities that ensure smooth-
ness in terms of both surface orientation and color
properties of the layers. The final disparity map and
the error map can be seen in Fig. 2e and Fig. 2f.

These steps are presented in Sections 4 through 7. In the
remainder of this section, we focus on important aspects of
our research and how it compares to other work on stereo.
A number of pixel matching techniques are reported in the
literature [7], each having different strengths and weak-
nesses. For this reason, we propose combining them in
order to maximize the number of correct candidate
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Fig. 3. Voting in 3D neighborhoods eliminates interference between
adjacent pixels from different layers.

matches, which form the scene surfaces when they are
reconstructed in disparity space. The combination of multi-
ple matching techniques significantly enhances the perfor-
mance of this algorithm over the work of [4].

However, the problem of stereo in its entirety, taking into
account occlusions and discontinuities, cannot be fully solved
at the pixel level. Support for each match has to be aggregated
so that the confidence of correct matches is increased and
outliers are made explicit. Aggregation in 1D neighborhoods
is only motivated by computational simplicity and its short-
comingsare well documented. Whilemethodsbased on graph
cuts and belief propagation that operate in 2D neighborhoods
have achieved outstanding results, the choice of an appro-
priate energy function is not an easy task. Energy functions
whose global minima can be computed with current optimi-
zation techniques do not necessarily model the phenomenon
of stereovision in its most general form. In many cases, the
disparity assignment that achieves the globally minimal
energy is not necessarily associated with the lowest error rate
[41]. This occurs because the energy function has to satisfy
certain properties to be suitable for minimization. For
instance, the penalization of disparity changes between
neighboring pixels makes these approaches well suited for
scenes that consist of fronto-parallel planes and prefers stair-
case looking solutions for slanted or curved surfaces. In this
paper, following the approach of Lee et al. [4], we aggregate
support in 3D neighborhoods via tensor voting. Fig. 3 shows
that points A and B that are close in 3D and, therefore, are
likely to belong in the same scene surface, interact strongly
with each other. On the other hand, points A and C' that are
close in the image butnotin 3D and, therefore, are most likely
projections of unrelated surfaces, have very little effectoneach
other. Finally, point D, whichis isolated in 3D and is probably
generated by an error in the initial matching stage, receives no
support as an inlier of a salient surface. After accumulating
support by tensor voting, candidate matches that are con-
sistent with their neighbors have high surface saliency, which
validates them as correct matches.

Since the ordering constraint is violated by scene config-
urations that are not unlikely such as the presence of thin
foreground objects, we do not enforce it. Its popularity in the
literature is mostly as a requirement of specific optimization
techniques. As optimization techniques have improved, most
researchers have abandoned the ordering constraint. The
uniqueness constraint, which states that, in the absence of

transparency, there should be at most one match for each
pixel, should also be enforced carefully. As Ogale and
Aloimonos [42] point out, if scene surfaces exhibit horizontal
slant (that is, if the epipolar line in the image is not parallel
with the intersection of the epipolar plane and the scene
surface), then M pixels in one image necessarily correspond
to N pixels in the other image. Therefore, requiring a strict
one-to-one correspondence for all pixels results in labeling
|M — N| pixels as occluded. These pixels that are interleaved
with matched pixels, however, are perfectly visible in both
images, just not at integer coordinate positions. Keeping this
observation in mind, we only enforce uniqueness as a
postprocessing step allowing at most one match for each
pixel of the reference image in order to derive a dense
disparity map. More than one pixel of the reference image is
allowed to correspond to the same pixel of the target image
(with integer or subpixel disparities) if the surface appears
wider in the reference image. The same is true for the target
image, if the surface has a wider projection there. The same
“visibility constraint” that does not mark visible pixels as
occluded due to surface slant is also used in [33].

A rather safe conclusion that can be drawn from the
Middlebury Stereo Evaluation is that the use of monocular
information, such as color, contributes to improvements in
the performance of a stereo algorithm. In [5], we proposed a
novel way of integrating monocular information that requires
very few assumptions about the scene and does not fail when
image segmentation fails. Candidate matches that were
retained after tensor voting are grouped into smooth surfaces
based on their positions and estimated surface normals. Then,
these surfaces are reprojected to both images and points that
areinconsistent with the other points of the surface in terms of
color distribution in either image are rejected. This step
removes erroneous matches for pixels in areas where one of
the surfaces, usually the foreground, overextends and covers
the other surface, even if it is binocularly visible [43]. The
problem is more pronounced at occluded pixels that are likely
to be assigned the disparity of the occluding surface. The
wrong matches are removed since they do not project to the
same surface in both images and, thus, the color distributions
are inconsistent. Under this scheme, both images are treated
symmetrically, unlike most segmentation-based methods,
where only the reference image is segmented. Furthermore,
we do not attempt to segment the image, but instead solve a
simpler problem: grouping points, with surface orientation
estimates, into smooth 3D surfaces.

The final step is the assignment of disparities to
unmatched pixels. One can view the retained matches from
the previous stage as the “reliable” matches of a progressive
scheme since they are both consistent geometrically with
their 3D neighbors and color-consistent with their neigh-
boring pixels of the same surface in both images. Disparities
are propagated from these pixels to unmatched ones,
ensuring smoothness in terms of both geometry and color
properties. We are also able to obtain disparity estimates for
occluded pixels by enforcing smoothness with respect to
surface orientation and color consistency with respect to the
image in which they are visible. These estimates are
accurate as long as there are no abrupt changes in the
monocularly visible parts of each surface.
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Fig. 4. The five shiftable windows applied for each disparity choice at
every pixel. The shaded square corresponds to the pixel under
consideration. The same window is applied to the target image.

4 INITIAL MATCHING

In this section, we propose a scheme for combining a variety
of matching techniques, thus taking advantage of their
combined strengths. For the results presented in Section 8,
four matching techniques are used, but any type of matching
operator can be integrated in the framework. These techni-
ques are:

e Asmall(typically, 5 x 5) normalized cross correlation
window, which is small enough to capture details and
only assumes constant disparity over small windows
of the image. This technique is referred to as the
“correlation window” in the remainder of the paper.

e A shiftable normalized cross correlation window of
the same size as the above. The fact that it is shiftable
improves performance near discontinuities. It is
referred to as the “shiftable window.”

e A 25x 25 normalized cross correlation window,
which is applied only at pixels where the standard
deviation of the three color channels is less than 20.
The use of such a large window over the entire image
would be catastrophic, butit is effective when applied
only in virtually textureless regions, where smaller
windows completely fail to detect correct matches.
This technique is referred to as the “large window.”

e A symmetric interval matching window (typically,
7 x 7) with truncated cost function as in [12]. This is
referred to as the “interval window.”

Note that the typical window sizes are for image resolu-

tions similar to those of the Middlebury image pairs, which
range from 284 x 216 to 450 x 375. Larger window sizes

would most likely be necessary for higher resolution images.

973

4.1 Correlation Windows

This is one of the most common approaches for the
establishment of pixel correspondences. It performs well
over a wide range of scene types and imaging conditions.
We choose it over alternatives such as the sum of absolute
or squared differences because it is invariant to camera gain
and, thus, more general. The correlation coefficients for all
possible disparity values of each pixel are computed and all
peaks of the correlation function are kept if their magnitude
is comparable to the maximum for the pixel since they are
good candidates for correct pixel correspondences. They are
used as inputs to the tensor voting stage, where the
decisions are made based on surface saliency and not the
correlation coefficient itself since it can be affected by
factors, such as repetitive patterns or the degree of texture
of one surface over the other. These factors may cause
wrong matches if decisions are made based solely on the
correlation coefficients. See [44], [43] for an analysis of the
effects of texture in correlation-based matching.

4.2 Shiftable Windows

We also use shiftable correlation windows [16] due to their
superior performance near depth discontinuities. The limita-
tion of window-based matching is that, no matter how small
the window is, pixels from two or more surfaces are included
in it at discontinuities. By not centering the window on the
pixel under consideration, we can find a shift that includes as
many pixels from the same surface as the pixel under
consideration as possible. See Fig. 4 for the five windows
used here. Given a pixel in the reference image, we compute
cross correlation for each disparity level for five different
window shifts around the pixel under consideration and keep
the one with the maximum correlation coefficient as the score
for that disparity level. As with correlation windows, we keep
all significant peaks of the score function as candidate
matches. Table 1 shows the performance of regular and
shiftable correlation windows on the four initial Middlebury
image pairs. The performance metric used is the number of
correct matches, up to one disparity level off from the ground
truth, over the totalnumber of matching candidates. The same
metric is reported for pixels at discontinuities based on the
discontinuity maps provided by the authors of the Web page.

TABLE 1
Percentage of Good Matches Generated by Regular and Shiftable
Correlation Windows over All Unoccluded Pixels and Discontinuities

Image Pair Size Regular Shiftable
Total (%) Disc. (%) Total (%) Disc. (%)
Tsukuba 5x5 62.1 57.2 62.0 62.1
Tx7 66.9 55.6 66.9 62.3
9x%x9 70.3 50.0 69.4 60.8
Sawtooth 5x5 88.3 51.2 90.0 69.8
Tx7 92.4 63.1 94.4 68.8
9x9 93.7 59.6 95.7 68.3
Venus 5x5 75.7 61.7 75.4 64.7
Tx7 81.9 58.2 81.9 62.0
9%x9 85.9 54.9 85.7 60.3
Map 5%x5 96.9 68.6 98.0 70.9
™7 98.4 67.7 98.9 70.2
9x9 98.2 64.4 98.8 68.7
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Fig. 5. Symmetric interval matching. Both images are interpolated and
color distance is computed between the left and right interval (and not an
interval and a pixel). Vertical lines in (a) mark the original pixel positions on
the scanline. (a) Interval representation. (b) Distance between intervals.

Even though shiftable windows perform better, correlation
windows also add valuable candidate matches and reinforce
the ones on which both operators agree. Our experiments
show that using both types improves performance.

4.3 Large Windows

This is a different correlation-based matching technique that
aims at producing correct disparity estimates for untextured
areas. It is only applied to parts of the image where color
variance is below a certain threshold and, thus, usually not
near discontinuities, where color variance is high. For the
experiments presented here,a 25 x 25 window was applied to
pixels where the standard deviation of the three color
channels, within the 25 x 25 window, was less than 20 in-
tensity levels. A final step is required for the rejection of
unreliable matches. This is especially important here since we
are specifically targeting the most ambiguous pixels of the
image. We perform a simple test to determine the reliability of
each match. The correlation coefficients for each disparity of a
given pixel are divided by the sum of all correlation
coefficients for that pixel to give the “normalized score” of
each disparity. This allows us to detect matching candidates
with high uncertainty. For instance, if the disparity range is
20 and all correlation coefficients are equal, the normalized
score for all disparity levels would be 5 percent. If the
normalized score of a matching candidate is not significantly
larger than 5 percent, the matching candidateis unreliable. For
the experiments in the remainder of the paper, we reject
matching candidates withnormalized scoresbelow 20 percent
of the average normalized score over all matching candidates.
What should be noted is that multiple matches for each pixel
are still allowed and often occur.

4.4 Interval Windows

The final matching technique is very different from the
above, not only because we use the matching cost of [11],
but mostly because of the truncation of the cost for each
pixel at a certain level. That makes the behavior robust
against pixels from different surfaces that have been
included in the window. Our implementation is that of
Szeliski and Scharstein [12]. Both images are linearly
interpolated along the x axis so that samples are created
at half-pixel positions. The intensity of each pixel in each of
the three color channels is now represented as the interval
between the minimum and maximum value of the intensity
at the integer pixel position and the half-pixel positions
before and after it on the scanline, as shown in Fig. 5.
Numerically, the cost for matching pixel (zr,y) in the left
image with pixel (zr,y) in the right image is the minimum

distance between the two intervals, which is given by the
following equation and is zero if they overlap:

Clep,eny) = Y, minidist(Ire(z;,y), In(z),y)),
ce{R,G,B} 1

1 1 1 1
Ctrunc * Ti € |:fo_ xL+§i|axj€ {$R*§ xR+5i|}

2
The summation is over the three color channels and dist() is
the Euclidean distance between the value of a color channel I,.
in the left image and /. in the right image. If the distance for
any channel exceeds the truncation parameter ¢, the total
cost is set to 3¢;ne. Typical values for ¢, are between 3 and
10. For the experiments presented in Section 8, a value of 5was
used. Even though, statistically, the performance of interval
windows is slightly worse than that of the shiftable windows,
both overall and at discontinuities, and worse overall than the
correlation windows, they are useful because they produce
correct disparity estimates for pixels where the other
windows fail due to the different nature of the dissimilarity
measure and the robust formulation we use.

Each matching technique is repeated using the rightimage
as reference and the left as target. This increases the true
positive rate especially near discontinuities, where the
presence of occluded pixels in the reference window affects
the results of matching. When the other image is used as
reference, these pixels donotappear in the reference window.
A simple parabolic fit [7] is used for subpixel accuracy, which
makes slanted or curved surfaces appear continuous and not
staircase-like. We have found the parabolic fit to work well, in
practice, evenifitis only justified for quadratic cost functions.
Computational complexity is not affected since the number of
matching hypotheses is unchanged and it is independent of
the number of permissible disparity levels. Besides the
increased number of correct detections, the combination of
these matching techniques offers the advantage that the
failures of a particular technique are not detrimental to the
success of the algorithm, as long as the majority of the
operators donot produce the same erroneous disparities. Our
experiments have also shown that the errors produced by
small windows, such as the 5 x 5 and 7 x 7 used here, are
randomly spread in space and do not usually align to form
nonexistent structures. This property is important for our
methodology that is based on the perceptual organization,
due to good alignment, of candidate matches in space. Note
that we avoid applying the large window, which is more
susceptible to systematic errors, near discontinuities and,
thus, it does not cause any problems there.

5 SELECTION OF CORRECT MATCHES

This section describes how correct matches can be selected
among the candidates of the previous stage by examining
how they can be grouped with their neighboring candidate
matches to form smooth 3D surfaces. This is accomplished
by tensor voting, which also allows us to infer the
orientation of these surfaces.

5.1 Overview of Tensor Voting

The use of a voting process for structure inference from sparse
and noisy data was presented in [1]. The methodology is
noniterative and robust to considerable amounts of outlier
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Fig. 6. Tensor voting. (a) The shape of the tensor indicates if there is a
preferred orientation, while its size the confidence of this information.
The top tensor has a strong preference of orientation and is more salient
than the bottom tensor, which is smaller and unoriented. (b) Vote
generation for a stick voter as a function of the distance and curvature of
the arc and the orientation of the voter. (c) and (d) cuts of the stick and
ball voting fields. Shown is the normal orientation of the propagated
vote. The size of the vote is proportional to its magnitude.

noise. It has one free parameter: the scale of voting ¢, which
essentially defines the size of the neighborhood of each point.
Theinput datais encoded as second-order symmetric tensors,
and constraints, such as proximity, colinearity, and cocurvi-
linearity are propagated by voting within neighborhoods.
The tensors allow the representation of points on smooth
surfaces, surface intersections, curves, and junctions, without
having to keep each type in separate spaces. In 3D, a second-
order tensor has the form of an ellipsoid or, equivalently, of a
3 x 3 matrix. Its shape encodes the type of feature that it
represents, while its size the saliency or the confidence we
have in this information (Fig. 6a). The same information in
algebraic form is contained in the eigenvalues and eigenvec-
tors of the tensor.

During the voting process, each input site casts votes to its
neighboring input sites that contain data represented with
tensors. The votes are also second-order symmetric tensors.
Their shape corresponds to the orientation the receiver would
have if the voter and receiver were in the same structure. We
first describe the case of a stick tensor, which encodes a surface
orientation with perfect certainty. A stick tensor has one
nonzero eigenvalue which is associated with an eigenvector
thatis normal to the surface. The saliency (strength) of the vote
decays with respect to the length of the smooth circular path
connecting the voter and receiver, according to the following
equation (see, also, Fig. 6b):

2102) [—sin(QG)

Sso(l,0,0) — ¢ o) }[fsin(%) cos(20)],

0l
§=— 2
sin(6)’ @
_ 2sin(0)
=7

where s is the length of the arc between the voter and receiver
and « is its curvature, o is the scale of voting, and ¢ is a
constant. The votes cast by stick tensors are also stick tensors.
The votes cast by unoriented voters, which are represented by
ball tensors and are equivalent to identity matrices, can be
derived from the above equation, but this is beyond the scope
of this paper. We refer interested readers to [1], [45] for more
details. They only attenuate with distance since nothing
suggests nonstraight continuation and encode the normal
orientation of a line or, equivalently, a pencil of planes,
passing through the voter and receiver. The votes also include
an uncertainty component. The accumulation at each point of
votes from numerous voters on the same surface results in a
strong preference for that surface. 2D cuts of the stick and the
ball voting field can be seen in Figs. 6c and 6d, which show the
normal orientations propagated by the voter. In case we have
no orientation information about the inputs, they are encoded
as unit unoriented tensors.

Vote accumulation is performed by tensor addition,
which is equivalent to the addition of 3 x 3 matrices. After
voting is completed, the eigensystem of each tensor is
computed and the tensor is decomposed as in:

T = /\1é1é{ + AQéQég + )\gégég
= (A = X)éré] + (Ao — A3)(é16] + és83) (3)
+ Az (é16] + é261 + 381 ),

where )\; are the eigenvalues in decreasing order and é; are the
corresponding eigenvectors. The three components in which
we analyze the tensor are: the stick component é;é7, which is
large for points in surfaces, the plate component é,é] + é,é,
which is large for points in curves or surface intersections,
and the ball component é;é! + é,él + é;¢1, which is large for
points that have no preference of orientation, such as
junctions. We define surface saliency as the difference
between the two largest eigenvalues, curve saliency as the
difference between the second and third eigenvalue, and
junction saliency as the smallest eigenvalue. If surface
saliency is maximum, the point most likely belongs to a
surface and ¢, is the surface normal. Outliers receive little and
inconsistent support from their neighborhood and are
identified by their low saliency and the lack of a dominant
orientation. In the case of stereo, we assume that that all inliers
lie on surfaces that reflect light toward the cameras and,
therefore, we do not consider curves and junctions. In
practice, the resulting tensors, at least at the locations of the
correct matches, exhibit surface saliency values much higher
than the other types.

5.2 Selection of Matches as Surface Inliers

This section describes how correct matches are inferred
from the point cloud of candidate matches generated by the
initial matching stage by examining how much support
they receive from their neighboring candidate matches after
tensor voting. The goal here is to address stereo as a
perceptual organization problem, based on the premise that
the correct matches should form coherent surfaces in
disparity space. This is the only part of our approach that
is based on [4]. The input is a cloud of points in a 3D space
(2,9, Zscate X d), where zgqe is a constant used to make the
input less flat with respect to the d axis since disparity has a
narrower dynamic range than the spatial domain. The
typical value of zqe is 8 and the sensitivity to it is
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(b)

Fig. 7. Rotated views (front, side, and top) of the set of candidate matches
for the “Sawtooth” image pair, before and after tensor voting and
uniqueness enforcement. Gray levels encode different disparity values.
(a) Initial matches. (b) Matches after tensor voting and uniqueness.

extremely low for a reasonable range such as 4 to 20. The
quantitative matching scores are disregarded and all
candidate matches are initialized as unoriented tensors
with all eigenvalues equal to one. If two or more matches
fall within the same (x,y, zsue X d) voxel, their initial
saliencies are added, thus increasing the confidence of
candidate matches confirmed by multiple matching techni-
ques. Since d is estimated with subpixel accuracy, each
integer disparity level has z.. possible subpixel levels.

The inputs are encoded as unoriented, ball tensors and cast
votes to their neighbors. What should be pointed out here is
the fact that, since information propagation is performed in
3D, there is very little interference between candidate
matches for pixels that are adjacent in the image but come
from different surfaces, as shown in Fig. 3. This is a major
advantage over information propagation between adjacent
pixels, even when it is mitigated by some dissimilarity
measure. Rotated views of the input cloud of points can be
seen in Fig. 7a.

When voting is completed, the surface saliency of each
candidate match can be computed as the difference between
the two largest eigenvalues of the tensor. Uniqueness is
enforced with respect to the left image by retaining the
candidate match with the highest surface saliency for each
pixel. The same can be done for all pixels of the right image to
obtain the right disparity map, if desired. We do not enforce
uniqueness in the strict one-to-one sense since it is violated by
slanted surfaces which project to a different number of pixels
on each image. The definition of uniqueness we use is that
each pixel can have at most one disparity value or be occluded
[42], [33]. This allows more than one, but, typically, not more
than two, pixels in one image to match to the same pixel in the
otherimage, at subpixel disparities. Surface saliency is a more
reliable criterion for the selection of correct matches than the
score of a local matching operator because it requires that
candidate matches, identified as such by local operators,
should also form coherent surfaces in 3D. This scheme is

capable of rejecting false positive responses of the local
operators, which is not possible at the local level. The
resulting data sets still contain errors, mostly near disconti-
nuities and the borders of the image, which are corrected at
thenext stage. Rotated views of the matching candidates after
this stage can be seen in Fig. 7 b. Note that we have eliminated
a free parameter from the algorithm of [5] by not thresholding
with respect to surface saliency, but, instead, feeding all
matching candidates after uniqueness enforcement to the
next stage.

6 SURFACE GROUPING AND REFINEMENT

Candidate matches that have not been rejected are grouped
in layers using a simple growing scheme. By layers, we
mean surfaces with smooth variation of surface normal.
They do not have to be planar and the points that belong to
them do not have to form one connected component.

Labeling starts from seed matches that have maximum
surface saliency. Since the input to this stage includes
candidate matches for almost all pixels, we only examine the
eight nearest neighbors of the seed in the reference image. If
they are smooth continuations of the growing surface, they are
added to it and their neighbors are also considered for
addition. We adhere to the disparity gradientlimit constraint,
which dictates that the maximum disparity jump between two
pixels of the same surface is one and, thus, stop growing the
surfaces when we encounter disparity jumps over one
disparity level. When no more matching candidates can be
added to the surface, the unlabeled point with maximum
surface saliency is selected as the next seed. Small surfaces
comprised of less than 0.5 percent of the image pixels are
removed since they are probably noisy patches, unless they
are compatible with a larger nearby surface. If a small surface
patchisless than 10 percent of the maximum image dimension
away from a large surface with compatible position and
orientation, itisnotremoved from the data set. Support froma
larger surface means that the small part is most likely correct,
but, due to occlusion or failure of the matching operators, is
not connected to the main part of the surface. After this step,
the data set consists of a set of labeled surfaces which contain
errors mostly due to foreground overextension. A number of
candidate matches that survived uniqueness enforcement
while not being parts of large salient surfaces are removed
here. These are typically the “best” candidates for pixels for
which the correct match has not been found by any of the
matching operators and, thus, all matching candidates are
wrong. This occurs more often for untextured pixels.

The next step is the refinement of the layers. The goal is
to remove the overextensions of the foreground by ensuring
that the color properties of the pixels, which are the
projections of the grouped points, are locally consistent
within each layer. The color consistency of a pixel is verified
by computing the ratio of pixels of the same layer with
similar color to the current pixel over the total number of
pixels of the layer within the neighborhood. This is repeated
in the target image and, if the current label assignment does
not correspond to the maximum ratio in both images, then
the pixel is removed from the layer. The color similarity
ratio for pixel (x¢,yo) in the left image with layer i can be
computed according to the following equation:
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TABLE 2
Total Matches and Error Rate for Each Image Pair before and after Surface Grouping and Refinement

Image Pair Total before Error rate before Total after Error rate after
Tsukuba 84810 5.31% 69666 1.33%
Sawtooth 144808 2.95% 136894 1.08%
Venus 147320 6.16% 132480 1.24%
Map 48657 0.44% 45985 0.05%
Cones 132856 4.27% 126599 3.41%
Teddy 135862 7.24% 121951 4.97%
Ri(wo, y0) = disparities and labels for a large set of the pixels, there is
S Tz, y) =i ANdist(Ip(z,y), In(xo,y0) < Cinr)) more information available now that can enhance our ability
(@y)eN () to estimate the missing disparities. We opt for a progressive
( X): v T(lab(z,y) = i) 7 approach under which only the most reliable correspon-
x,y)el

where T'() is a test function that is 1 if its argument is true,
I() is the label of a pixel, and ¢, is a color distance
threshold in RGB space, typically equal to the cyunc
parameter of the interval windows. If both these conditions
are true, pixel (z,y) is counted as consistent in color with
pixel (z¢,yo) for label i. The same is applied in the right
image for pixel (zy — dy, yo). The size of the neighborhood is
the second and final parameter of this stage. It can be set
equal to the range of the voting field during tensor voting.

This step corrects surface overextensions that occur near
occlusions since the overextensions are usually not color-
consistent in both images and are thus detected and
removed. Table 2 shows the total number of candidate
matches and the error rates before and after refinement for
the four Middlebury image pairs. The disparity maps for
the “Sawtooth” example before and after grouping and
refinement can be seen in Figs. 2c and 2d. The same for the
“Tsukuba” and “Venus” can be seen in Fig. 8.

7 DISPARITY ESTIMATION FOR UNMATCHED PIXELS

The goal of this stage is to generate candidate matches for the
remaining unmatched pixels. Given the already estimated

(@) (b)

Fig. 8. Disparity maps after uniqueness (left column) and after surface
grouping and refinement for the “Tsukuba” and “Venus” image pairs
from the Middlebury Stereo Evaluation. (a) Disparities after uniqueness.
(b) Results of surface refinement.

dences are allowed in the beginning. These are correspon-
dences that satisfy strict geometric and color requirements in
both images. The requirements become less strict as we
proceed.

Given an unmatched pixel in the reference image, we
examine its neighborhood for layers to which the pixel can be
assigned. Color similarity ratios are computed for the pixel
with respect to these layers as in (4). The layer with the
maximum ratio is selected as the potential layer for the pixel.
Then, we need to generate a range of disparities for the pixel.
This is done by examining the disparity values of the selected
layer’s pixels in the neighborhood. The range is extended
according to the disparity gradient limit constraint, which
holds perfectly in the case of rectified parallel stereo pairs.
Disparity hypotheses (d;) are verified one by one in the target
image by computing similarity ratios for all potential
corresponding pixels (x — dj,y) and rejecting those that are
not consistent with the selected layer. This is not done if the
disparity hypothesis indicates that the new match is occluded
by existing reliable matches, in which case, we allow
occluded surfaces to grow underneath the occluding ones.
On the other hand, we do not allow new matches to occlude
existing consistent matches. Votes are collected at valid
potential matches in disparity space, as before, with the only
difference being that only matches from the appropriate layer
cast votes (see Fig. 9). The most salient among the potential

T x

Fig. 9. Candidate generation for unmatched pixels based on segmented
layers. The unmatched pixel is compatible with the left surface only, thus
votes are collected at disparity hypotheses generated by matches of the
left surface. Also note that only matches from the appropriate layer vote
at each candidate.
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TABLE 3
Error Rates for the Original Middlebury Image Pairs

Image pair Unoccluded (%) Rank Discont. (%) Rank Textureless (%) Rank
Tsukuba 1.51 11 7.96 12 2.02 24
Sawtooth 0.70 12 4.35 11 0.50 26
Venus 1.09 12 13.95 26 1.39 16
Map 1.31 24 11.47 26 - -
TABLE 4

Quantitative Evaluation for the New Middlebury Image Pairs (Acceptable Error at 1.0 Disparity Level)
Image pair Unoccluded (%) Rank All (%) Rank Discont. (%) Rank
Tsukuba 3.79 9 4.79 9 8.86 6
Venus 1.23 4 1.88 5 11.5 9
Teddy 9.76 5 17.0 5 24.0 8
Cones 4.38 3 114 4 12.2 5

matches is selected and added to the layer since it is the one
that ensures the smoothest surface continuation.

For the results presented here, we applied the following
progressive growing scheme, which has two parameters: ¢,
which s the color threshold used for computing the similarity
ratios, and o3, the scale of voting, which also defines the size of
the neighborhood in which similarity ratios are computed.
For the first iteration, we initialize the parameters with ¢, =
1 and 03 = 20. These are very strict requirements and have to
be satisfied on both images for a disparity hypothesis to be
valid. Votes are accumulated on valid hypotheses which also
do not occlude any existing matches and the most salient
continuation is selected. We then repeat the process without
requiring consistency with the target image and add more
matches, which usually are for occluded pixels that are very
similar to their unoccluded neighbors. The added matches
are generally correct, but valid hypotheses cannot be
generated for all pixels. In the second iteration, we increment
both ¢, and o2 by their initial values and repeat the same
process. The choice of parameters here is not critical. For
instance, maintaining a constant o3 produces very similar
results. For the experiments shown here, both parameters are
increased by constant increments at each iteration until
convergence.

Typically, there are a few pixels that cannot be resolved
because they exhibit low similarity to all layers or because
they are specular or in shadows. Candidates for these pixels
are generated based on the disparities of all neighboring
pixels and votes are collected at the candidate locations in
disparity space. Again, the most salient ones are selected.
We opt to use surface smoothness at this stage instead of
image correlation or other image-based criteria since we are
dealing with pixels where the initial matching and color
consistency failed to produce a consistent match.

8 EXPERIMENTAL RESULTS

This section contains results on the color versions of the four
image pairs of [7] and the two proposed in [46], which are
available online at http://cat.middlebury.edu/stereo/. All
six examples were processed with identical parameters. The initial
matching in all cases was done using the four matching
operators presented in Section 4 using both the left and right

image as reference. The correlation and shiftable windows
were 5 x 5, the interval windows were 7 x 7 with the
truncation parameter set at 5, and the large window was
25 x 25, applied at pixels with intensity variance less than 20.
For the large windows only, pixels with normalized score
below 20 percent of the average were rejected. The scale of the
voting field for the detection of correct matches was o2 = 50,
which corresponds to a voting radius of 14 or a neighborhood
of 29 x 29 x 29. Refinement was performed with a voting
radius of 18 and ¢, equal to 5. In the final stage, ¢, was
initialized as 1 and incremented by 1 for 25 iterations, while o3
was initialized as 20 and incremented by 20 at each iteration.

A second surface refinement operation was performed to
remove errors around the surface discontinuities. This time,
the voting radius was significantly smaller, set equal to 7,
since we are only interested in correcting the borders of
each surface. The value of ¢, on the other hand, was equal
to 40, to allow larger color variation within each surface.
The parameters for the final stage were identical with those
of the previous paragraph.

The error metric reported in the tables is the one proposed
in [7], where matches are considered erroneous if they
correspond to unoccluded image pixels and their disparity
error is greater than one integer disparity level. Table 3
contains the error rates we achieved, as well as the rank our
algorithm would achieve among the 38 algorithms in the
evaluation. The error rates reflect the number of errors larger
than one disparity level for all unoccluded pixels, for pixels
near discontinuities, and for textureless pixels. We have
rounded the disparities to integer values for this evaluation.
We refer readers to the Middlebury Stereo Evaluation Web
page for results obtained by other methods. Based on the
results for all unoccluded pixels, our algorithm would rank
15th in the evaluation as of 5 July 2005. As with all methods
that take color explicitly into account, performance on the
“Map” is not as good as that achieved by methods that do
not use monocular information due to the random textures
in the image.

Tables 4 and 5 report our results for the new version of the
Middlebury Stereo Evaluation that includes “Tsukuba,”
“Venus,” and the two image pairs introduced in [46]. The
new image pairs contain curved and slanted surfaces, with
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TABLE 5
Quantitative Evaluation for the New Middlebury Image Pairs (Acceptable Error at 0.5 Disparity Level)

Image pair Unoccluded (%) Rank All (%) Rank Discont. (%) Rank
Tsukuba 25.5 11 26.2 11 21.2 8
Venus 3.32 1 4.12 1 14.6 2
Teddy 14.6 3 21.8 4 33.3 4
Cones 7.05 2 14.5 3 174 3

different degrees of detail and texture, and are, thus, more
challenging. This is more pronounced for methods that make
the assumption that scene surfaces are planar and parallel to
the image plane. This assumption is explicitly made when
one penalizes disparity differences between neighboring
pixels. This demonstrates the capability of the algorithms to
estimate precise subpixel disparities. We have not rounded
the disparities in this case. For the new evaluation, the error
rate over all pixels, including the occluded ones, has replaced
the evaluation over textureless pixels. The ranks are among
the 12 algorithms included in the evaluation, as of 5 July 2005.
Considering performance at unoccluded pixels, our results
are tied at the fourth place when the acceptable error is one
and rank third when it is 0.5.

Figs. 10 and 11 show the final disparity map and the
error map for the “Venus,” “Tsukuba,” “Map,” “Cones,”
and “Teddy” image pairs. The results for “Sawtooth”
appear in Fig. 2. White in the error maps indicates an error
less than one half of a disparity level or occluded pixel, gray
indicates an error between one half and one disparity level
(acceptable), and black indicates large errors above one
disparity level.

Fig. 10. Final disparity maps and error maps for the “Venus,” “Tsukuba,”
and “Map” image pairs from the Middlebury Stereo Evaluation (see Fig. 1
for the input images).

8.1 Results on Aerial Images

The final results are on less controlled images, taken from
an airplane under sunlight. The left and right images are
shown in Figs. 12a and 12b. They are grayscale, with
different camera gains, and contain large shadows. The
same matching techniques, with the exception of the
interval windows, which are not very effective for gray-
scale images, are used to produce the initial matches and
voting is performed to infer surface saliencies. The results
after tensor voting and uniqueness enforcement can be seen
in Fig. 12c and the final disparity map in Fig. 12d. The
outlines of the buildings have been superimposed manually
to show the accuracy of the reconstruction. This experiment
demonstrates the effectiveness of the proposed nonpara-
metric color representation for images that are very
different than the ones of the Middlebury Stereo Evaluation.
The images here are grayscale and they lack the vivid and
distinctive colors of the previous examples. The surface
refinement and final disparity estimation stages of our
approach, however, still perform well.

9 COMPUTATIONAL COMPLEXITY

In this section, we provide an analysis of the computational
complexity of each step as a function of the number of
pixels N, the number of possible disparities D, and the
number of pixels included in the matching windows W.
Processing times for unoptimized C++ code refer to a
Pentium 4 processor at 2.8MHZ.

Fig. 11. Final disparity maps and error maps for the “Cones” and “Teddy”
image pairs from the Middlebury Stereo Evaluation (see Fig. 1 for the
input images).
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Fig. 12. Input aerial images, results of surface grouping and refinement, and final disparity map. The outlines of the buildings have been
superimposed manually. (a) Left image. (b) Right image. (c) Refined surfaces. (d) Final disparity map.

In the initial matching stage, the complexity is linear with
respect to the number of pixels, possible disparities, and the
window size since the score or cost is computed over all pixels
of the window for each disparity of each pixel of the reference
image. Complexity is O(N DW). Keep in mind, however, that
more efficient implementations to avoid repeating computa-
tions are possible. For instance, Veksler [10] proposes a
method for computing matching costs that is independent of
the window size by using the integral image. The execution
time for the 5 x 5 cross-correlation window on the Tsukuba
image, which is 384 x 288 with 20 possible disparity levels, is
4 seconds. Execution times for other techniques are similar
and scale linearly with the three parameters.

The complexity of the tensor voting stage is O(NlogN). Itis
independent of the number of possible disparities since there
is at most a small fixed number of candidate matches for each
pixel. The operations that need to be performed is an initial
sorting of the data and searches for the neighbors of each
candidate match in 3D. Tensor voting for 517,819 matching
candidates for the Tsukuba image pair takes 2 minutes and
30 seconds.

Uniqueness enforcement is performed at the pixel level
and is virtually instantaneous. Surface grouping is linear in
the number of pixels since it is performed as a single pass
over the matching candidates, which are one or none for
each pixel, and only the 8-neighbors of the corresponding
pixels are examined. Subsequent operations, such as the
rejection of groups with too few members, are linear in the
number of groups and, thus, negligible. During surface
refinement, pixels within the neighborhood of the reprojec-
tions of the grouped matching candidates on both images
are examined. The process takes 6 seconds for the Tsukuba
image pair with a neighborhood radius of 18 pixels. All
these steps are O(N) and take very few seconds, dominated
by the surface refinement step.

Finally, disparity estimation for unmatched pixels is linear
in the number of unmatched pixels, which, typically, are a
small subset of all pixels, as well as the number of allowable
disparities for each of them, as indicated by their neighbors
that belong to the most similar surface. Complexity for the

worst case is O(NDlogN). In general, it is a function of the
number of unmatched pixels. The processing time for
24,551 unmatched pixels, which is the maximum percentage
of unmatched pixels among the six image pairs, of the
Tsukuba image pair is 5 minutes and 22 seconds.

10 DiSCUSSION

We have presented a novel stereo algorithm that addresses
the limitations of binocular matching by incorporating
monocular information. We use tensor voting to infer surface
saliency and use it as a criterion for deciding on the
correctness of matches as in [3] and [4]. We are, however,
able to significantly improve the performance of the
algorithm mainly for two reasons: the initial matching stage
that provides better inputs to the following stages and the
combination of geometric and photometric cues in all phases
of processing. Textured pixels away from depth disconti-
nuities can be easily resolved by even naive stereo algorithms.
As stated in the introduction, we aim at reducing the errors at
untextured parts of the image and near depth discontinuities.
Under our approach, the typical phenomenon of the over-
extension of foreground surfaces over occluded pixels is
mitigated by removing from the data set candidate matches
thatare not consistent in color with their neighboring pixels in
both images. On the other hand, surface smoothness is the
main factor that guides the matching of uniform pixels.
Arguably, the most significant contribution is the segmen-
tation into layers based on geometric properties and not
appearance. We claim that this is advantageous over other
methods that use color-based segmentation since it utilizes
the already computed disparities which are powerful cues for
grouping. In fact, grouping candidate matches in 3D based on
good continuation is a considerably easier problem than
image segmentation. This scheme allows us to treat both
images symmetrically and provides estimates for the color
distribution of the layers, even if it varies significantly
throughout each layer. The choice of a local, nonparametric
color representation allows us to handle surfaces with texture
or heterogeneous and varying color distributions, such as the
ones in the “Venus” images, in which image segmentation
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may be hard. Surface grouping serves as the basis of the
refinement stage that eliminates surface overextensions.

A second significant contribution is the initial matching
stage that allows the integration of any matching technique
without any modification to subsequent modules. The use of
a large number of matching operators, applied to both
images, can be viewed as another form of consensus. While all
operators fail for certain pixels, the same failures are usually
not repeated, with the same disparity values, by other
operators. Our experiments show that the results of combin-
ing the four techniques we used over all the image pairs are
superior to those generated by using a smaller set of them.

We employ a least commitment strategy and avoid the use
of constraints that are violated by usual scene configurations.
One such constraint is the requirement that adjacent pixels
should have the same disparity to avoid incurring some
penalty. While this constraint aids the optimization process of
many approaches, it becomes an approximation for scenes
that do not consist of fronto-parallel surfaces. Processing in
3D via tensor voting enforces the more general constraint of
good continuation and eliminates interference between
adjacent pixels from different world surfaces without having
to assess penalties on them. In our work, the assumption that
scene surfaces are fronto-parallel is only made in the initial
matching stage, when all pixels in a small window are
assumed to have the same disparity. After this point, the
surfaces are never assumed to be anything other than
continuous. We also do not use the ordering constraint,
which was introduced to facilitate dynamic programming.
The uniqueness constraint is applied as described in Section 3
to allow one-to-many correspondences. Thus, no unneces-
sary difficulties are introduced for slanted or curved surfaces.

Our algorithm fails when surfaces are entirely missed at
the initial matching stage or when they are entirely removed
at the surface refinement stage. We are not able to grow
surfaces thatare notincluded in the data before the final stage.
On the other hand, we are able to smoothly extend partially
visible surfaces to infer the disparities of occluded pixels,
assuming that occluded surfaces do not abruptly change
orientation. A limitation of our work is that one cannot predict
the usefulness of intermediate results based on the error rate.
“Cleaner” data sets after layer refinement may not contain
enough information to guide correct disparity estimation for
the unmatched pixels. In our future work, we intend to derive
a set of criteria that adapt the refinement stage according to
both surface orientation and color distribution of the layers.
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