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Abstract

We revisit stereo matching functions, a topic that is con-
sidered well understood, from a different angle. Our goal
is to discover a transformation that operates on the cost
or similarity measures between pixels in binocular stereo.
This transformation should produce a new matching curve
that results in higher matching accuracy. The desired trans-
formation must have no additional parameters over those
of the original matching function and must result in a new
matching function that can be used by existing local, global
and semi-local stereo algorithms without having to mod-
ify the algorithms. We propose a transformation that meets
these requirements, taking advantage of information de-
rived from matching the input images against themselves.
We analyze the behavior of this transformation, which we
call Self-Aware Matching Measure (SAMM), on a diverse
set of experiments on data with ground truth. Our results
show that the SAMM improves the performance of dense
and semi-dense stereo. Moreover, as opposed to the current
state of the art, it does not require distinctiveness to match
pixels reliably.

1. Introduction
All stereo algorithms begin by computing a simple simi-

larity or dissimilarity metric between pixels in the reference
image and pixels in the target image. Stereo processing
proceeds by aggregating and optimizing these pixel-wise
metrics to obtain the best disparity map according to some
criteria, which typically include accuracy. A comparative
evaluation of numerous binocular stereo algorithms can be
found at the Middlebury Stereo Vision Page (MSVP) (vi-
sion.middlebury.edu/stereo) and a categorization of the al-
gorithms in [20]. The common theme among these methods
is that they take the cost function for granted. In fact, the
last breakthrough in this area was arguably the sampling-
insensitive dissimilarity measure of Birchfield and Tomasi
in 1998 [2]. (The adaptive support weight method of Yoon
and Kweon [23] is, from our perspective, not a strictly local

cost function.) In this paper, we revisit the matching func-
tions for stereo aiming at extracting more information from
the image pair, before applying a stereo algorithm. Note
that the terms cost and similarity are used interchangeably
in the paper, since one can trivially be converted to the other
via a monotonically decreasing function. We use the term
matching measure to refer to both cost and similarity.

We focus our investigation to the core of the stereo corre-
spondence problem: the estimation of dense or semi-dense
disparity maps from rectified stereo pairs. (By dense or
semi-dense we refer to an attempt to estimate correspon-
dences for all pixels without a priori feature extraction. The
result may be semi-dense, if correspondences are rejected
according to some criterion.) We seek a transformation that
operates on the matching measures between pixels and re-
sults in a new matching function, which has the same form
as the original and is better than the original according to
widely accepted criteria. The requirements for the trans-
formation are that it must have no additional parameters
over those of the original matching function and that the
new matching function must behave exactly as the original
in the sense that existing stereo algorithms must be able to
use it without any modifications. We do not attempt to es-
timate sub-pixel matches, do not model occlusion or depth
discontinuities and do not apply constraints, such as order-
ing or uniqueness, other than the epipolar constraint. We
also do not attempt to rank the various matching functions.

(a) Ideal cost (b) Ambiguous cost

Figure 1. The ideal cost curve for stereo has one distinct minimum.
A less ideal cost curve has several local minima and/or flat regions
of low cost.

1



See recent surveys in [12] and [10] for evaluations of cost
functions and aggregation schemes respectively.

The “ideal” cost curve as a function of disparity for a
pixel is shown in Fig. 1(a). It has a single, distinct mini-
mum. The curve in Fig. 1(b) is less attractive. However, if
we knew, that, when this curve is observed, the true match
is, for instance, two thirds of the distance between the two
ends of the valley, then we could unambiguously find it.

Our approach was inspired by the observation that the
cross- and self-matching curves should behave similarly
around the correct match and zero disparity, respectively.
By cross-matching curve we refer to the graph of matching
cost between pixels of the reference and target images as a
function of disparity. The self-matching curve is a similar
graph, but now the matching takes place between pixels of
the same image. A perfect match can always be found at
zero disparity when a pixel is compared with itself.

We claim that a stereo algorithm can only benefit when
the structure of the self-matching function is taken into ac-
count. We accomplish this by measuring the correlation
coefficient between the two curves, which should be high
when the curves are aligned at their true minima and low
otherwise. Because of this reliance on the self-matching
function, we use the term Self-Aware Matching Measure
(SAMM) for our new measure. Previous research that uses
information from self-matching to reason about the relia-
bility of cross-matching was published by Manduchi and
Tomasi [15] and Yoon and Kweon [25]. Both these ap-
proaches base their analysis on pixel distinctiveness, which
is not a requirement for us. As shown in Fig. 3, unambigu-
ous results can be obtained by the SAMM for pixels with
low distinctiveness.

2. Motivation and Related Work
One of the motivations for our work is the observation

that conventional matching functions (SAD, SSD, NCC)
do not assign the lowest cost or highest similarity to the
most unambiguous matches. For example, see Fig. 2(c)
and (d) which show the minimum cost value, computed by
the Sum of Absolute Differences (SAD) and the negative of
the Normalized Cross Correlation (NCC)1, for each pixel
of the Teddy stereo pair from MSVP. Careful observation
of such cost maps reveals that the cost value itself is not
very useful as a criterion for selecting reliable pixels. It is
still of some value, as evidenced by the success of meth-
ods that detect ground control points [3] or seed matches,
but we claim that improvements are possible. Methods that
would benefit include progressive stereo [7, 15, 28, 14, 6],
cooperative stereo [29, 27] and certain multiple-view meth-
ods [9, 17, 4, 5] that require confidence estimates for the
matches. The consistency between the left-to-right and the

1NCC always refers to zero-mean NCC in this paper

right-to-left match is often used for the detection of reliable
matches [3, 14]. This does not meet our requirements as it
results in a binary decision and not a ranking.

Our new function should assign a value to each potential
pixel match that can be used to rank matches from most to
least reliable. Matthies [16] proposed a posterior probabil-
ity estimation technique, which can achieve this goal. The
need, however, to select a value for σ according to the ex-
pected noise variance, violates our requirement for no ad-
ditional parameters. More importantly, this choice is not
trivial because the expected noise variance is not the same
for all pixels, but depends on local texture as explained in
Fig. 2. The SAMM effectively models the individual char-
acteristics of each pixel and overcomes this difficulty.

Among the first methods for computing the reliability of
pixels based on monocular information is the one of Salari
and Strong [19]. The “matchability” of a pixel is computed
as a function of intensity correlation and local image vari-
ance. Later, Manduchi and Tomasi [15] distinguish interest
from distinctiveness, showing that one does not imply the
other. They define distinctiveness as the perceptual distance
between the pixel and the most similar other pixel in the
search range. Egnal et al. [8] investigate several confidence
measures, including single-view stereo, in which different
images of an identical scene from the same viewpoint are

(a) Left frame of Teddy (b) Ground truth

(c) Minimum cost SAD (d) Minimum cost NCC

Figure 2. The left image of the Teddy stereo pair from MSVP, the
ground truth disparity map and the minimum cost maps for SAD
and negative NCC in 5 × 5 windows. High intensity corresponds
to large cost. Pixels in uniform areas have lower cost values under
SAD since the cost can approach 0, while larger values are ob-
served at textured pixels, such as those on the periodic table, due
to quantization artifacts during image formation or calibration er-
rors. Under NCC, pixels at uniform areas have large costs because,
after subtracting the mean, correlation operates on noise.



matched to estimate the expected noise level at each pixel,
and the peak ratio metric that is equal to the ratio of the sim-
ilarity values of the two best matching candidates for each
pixel. These methods meet one of our requirements by en-
abling the ranking of pixels. The methods of [15] and [8]
also require no additional parameters. They fall short of our
overall requirements because they only characterize the re-
liability of the best match for each pixel according to the
matching function. In other words, unlike [16], they cannot
produce a new matching function for all disparities.

An approach for estimating whether a pixel belongs to
a small disparity band (the foreground) was proposed by
Agarwal and Blake [1]. They estimate the likelihood ratio
of a pixel being in the foreground or the background. The
total foreground likelihood is computed by cross-matching
over a small foreground disparity band and then marginal-
izing out disparity. To reduce computational cost, the total
stereo likelihood is approximated by using the left image as
a proxy for the right image and computing the self-matching
likelihood over a small disparity range that includes zero.
The background likelihood is approximated by subtracting
the foreground likelihood from the approximate total likeli-
hood. This scheme approximates the foreground likelihood
by the fraction of total likelihood it has explained and can
assign high confidence values to pixels that do not neces-
sarily have unique, sharp peaks in their similarity functions,
such as the one in Fig. 1(b), but does not compute disparity.

The key observation from [1] that inspired our work is
that the shape of the matching function around the cor-
rect match should resemble the shape of the self-matching
around the ideal match at zero disparity. While the Sum
of Squared or Absolute Differences (SSD or SAD) is zero
when matching a pixel with itself, the shape of the self-
matching function as it moves away from the true match
should be similar to that of the cross-matching function as
it moves away from the correct match between the left and
right image. A sharp valley in self-matching cost should
correspond to a sharp valley in the cross-matching function.
Similarly, a flat region should correspond to a flat region.

Recently, Yoon and Kweon [24, 25] presented an ap-
proach that meets all our requirements. They consider both
the probability of mismatches and the probability of good
matches for a pixel to compute the distinctive similarity
measure (DSM) for each potential pixel correspondence.
Their definition of distinctiveness, as in [15], is the mini-
mum dissimilarity between the pixel under consideration p
and all other pixels of the same image that compete with
p for matches in the other image. The DSM is large for a
correspondence between two pixels that are similar to each
other and distinct from all other pixels in their neighbor-
hoods. The DSM can be used to transform the stereo cost
volume according to our requirements and treats both im-
ages symmetrically. Results in [25] demonstrate improve-

ments in semi-dense and dense stereo due to the DSM. In
Section 4, we show similar improvements using the SAMM.
It is important to point out here that the main difference be-
tween the DSM and SAMM is that the former considers the
appearance of a pixel and the latter considers its cost func-
tion.

3. The Self-Aware Matching Measure
In this section, we define our proposed transformation

and demonstrate its benefits.

3.1. Notation and Preliminaries

We refer to the two images of the rectified stereo pair as
left and right (IL and IR), without loss of generality. We
distinguish between the reference image for the pixels of
which the disparity map is computed, and the target image.
Not all pixels of the target image are guaranteed to have
matches after a dense disparity map has been computed for
the reference image. The disparity d(x, y) of a potential
match on an epipolar line y is always defined as the differ-
ence between the x-coordinates of the pixels in the refer-
ence and target images: xtgt = xref − d(xref , y). If the
disparity range for the left image is {dmin, dmax}, then the
disparity range for the right image is {−dmax,−dmin}.

The cost function for a pixel in the left image, when
compared to pixels in the right image, is denoted by
c

LR
(xL, y, d). The cost volume is denoted by CLR and

contains cost values for all permissible matches within the
disparity and image boundaries. Cost values for matches
to pixels outside the image boundaries are assigned a very
large constant and ignored. The cost function for matching
a pixel in the left image with pixels also on the left image
is denoted by c

LL
(xL, y, d). When the right image is used

as reference, the cross- and self-matching functions are de-
noted by c

RL
(xR, y, d) and c

RR
(xR, y, d), respectively.

We have used the following matching functions in our
experiments. In all cases, aggregation is performed within
square windows W with sides of odd length in pixels. The
width of the window, N , is the only adjustable parameter in
most of our experiments.

• The Sum of Absolute Differences (SAD):
SAD(x, y, d) =

∑
i∈W |IL(xi, yi)− IR(xi − d, yi)|.

• The Sum of Squared Differences (SSD):
SSD(x, y, d) =

∑
i∈W (IL(xi, yi)−IR(xi−d, yi))2.

• Normalized Cross Correlation (NCC), which is also
referred to as Zero-Mean NCC by some authors:
NCC(x, y, d) =∑

i∈W (IL(xi, yi)− µL
)(IR(xi − d, yi)− µR

)
σ

L
σ

R

,



where µ
L

and σ
L

are the mean and standard deviation
of all pixels in the square window in the left image.
(µ

R
and σ

R
are the defined in the same way for the

right image.)

• Modified Normalized Cross Correlation, which was
proposed by Moravec [18]: MNCC(x, y, d) =∑

i∈W 2(IL(xi, yi)− µL
)(IR(xi − d, yi)− µR

)
σ

L
+ σ

R

.

Note that to unify computations in the remainder, we
convert NCC and MNCC to cost functions by using 1 −
NCC and 1−MNCC respectively.

The above definitions are for monochrome images. We,
however, carry out all experiments on color images. To pro-
cess color images we sum over the color channels for SAD
and SSD. For NCC and MNCC we treat each pixel as a 3D
vector. We also compute a 3D mean vector over the match-
ing window. We compute, however, a single variance for a
total of 3×N2 zero-mean measurements, with the appropri-
ate mean used for each color channel. We do not compute
separate variances for each color channel because it is sus-
ceptible to noise from uninteresting color channels.

Due to space constraints and for clarity, we only show re-
sults for SAD and NCC. Results under SSD and MNCC are
very similar to SAD and NCC respectively. In the future,
we would like to verify these results using the sampling in-
sensitive measure of Birchfield and Tomasi [2], rank and
census transforms [26] and adaptive support weight [23] as
matching functions. Results in [25], suggest that no sur-
prises should be expected for the latter function.

3.2. Self-Aware Matching Measure Computation

We begin by examining the computation of the SAMM
for a potential match estimated by one of the above meth-
ods. The motivation behind our approach was the observa-
tion that the cross- and self-matching curves should behave
similarly around the correct disparity and zero disparity re-
spectively. Our initial thoughts were to match the curves,
possibly as in [22] or [21]2, or by modeling the transforma-
tion from one curve to the other in a non-parametric way.

The purpose of computing a transformation between the
two curves would be to account for distortions, which in-
clude an offset due to the fact that the self-matching curve
has a minimum at zero and does not suffer from quantiza-
tion effects at integer disparity steps. Other forms of distor-
tion are present, but they are hard to model without mak-
ing further assumptions. To keep our method as general
as possible, we measure similarity between curves by com-
puting their correlation coefficient. Specifically, we com-

2Here the curves would be matching cost over disparity, not intensity
or intrinsic curves, respectively.

pute the correlation coefficient between the two curves af-
ter aligning them so that the match suggested by the cross-
matching function corresponds to the ground truth of the
self-matching function. This results in invariance to offset
and uniform scaling, which has the desirable property of
canceling the expected offset. While the unmodeled dis-
tortions are not necessarily equivalent to a uniform scaling,
this invariance turns out to be sufficient for our purposes.

Formally, the Self-Aware Matching Measure (SAMM) for
assigning disparity do to a pixel (xL, y) is defined as:

SAMM(xL, y, do) =∑
d(cLR

(xL, y, d− do)− µLR
)(c

LL
(xL, y, d)− µLL

)
σ

LR
σ

LL

.

(1)

where the summation occurs only over valid values of the
disparity, that is when both cost functions compare pixels
inside the image boundaries. µ

LR
and σ

LR
are the mean and

standard deviation of the cross-matching function over the
valid disparity range and µ

LL
and σ

LL
are defined similarly

for the self-matching function. Self-matching is computed
over a disparity range twice as large of the range used for
cross-matching centered at d = 0. We assign minimum
SAMM score to matches for which equation 1 cannot be
computed with at least 11 terms in the sum to avoid trivial
high SAMM scores. Note that the SAMM is a similarity,
not a cost, but can easily be converted by taking its negative.
Also note that the SAMM can be computed only after an
underlying or base cost function has been computed.

SAMM values are high when the variations of c
LR

and
c

LL
correspond after alignment. As long as they move on

the same surface and perspective effects are moderate, this
remains true. When either function jumps to a different sur-
face, the signals should be uncorrelated. This is undesirable,
but, obviously, if the disparity discontinuities were known
a priori, the problem of stereo would be much simpler. In
practice, local minima of the cost function may have large
SAMM values when aligned with the ground truth of the
self-matching function. More often than not, however, the
correct match results in the maximal SAMM.

The advantage of the SAMM over the DSM [25] is that
it works even for relatively ambiguous cLR and cLL, which
are likely to still be highly correlated when aligned at the
correct match. Repeated patterns cause no difficulties as
long as the same instances are visible in both images. This
condition is required for all stereo algorithms in this situa-
tion. The SAMM will disambiguate between multiple local
minima by aligning the first valley of the cross-matching
curve to the first valley of the self-matching curve, the sec-
ond with the second and so forth.

Computing the SAMM only at the disparity with mini-
mum cost results in a confidence value for each pixel, which



can be used for ordering matches according to reliability
and does not require parameter tuning. See Sec. 4.2 for an
evaluation of SAMM as a confidence measure.

Of course, one does not need to restrict the computation
of SAMM to a fixed do. Equation 1 can be computed while
varying do to produce a new cost volume with the same di-
mensions as the original. This volume, CSAM,L(x, y, d),
fulfills all the requirements of Section 1: its computation
requires no additional parameters over that of the base cost
function and it can be used by any type of stereo algorithm
without modifying the algorithm. Figure 3 contains exam-

(a) NCC: 38, (b) NCC: 48,
SAMM & GT: 15 SAMM & GT: 35

(c) NCC: 16, (d) NCC: 38,
SAMM & GT: 18 SAMM & GT: 15

(e) NCC: 41, (f) NCC: 16,
SAMM & GT: 32 SAMM & GT: 31

Figure 3. Examples of corrections made by the SAMM on results
produced by NCC aggregated in 5 × 5 windows for the Teddy
stereo pair. The top (black) curve is the self-matching function,
which is computed over twice the regular disparity range and has
a minimum at 64 (the midpoint). The middle (blue) curve is NCC
and the bottom (red) curve is −SAMM. The curves have been off-
set for visualization. GT denotes the ground truth disparity. Notice
that: in (a) and (b) NCC selected the wrong local minimum; in (c)
NCC selected the correct valley, but was not precise; the texture in
(d) is repetitive; in (e) and (f) SAMM unambiguously selects the
correct match from very flat NCC curves.

ples of SAMM computations for pixels of the Teddy stereo
pair. Of particular interest is the last row that demonstrates
the ability of the SAMM to select the correct matches with
high confidence without requiring distinctiveness. Figure
4 shows a few examples where the SAMM fails and NCC
works. It should be noted that these cases are much fewer
than those of Fig. 3. See Section 4.3 for quantitative results.

3.3. Symmetric SAMM

The definition of the SAMM in Eq. 1 is effective, but
does not exploit any information from the self-matching
function of the right image. Note that the cost volume
with respect to the right image contains the same values as
the cost volume for the left image, re-arranged such that
CLR(x, y, d) = CRL(x− d, y,−d). This does not hold for
the SAMM, since computing the SAMM for the right image
brings in additional information from CRR.

Having computed two SAMM volumes, one for the left
and one for the right image, the next step is combining them.
There are typically two approaches for this: to consider
SAMM values as scores or costs and add them, or to con-
sider them as probabilities (after normalization) and mul-
tiply the corresponding values to estimate the joint proba-
bility of a match for (x, y) at d. We are uncomfortable with
the independence assumption required for the second option
and chose to add corresponding SAMM values to produce a
symmetric SAMM volume that combines information from
CLR, CRL, CLL and CRR. (In practice, we have not found
any significant difference between the two approaches in a
number of experiments.)

The symmetric SAMM (SSAMM) with IL as reference
is defined as:

SSAMM(x, y, d) =
CSAM,L(x, y, d) + CSAM,R(x− d, y,−d). (2)

(a) NCC & GT: 20, (b) NCC & GT: 33,
SAMM: 33 SAMM: 47

Figure 4. Examples in which the SAMM results in an error, while
NCC is correct. See the caption of Fig. 3 for description of visu-
alization. In (a) SAMM selects the wrong local minimum, while
in (b) there is little similarity between the self- and cross-matching
curves.



4. Experimental Results
In this section, we present a sequence of experimental re-

sults on stereo pairs with ground truth from the Middlebury
Stereo Vision page. Our objective is not to compete with
the top algorithms, but rather to show that the SAMM can
serve as an effective data term for these algorithms. In all
experiments the SAMM is computed on the underlying
matching function it is compared against.

4.1. Evaluation Criteria: Error Rate and ROCs

We begin by introducing the criteria used for evaluating
matching functions. The first criterion is the error rate (ER)
as defined in [20]. That is, an error is counted for every
non-occluded pixel assigned a disparity that is off by more
than one level from the ground truth.

The second criterion tests the ability of a matching func-
tion to rank matches according to their reliability. For this
purpose, we rank all pixels in ascending cost order and gen-
erate semi-dense disparity maps by selecting the top Lth

percentile of matches. Then, we plot the error rate ver-
sus the density of the disparity map and measure the area
under the curve (AUC). Better performance results in a
smaller area under this curve, which indicates that more
good matches are ranked high and more wrong matches are

(a) Teddy SAD 5× 5 (b) Teddy NCC 5× 5

(c) Teddy SAD (d) Teddy NCC

Figure 5. Evaluation of the SAMM as confidence measure for
Teddy. The blue curve with circles corresponds to the original
cost function and the red curve with crosses corresponds to non-
symmetric SAMM. (a) and (b): error as a function of disparity map
density for SAD and NCC in 5 × 5 windows. The AUC in (a) is
0.257 for SAD and 0.097 for SAMM. (c) and (d) AUC and ER
as functions of window size for SAD and NCC. There is a single
error rate since SAMM is not used to select disparities here. The
x-coordinate is the width N of the N ×N window.

ranked low.
We opted for the simple ROC criterion of Gong and Yang

[11], instead of a similar criterion proposed by Kostliva et
al. [13]. Our concern about the latter is that errors can
be forgiven if they are caused by other errors. Since we
are mostly dealing with noisy disparity maps, we felt that
certain types of errors may not be accounted for using [13].

4.2. Evaluation of SAMM as Confidence Measure

The first experiment evaluates the SAMM as a confi-
dence measure. We compute disparity values for the MSVP
data by the winner-take-all (WTA) strategy of assigning to
each pixel the disparity with minimum cost. We, then, com-
pute the SAMM only for the disparities selected by the un-
derlying cost function. The evaluation is in terms of the
AUC approximated by generating disparity maps at 5% in-
crements in density, including the most reliable matches ac-
cording to the original cost function or the SAMM.

Results on the Teddy example under SAD, NCC and
non-symmetric SAMM for both cases can be seen in Fig.
5. Figure 5(a) and (b) show density-error curves for par-
ticular matching functions and the resulting SAMM, while
(c) and (d) show how AUC varies as a function of window
size. In all cases the SAMM outperforms the original cost
function and results in an increasing error curve as density
increases, which is the desirable performance. The total er-
ror rate at full density is equal in both cases, since we do not
select new disparity values according to SAMM.

Results using the symmetric implementation of the
SAMM (see Section 3.3) are qualitatively similar and quan-
titatively slightly better. In the interest of space we do
not present any such results for this experiment. The rel-
ative improvement in AUC by using the symmetric form
for Teddy using SAD over the single-image implementation
shown in Fig. 5(c) is approximately 1%.

4.3. Evaluation of Winner-Take-All Stereo

The second set of experiments evaluates the SAMM as a
matching function by computing WTA disparity maps using
one of the matching functions of Section 3.1 and SAMM.
We only show results using symmetric SAMM (Eq. 2).
Single-image SAMM behaves in a similar manner, with
slightly worse quantitative results. Figure 6 shows density-
error curves for representative cost functions on the MVSP
datasets, while Fig. 7 reports AUC and ER as the window
size varies from 1×1 to 13×13. Note that NCC is applica-
ble in 3 × 3 windows or larger and that values of N above
7 result in disparity maps of very low visual quality, which
is not reflected in ER.

Yoon and Kweon [25] (Table 4) report an average rel-
ative improvement in ER of 0.8% on the MVSP datasets
for 5 × 5 SAD. We carried out a similar comparison for
the symmetric-SAMM. The improvements over SAD are



(a) Tsukuba NCC 5× 5 (b) Venus SAD 9× 9

(c) Cones SAD 5× 5 (d) Teddy NCC 3× 3

Figure 6. Representative density-error ROC curves for the MSVP
data set using SAD, NCC and symmetric-SAMM. Color coding
as in Fig. 5. (c) shows an aberration in which SAMM results in
higher ER, but still maintains a lower AUC for SAD 5× 5.

(a) Tsukuba NCC (b) Venus SAD

(c) Cones NCC (d) Teddy SAD

Figure 7. Representative AUC and ER curves for the MSVP data
set using SAD, NCC and symmetric-SAMM as the window size
varies. The x-coordinate is the length N of the N × N window.
Color coding as in Fig. 5.

135%, 33%, -2.2% and -16% for windows with width 1,
3, 5 and 7. The improvements over NCC are 61%, 25%,
11% and 3.5% for windows with width 3, 5, 7 and 9. In line
with all our experiments, the SAMM is more beneficial for
small window sizes.

SSAMM vs. SAD SSAM vs. NCC
Dataset
Tsukuba
Venus
Teddy
Cones
Overall

ER(%) D(%)
-0.60 0.57
6.10 3.14
2.15 5.87
7.80 1.68
3.86 2.82

ER(%) D(%)
2.58 -0.45
1.35 1.82
0.15 4.61
1.10 1.11
1.30 1.77

Table 1. Comparison on the effects of traditional matching mea-
sures and SSAMM on error rate (ER) and density (D) of GCS
stereo [6]. SSD was run on 1×1 windows and NCC in 3×3. Each
entry of the table is the relative improvement of SSAMM over the
traditional method. We report (ERSAD−ERSSAMM )/ERSAD

and (DSSAMM −DSAD)/DSAD . Positive numbers indicate that
SSAMM outperforms SAD or NCC.

4.4. Results on GCS Stereo

The Growing Correspondence Seeds (GCS) algorithm
[6] is a progressive stereo algorithm with performance
guarantees. Source code can be downloaded from:
cmp.felk.cvut.cz/˜cechj/GCS/. GCS is a semi-dense algo-
rithm that grows disparity components from seeds. It is very
robust and can generate meaningful results starting from
random seeds. There is, however, some sensitivity to seed
selection. We performed the following experiment to com-
pare the capability of traditional matching functions and
SAMM to generate useful seeds for GCS. For each of the
four MSVP datasets, we select the top 10% of the matches
according to the original cost function and use them as seeds
for GCS. Then, we apply SSAMM on the original cost vol-
ume and rank the matches according to SSAMM. The top
10% of the new matches are used as seeds for GCS. Note
that each seed is only a point in disparity space and GCS
computes its own matching table. We used default values
for all parameters. In Table 1, we report the improvement
by SAMM over the results of SAD and NCC in terms of
error rate and density of the disparity map.

5. Conclusion

We have presented a transformation that converts stereo
matching curves into new curves. The benefits from this
transformation include a confidence measure that generates
a meaningful ordering of the matches, as well as disparity
maps that are usually better than those computed by tra-
ditional matching functions according to our criteria. Ex-
perimental results show that, as expected, quantitative re-
sults using the SAMM depend on the underlying matching
function, but also that the SAMM causes an improvement
in general, especially when the size of the cost aggrega-
tion window is small. Small windows are more attractive
for algorithms that do further processing because they do
not oversmooth the disparity map and suffer less from fore-
ground fattening.

Moreover, the SAMM offers more predictable perfor-



mance as the window size varies. This is a valuable prop-
erty when the appropriate window size cannot be estimated
a priori. Even when the total error rate in the WTA setting
(Sec. 4.3) is larger after SAMM, the resulting cost volume
is still very useful for semi-dense and progressive stereo.
This is due to the AUC being much smaller for SAMM,
especially at low to medium levels of density. (See ROC
curves in Figs. 5(a) and (b) and 6.)

The advantage of the SAMM over the methods of [16]
and [25] is that it works well even on ambiguous cross-
and self-matching curves, which are still highly correlated
when aligned at the correct match. This is, to the best of our
knowledge, a unique property of our method. The SAMM
would work for the hypothetical cost function of Fig. 1(b)
as opposed to the methods of [16, 15, 25] which would re-
ject this pixel as unreliable a priori. See Fig. 3 for repre-
sentative real examples in which the SAMM resolves errors
and ambiguities of the underlying matching function.
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