
NBVC: A Benchmark for Depth Estimation from Narrow-Baseline
Video Clips

Philippos Mordohai, Konstantinos Batsos, Ameesh Makadia and Noah Snavely

Abstract—
We present a benchmark for online, video-based depth

estimation, a problem that is not covered by the current set
of benchmarks for evaluating 3D reconstruction, which focus
on offline, batch reconstruction. Online depth estimation from
video captured by a moving camera is a key enabling technology
for compelling applications in robotics and augmented reality.
Inspired by progress in many aspects of robotics due to bench-
marks and datasets, we propose a new benchmark called NBVC
for evaluating methods for online depth estimation from video.
Our benchmark is composed of short video sequences with
corresponding high-quality ground truth depth maps, derived
from the recent Tanks and Temples dataset. We are hopeful that
our work will be instrumental in the development of learning-
based algorithms for online depth estimation from video clips,
and will also lead to improvements in conventional approaches.
In addition to the benchmark, we present a superpixel-based
plane sweeping stereo algorithm and use it to investigate various
aspects of the problem. The paper contains our initial findings
and conclusions.

I. INTRODUCTION

Benchmarks and their corresponding datasets have led to
dramatic progress in most areas of robotic perception. While
some would argue that progress is occasionally followed
by saturation and overfitting, most researchers agree that
the availability of widely used datasets with ground truth
enables continuous evaluation and improvement of individual
algorithms as well as comparisons among various approaches
providing valuable information to researchers.

In this paper, we introduce NBVC, a dataset and bench-
mark for online, dense 3D modeling from video that ad-
dresses a need that is not met by current publicly available
datasets. We are motivated by applications that require esti-
mation of dense depth maps on mobile devices and robots,
including autonomous navigation, driver assistance, robotic
perception, and augmented reality. The key characteristic of
these scenarios is that imagery is acquired by a camera mov-
ing continuously through space, resulting in narrow baselines
between successive frames. In addition, the output must be
generated as quickly as possible because high latency is
unacceptable in many cases.
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While there is strong interest in applications of real-
time, video-based 3D reconstruction, there is no suitable
dataset with ground truth that would enable researchers to
evaluate their algorithms. To obtain competitive results on
the Middlebury [1], DTU MVS [2], ETH3D [3] and the
Tanks and Temples (TnT) [4] benchmarks authors resort
to batch processing to maximize data utilization, while the
EuRoC MAV dataset [5] has not been adopted for dense
reconstruction. The recent datasets focusing on self-driving
[6], [7], [8], [9] are large, but not well-suited for UAV-
mounted or handheld cameras due to differences in camera
motion. We derive our dataset from the raw data in the
TnT dataset, which comprises video sequences from a single
camera but restrict the camera motion to focus on low-latency
3D reconstruction.

Despite the similarity in content, there are substantial
differences between our dataset and TnT. Even though the
TnT videos can be used in an online fashion, all current
entries in the leaderboard treat the video frames as an image
collection, aiming to leverage large baselines and maximize
coverage on the surfaces of interest. The evaluation criteria
are precision and recall, without considering run time. This
setup favors batch processing, large-scale bundle adjustment
and computationally expensive multi-view stereo (MVS) al-
gorithms. We consider this research direction largely orthog-
onal to our objectives. An additional difference is that TnT
does not provide camera poses, instead encouraging authors
to tackle pose estimation and dense reconstruction jointly.
We plan to release camera poses (see Section III), since
in the scenarios we are interested in, additional navigation
sensors, such as GPS, gyroscopes and accelerometers, are
often available along with software that fuses their estimates
with video to generate pose estimates. In contrast to TnT,
we plan to include throughput in the evaluation metrics.

We call our benchmark NBVC because our focus is on
online depth estimation from Narrow-Baseline Video Clips.
We expect methods that use our data to take advantage
of the known sequence of the frames, for example by
assuming small displacements between adjacent frames, by
tracking features or by using optical flow. Due to the short
length of the clips, a viewpoint-based representation of the
reconstruction in the form of depth maps is effective for
many applications. Therefore, we provide ground truth depth
maps with the training set and use per pixel depth accuracy
in our evaluation metrics.

The NBVC benchmark comprises 433 short clips, con-
taining at least 60 frames each for a total of 37,955 frames,
extracted from six scenes from the training set of Tanks and



Fig. 1. Frames (left) and ground truth depth maps (right) from the Ignatius
and Church scenes

Temples. It is, therefore, of larger scale than each of the
KITTI benchmarks that provide 400 shorter stereo sequences
for training and testing. NBVC contains more images than
the high-resolution ETH3D benchmark which provides 898
total images from 25 scenes, as well as its low-resolution
counterpart that contains 10,008 total images from 10 scenes.
It should be noted, however, that we expect only a small
number of images from each clip of NBVC to be used at a
given time. A few examples are shown in Figs. 1 and 2. See
Section III for details on how NBVC was created. We plan
to release the images and camera poses, the ground truth of
the training set, as well as the source code of the baseline
algorithms, and to create a website to host the benchmark
following the guidelines of recent benchmarks [3].

In order to explore the data, we estimate depth maps
using conventional plane sweeping stereo [10] and a novel
superpixel-based plane sweeping stereo algorithm that does
not require exhaustive photoconsistency computation. We
refer to the algorithms as PS and SBPS, respectively, and
present them in Section IV. Plane sweeping is well suited
for this setting because it can achieve high throughput, it
can be applied to an arbitrary number of images and it does
not require epipolar rectification. In Section V, we present
results by varying several parameters of the algorithms and
the camera configuration, such as the baseline, number of
matching views, and the matching function. We show that a
small fraction of pixels with depth estimates, as low as 5%,
is adequate for fitting planes to the superpixels. We also run
experiments using COLMAP [11] and MVSNet [12], noting
that they have not been designed for our target applications.
We expect that the results of Section V will be useful to
researchers, and that they will be able to reach conclusions
relevant to their work using the benchmark.

The main contributions of the paper are:

• the NBVC dataset for online depth estimation from
Narrow-Baseline Video Clips,

• a simple, but effective, superpixel based plane sweeping
stereo algorithm, and

• a thorough investigation of the effects of several aspects
of camera configuration on depth map estimation accu-
racy on the above data.

II. RELATED WORK

In this section, we review relevant benchmarks and ap-
proaches for video-based and multi-view stereo that would
benefit from our dataset. We refer readers to surveys on
multi-view stereo [13], [1] for broader coverage on the topic.

The first multi-view benchmark was hosted at Middlebury
College [1] and comprised two scenes with withheld ground
truth and three image sets of different density for each scene.
A second effort was undertaken by Strecha et al. [14], but
was only active for a few years and the ground truth for
only two scenes was released. The EuRoC MAV dataset [5]
contains data captured by MAV-mounted cameras and ground
truth acquired by LIDAR in two indoor locations. It has been
used for structure from motion experiments, but not dense
reconstruction. The first dataset large enough for supervised
learning was the DTU MVS Data Set [2]. It contains 80
scenes captured under different lighting conditions from 49
or 64 viewpoints. While it is valuable for training, the lack
of a test set with withheld ground truth and of a leaderboard
has limited its impact.

These weaknesses are not shared by the most recent bench-
marks. ETH3D [3] includes a low- and a high-resolution
dataset, each with multiple scenes imaged from several
viewpoints. Both datasets are divided evenly into training
and test sets totaling dozens of scenes, hundreds of high-
resolution and thousands of low-resolution images. Ground
truth has been released only for the training sets. The Tanks
and Temples dataset [4], which is the foundation of our
benchmark, was acquired by a high-end camera indoors and
outdoors. The dataset contains thousands of images of each
of the 21 scenes, as well as ground truth acquired by a
LIDAR sensor. The goal of Tanks and Temples is to assess
the precision and recall of dense reconstruction using a large
number of views. We aim to evaluate depth map estimation
accuracy from short video clips without the benefits of long
baselines.

As stated in Section I, we consider the recent datasets
focusing on self-driving [6], [7], [8], [9] complementary to
ours due to differences in camera motion and their restricted
domain. Our benchmark is clearly more relevant for depth
estimation from UAVs or handheld cameras for AR.

The most relevant algorithms to our research are those
that generate 3D models from video by processing the
frames in sequence. While impressive results in terms of
processing speed and visual quality have been achieved [15],
[16], [17], [18], [19], [20], [21], [22], [23], evaluation is
almost exclusively qualitative. We believe that the inability
to objectively and automatically evaluate these algorithms
has hindered progress. Our benchmark can have significant
impact by enabling the necessary evaluations.

In the past few years, stereo methods that do not re-
quire exhaustive photoconsistency computations have been
published. PatchMatch stereo [24] can estimate disparity
values and surface normals relying on randomized search
and propagation. After random initialization, photoconsistent
planes are discovered by random sampling and are then



propagated to neighboring pixels. PatchMatch has inspired
binocular [25], [26] and multi-view [27], [28], [29], [30],
[31], [32], [11] algorithms that do not estimate photoconsis-
tency exhaustively. However, a fraction of the depth range
of every single pixel is explored and the algorithms are not
particularly fast due to sampling for depths and normals.

The Local Plane Sweep algorithm of Sinha et al. [33]
clusters matched interest points to form disparity plane
hypotheses. Local plane sweep problems are then defined
around each plane. ELAS [34] evaluates photoconsistency,
over the entire disparity range, for only a subset of the
pixels. Reconstructed pixels are used to form a piecewise
planar approximation of the scene. Segmentation is used in
the algorithm of LeGendre et al. [35], which fits planes to
image segments based on a sparse set of reconstructed 3D
points. As opposed to SBPS, it is strictly binocular since it
requires rectified images, but includes an additional step in
which plane hypotheses are propagated among neighboring
segments.

Plane-sweeping stereo is relevant to our work because
it can achieve high throughput, as shown by Gallup et
al. [10] who leveraged the parallelization capabilities of
GPUs. Gallup et al. used the sparse points reconstructed
during pose estimation to identify dominant plane orienta-
tions in the scene and reduce the effects of fronto-parallel
bias. An extension to fisheye and non-pinhole cameras was
published by Häne et al. [36]. Several deep learning MVS
algorithms also rely on plane sweeping to associate image
patches and then apply learned photoconsistency functions
[37], [38], [39], [40], [41], [42], [43], [12]. Our work bears
some similarity to methods specifically designed for small
camera motion [44], [45], but our goals are different. Most
of the above methods, however, similarly to video-based re-
construction research, have not been evaluated quantitatively.

III. BENCHMARK CREATION

In this section, we describe how video clips with dense
ground truth depth maps were created from the training data
of the Tanks and Temples benchmark [4]. (We could not
apply our technique to the test data of the TnT bechmark,
even if we were granted access to it, because this would
partially release the ground truth of the test set and corrupt
the benchmark.) As inputs we use the following data, which
are available on the TnT website:

• the video sequence of each scene, captured at 29.97
frames per second (fps), from which we extract the
dense sequence for each scene,

• the sparse sequences which have been sampled from
the videos at 1 fps,

• poses for the sparse sequences estimated using
COLMAP [46],

• rough estimates of camera intrinsics,
• ground truth meshes obtained by merging multiple

range scans of each scene.
The ground truth meshes contain only the object of interest
without background or transient objects. For example, the

Fig. 2. Example reference frames and rendered ground truth depth maps
from the Meetingroom, and Caterpillar scenes

ground truth for Barn contains only the barn itself without
the ground or the surrounding trees.

Rendering Ground Truth Depth Maps. The first step is
to render depth maps for the frames of the sparse sequence,
those with poses estimated using COLMAP. The alignment
of the ground truth model and the COLMAP coordinate
system is provided at the TnT website. The rendered depth
maps are dense on the objects of interest but contain no
depths for other objects or the ground in some scenes.
Figures 1 and 2 show examples of reference frames and
ground truth depth maps. We determine the depth range for
matching by extending the actual depth range of the ground
truth by 5% towards and away from the camera. The depth
range will be provided for both the training and the test data.

Refinement of Intrinsics. TnT aims at evaluating complete
3D reconstruction systems including the estimation of in-
trinsics. We, on the other hand, assume that users have
access to the cameras and are able to calibrate them before
deployment. Therefore, we refined the provided intrinsics by
manually clicking corresponding points in a few images and
the corresponding rendered depth maps.

Pose Estimation for Dense Sequences. Poses for the sparse
sequences are provided with the dataset, but we must es-
timate poses for the dense sequences as well. We applied
ORB-SLAM2 [47] on each dense sequence, we then split
the sequences into short clips (see below) and refined the
poses using bundle adjustment on each clip separately.

Sequence Alignment. A critical step is the alignment of
the sparse and dense sequence of each scene. Since some
dense sequences contain over 10,000 frames, computing a
single global aligning transformation with the corresponding
sparse sequence is bound to be inaccurate locally. As a result
the ground truth depth maps would not align well with the
images, limiting the usefulness of our dataset. We opted
for estimating a large number of local transformations that
ensure precise alignment of the ground truth depth maps
with the corresponding reference frames. We accomplished
this by first splitting the dense sequences into clips. Each
clip contains three frames that appear in both the sparse and
dense sequence: its first and last frames and a middle frame,



Fig. 3. Illustration of the alignment process. We first perfectly match the
poses of the reference camera of the sparse and dense sequences denoted
by Cs2 and Cd2, respectively. We then use the other two corresponding
frames of each sequence to set the scale. The distance from the camera
center of Cd1 to that of Cd3 is scaled to match the distance between Cs1

and Cs3. The clip is rejected if the angle of the rotation that would align
the orientation of Cs1 and Cd1 is over 3o or if the distance between these
two cameras is more than 5% of the length of the clip, that is the distance
between Cs1 and Cs3. The same criteria are then applied to Cs3 and Cd3.

which serves as reference and is associated with a rendered
ground truth depth map.

The alignment of a clip begins by rotating and translating
the reference camera in the dense sequence so that it perfectly
matches the reference camera of the sparse sequence. The
latter is chosen as the target since it is represented in
a coordinate system with correct absolute scale. We then
estimate a scaling factor that makes the distance from the first
to the last frame of the dense sequence equal to the distance
between the corresponding frames of the sparse sequence.

If trajectory estimation was perfect for both sequences, the
three corresponding frames would now be perfectly aligned.
This is not the case, however, due to noise. A clip is rejected
if either the maximum rotation error between corresponding
frames is larger than 3 degrees, or the maximum translation
error is larger than 5% of the distance between the first and
last frame. See Fig. 3 for an illustration of the alignment
process. In practice, the clips are well calibrated especially
near the reference image.

Dataset Description. The above steps are applied to all
seven scenes of the TnT training set. The effectiveness of
ORB-SLAM2 depends heavily on scene characteristics such
as the lack of texture and the presence of specularities.
Tracking failures and drift cause errors in sequence alignment
and the rejection of the affected clips. We also manually
reject clips in which the ground truth is heavily occluded by
unmodeled objects. This phenomenon is particulary severe in
the Courthouse data, in which the courthouse is occluded by
trees, tents and other objects leading to the rejection of the
entire scene. We also reject clips of the Barn in which the
barn is occluded by trees that are not included in the ground
truth mesh. The other scenes do not contain unmodeled ob-
jects, but many clips in Church and Meetingroom are rejected
due to imprecise alignment with the sparse trajectory.

We then split the data into non-overlapping training and
test sets. We decided against having different frames from
the same scene in both sets to avoid overfitting. The scenes
in the training set match some characteristics of scenes in
the test set: each set contains an interior scene and each
contains a vehicle. Finally, we assigned the scenes with the
largest number of clips to the training set and obtained a
2:1 ratio of training to test data. The training set comprises

Truck, Ignatius and Church with 180, 97 and 13 clips,
respectively, while the test set comprises Caterpillar, Barn
and Meetingroom with 72, 61 and 10 clips, respectively.

Each clip includes three frames of the sparse sequence.
Since the dense sequence is sampled at 30 fps and the sparse
sequence is sampled at 1 fps, each clip contains at least 61
frames and one ground truth depth map for the reference
frame. The average baseline between the reference frame and
the frames immediately adjacent to it ranges from 1.1 cm
in Meetingroom to 2.3 cm in Church. The average baseline
from the reference frame to the 30th frame before or after it
ranges from 31 to 67 cm, also for Meetingroom and Church
respectively. The maximum depth varies between 3.87 m for
Ignatius and 20.39 m for Barn. Triangulation angles near the
maximum depth using images separated by approximately
10 baselines are in the order of 2o.

Evaluation Protocol. Depth maps are an effective represen-
tation for our purposes, due to the small baseline and short
duration of the clips. We require that authors submit dense
depth maps, the accuracy of which will be evaluated on a
per-pixel basis on all pixels with ground truth. This protocol
bypasses the complications arising from missing data in point
cloud based evaluations, such as those of ETH3D [3] and
DTU [2]. In these benchmarks, regions of 3D space had
to be carefully designated as unobserved and reconstructed
points in them are ignored, leading to unpenalized gross
outliers. Moreover, as point density varies with distance from
the camera, additional provisions are required to ensure fair
evaluation. Measuring errors on depth maps does not suffer
from these limitations.

To jointly evaluate accuracy and processing speed, we
plan to use the harmonic mean (HAR) of a measure of
each, as in the f-score which is widely used in classification.
Specifically, we choose the fraction of pixels with relative
depth error under 5% to measure accuracy and the ratio
of the frame rate over a nominal frame rate of 15 fps
for speed. Relative depth errors are defined per pixel as:
r(x, y) = |d(x, y) − g(x, y)|/g(x, y), where d(x, y) is the
depth estimate of a pixel and g(x, y) is the ground truth
depth. We refer to this measure as FI (Fraction of Inliers).
Using a relative error measure allows averaging across
scenes, in contrast to absolute depth errors that depend on the
depth range. Speed and accuracy measures will be averaged
over scenes, not images, to avoid bias towards scenes with
more clips. (We also report other measures of accuracy, such
as the mean and median absolute error per pixel.)

Authors will self-report the run time of their algorithm
after reading the inputs and before writing the output as well
as the specifications, such as CPU, GPU and RAM, of their
system. As is often the case, we will rely on the integrity
of our fellow researchers for this aspect of the evaluation.
We envision grouping algorithms according to the capacity
of their processing platforms. Submission of results from the
same algorithm will be allowed every 10 days. This practice
is currently accepted [48], [3] as a good trade-off between
providing some feedback to researchers and overfitting.



IV. SUPERPIXEL-BASED PLANE SWEEPING STEREO

We use two fast multi-view stereo (MVS) algorithms to
estimate depth maps from the above clips. The first algorithm
performs plane sweeping stereo similar to [10], while the
second is a superpixel-based plane sweeping algorithm. We
will refer to the algorithms as PS and SBPS, respectively.
Plane sweeping stereo is well-suited to our problem because
it is fast, it estimates a depth map for the reference frame
using an arbitrary number of target frames and it does not
require the images to be rectified.

The PS algorithm is a straightforward implementation of
the algorithm of Gallup et al. [10] on the CPU. Depth is
estimated for each pixel of the reference frame in winner-
take-all (WTA) fashion by estimating the photoconsistency of
the pixel at multiple depths, defined by a family of planes that
are swept through the scene. Photoconsistency is estimated
by defining a window centered at the pixel in the reference
frame, projecting the window to each of the target frames
via the current plane and computing a matching function,
such as the sum of absolute differences (SAD) or normalized
cross-correlation (NCC). The process is repeated for all depth
values (planes) for each pixel. At the end the maximally
photoconsistent depth is assigned to each pixel.

SBPS is inspired by the limitations of PS and attempts
to address them while reducing the computational cost at
the same time. The two key ideas are that piecewise planar
reconstructions are typically effective in terms of accuracy
and visual quality and that only a small number of 3D points
are required to fit a plane. After the reference image has been
segmented into superpixels using SLIC [49], we randomly
select a fraction of the pixels and depth is estimated only for
these pixels using plane sweeping over all possible depths
(planes) as described above. Then, a plane is fitted to each
superpixel using RANSAC on pixels with depth.

SBPS has the following advantages: First, superpixel-
wise depth estimation leads to substantially fewer outliers
than pixel-wise depth estimation. Second, computation is
accelerated by estimating photoconsistency for only a small
fraction of the pixels of each superpixel. Estimating the
photoconsistency of only 5-10% of all pixels leads to neg-
ligible loss in accuracy compared fitting planes on fully
dense depth maps using RANSAC. Third, fitting planes to
the superpixels almost entirely eliminates the fronto-parallel
bias, even though planes are swept in only one direction, and
obtains depth estimates with sub-plane precision.

V. EXPERIMENTAL RESULTS

We have performed a comprehensive evaluation of all crit-
ical configuration parameters using both plane sweeping (PS)
and the superpixel-based plane sweeping (SBPS) algorithm.
Our tests shed light on the effects of parameters of the
camera configuration such as the number of target frames
and the baseline between the reference and target frames;
and parameters of the matching function such as the choice
of the function itself and of the window size. For SBPS only,
we also considered segmentation parameters such as the size
of the superpixels and the degree of regularization [49]; plane

fitting parameters including the fraction of pixels for which
depth is estimated, the threshold used by RANSAC and the
number of iterations. Due to lack of space we present a
subset of the results in this section and will provide additional
results in a technical report.

All depth maps contain depth estimates for all pixels, but
evaluation is limited to pixels with ground truth. Images
are processed at quarter resolution (960×540) compared to
the TnT originals. We used gSLICr [50] on an NVIDIA
TitanX GPU, followed by dense or sparse plane sweeping
parallelized using OpenMP on an Intel Core i7-5820K at 3.3
GHz. Plane fitting was also run on the CPU. The number of
RANSAC iterations was set to 100 and the threshold was set
equal to the distance between consecutive planes.

Baseline. Tables I and II show mean absolute error (MAE)
per pixel and FI, respectively, using SAD in 11×11 windows
as the matching function between the reference and one
target frame. We vary the number of frames separating
the target and reference frame and refer to this gap as the
baseline. A baseline of 1 means that the two frames are
adjacent in the video. The most important observations are:
(i) if the baseline is too small, accuracy suffers, (ii) SBPS
is better in MAE because it prevents gross outliers, and
(iii) PS typically obtains higher FI values because it estimates
individual depths per pixel without planar approximations.

Number of Images. We also investigated the effect of the
number of target images. We performed trinocular matching
using two target frames at the same baseline before and after
the reference frame, using the same baselines as in Tables
I and II. The additional target frame led to a reduction of
MAE of 10.3% for PS and 7.1% for SBS and increases
in FI of 12% and 10.2%, respectively. These come at the
cost of essentially doubling the runtime of plane sweeping,
which is linear in the number of target views. Extending
the configuration to include three target views on each side
of the reference, MAE drops approximately by 16.7% for
PS and 7.5% for SBPS. (We compare binocular and 7-view
configurations based on their widest baseline.)

Matching Function. We conducted similar experiments us-
ing NCC as the matching function. Comparing Tables I and
II with MAE and FI results using NCC as the matching
function, we observe a reduction of MAE of 4.9% for PS
and 3.1% for SBS and increases in FI of 4.1% and 3.2%,
respectively. These differences are small, while runtimes are
also similar with our implementations.

Effects of Bundle Adjustment. Performing bundle adjust-
ment (BA) on each clip substantially improves accuracy.
We repeated the experiments in Table I on the same clips,
but without BA. BA substantially reduces the MAE as the
baseline grows. When the baseline is 1, both PS and SBPS
are within 2% in MAE regardless of BA. PS improves by
19% and 26% when the baseline is 11 and 21, respectively,
while the same figures for SBPS are 18% and 27%. This is
expected since wider baselines require more precise calibra-
tion to keep epipolar errors acceptable for matching.



TABLE I
MEAN ABSOLUTE DEPTH ERROR (MAE) PER PIXEL IN METERS, AVERAGED OVER REFERENCE IMAGES, USING ONE TARGET IMAGE AND SAD IN

11×11 WINDOWS. BASELINE REFERS TO THE SEPARATION BETWEEN THE REFERENCE AND TARGET FRAMES IN NUMBER OF FRAMES IN THE

SEQUENCE. ONLY 5% OF THE PIXELS HAVE BEEN SAMPLED FOR SBPS, WHILE DEPTH FOR ALL PIXELS IS ESTIMATED BY PS. SBPS OPERATES AT

1.85 FPS, WHILE PS AT 1.10 FPS.

Baseline 1 3 5 7 9 11 13 15 17 19 21
Truck

PS 1.200 0.701 0.550 0.498 0.483 0.480 0.489 0.503 0.522 0.541 0.554
SBPS 1.150 0.640 0.476 0.418 0.395 0.382 0.378 0.383 0.392 0.405 0.413

Ignatius
PS 0.531 0.311 0.233 0.198 0.184 0.175 0.173 0.174 0.175 0.177 0.179
SBPS 0.575 0.339 0.252 0.217 0.199 0.184 0.179 0.180 0.180 0.180 0.179

Church
PS 5.708 3.921 3.365 3.039 2.890 2.840 2.812 2.791 2.804 2.800 2.813
SBPS 5.915 3.962 3.280 2.926 2.752 2.620 2.603 2.526 2.521 2.503 2.472

Caterpillar
PS 1.721 1.173 0.974 0.896 0.837 0.812 0.796 0.785 0.774 0.796 0.780
SBPS 1.727 1.177 0.972 0.877 0.800 0.780 0.750 0.731 0.723 0.744 0.711

Barn
PS 4.160 3.573 2.930 2.705 2.613 2.596 2.497 2.386 2.376 2.344 2.335
SBPS 4.087 3.515 2.806 2.589 2.424 2.318 2.154 2.004 2.014 1.943 1.982

Meetingroom
PS 3.812 2.796 2.380 2.165 2.056 2.000 1.965 1.907 1.916 1.907 1.872
SBPS 3.827 2.634 2.236 1.936 1.875 1.795 1.742 1.698 1.712 1.723 1.674

TABLE II
FRACTION OF PIXELS WITH RELATIVE DEPTH ERROR UNDER 5% (FI) FOR THE BINOCULAR CONFIGURATION OF TABLE I. LARGER VALUES ARE

BETTER HERE.

Baseline 1 3 5 7 9 11 13 15 17 19 21
Truck

PS 0.103 0.259 0.370 0.436 0.472 0.493 0.500 0.501 0.498 0.493 0.489
SBPS 0.098 0.275 0.401 0.477 0.516 0.543 0.554 0.557 0.553 0.548 0.545

Ignatius
PS 0.125 0.287 0.417 0.502 0.551 0.585 0.597 0.602 0.608 0.609 0.612
SBPS 0.088 0.254 0.401 0.474 0.534 0.576 0.587 0.585 0.595 0.594 0.599

Church
PS 0.047 0.100 0.134 0.171 0.202 0.215 0.230 0.238 0.245 0.259 0.261
SBPS 0.037 0.089 0.127 0.168 0.204 0.224 0.237 0.245 0.256 0.268 0.274

Caterpillar
PS 0.078 0.184 0.267 0.316 0.353 0.375 0.387 0.399 0.408 0.408 0.412
SBPS 0.065 0.180 0.268 0.319 0.363 0.385 0.394 0.409 0.413 0.413 0.418

Barn
PS 0.060 0.117 0.166 0.202 0.228 0.244 0.263 0.282 0.283 0.290 0.284
SBPS 0.050 0.109 0.161 0.196 0.231 0.247 0.281 0.300 0.305 0.316 0.311

Meetingroom
PS 0.037 0.084 0.124 0.150 0.176 0.187 0.198 0.212 0.216 0.225 0.231
SBPS 0.034 0.086 0.119 0.148 0.168 0.183 0.194 0.210 0.216 0.215 0.229

Depth Density in SBPS. Table III shows MAE and FI
for SBPS, using 11×11 SAD on one target frame with
the baseline set at 7, as we vary the percentage of pixels
for which depth is estimated before superpixel fitting. The
loss of accuracy is negligible even when depth is estimated
for only 5% of all pixels, while, as expected, the speed of
photoconsistency estimation and plane fitting increase as the
density decreases. SBPS becomes slower than PS at high
density because it is tailored for sparse depth estimates and
the implementation does not take advantage of the regularity
of fully dense depth maps.

COLMAP and MVSNet. We tested COLMAP [11] and
MVSNet [12] on our data to gain additional insights, even
though both have been tailored for offline 3D reconstruction.
Results can be seen in Table IV and Fig. 4.

After verifying that the triangulation angles at the far range

are large enough, we provided camera poses, depth range and
a total of three images (the reference and the seven frames
before and after it) as input to COLMAP to estimate the
depth map of the reference image. Since COLMAP does
not strictly respect the depth range, we clipped the output
depth values to enforce it. As expected, COLMAP does
not produce depths for textureless regions, or pixels of low
confidence in general. On the other hand, it produces depths
with lower MAE for reasonably textured scenes, like Ignatius
and Caterpillar. COLMAP takes approximately 67 seconds to
estimate depth using a total of three input images. Increasing
the baseline from 7 did not lead to improved accuracy –
increasing the number of images does, but processing times
are longer.

The pre-trained model of MVSNet was applied on the
same image triplets (with a baseline of 7) as COLMAP



and depths were clipped to the specified range. MVSNet
takes 17.4 seconds for each output, after the model has been
loaded. It achieves the best FI on the harder scenes and
overall, but it does not perform as well in terms of MAE. We
hypothesize that this is due to the downsampling that takes
place in the network. MVSNet is faster than COLMAP, but
much slower than PS and SBPS.

(a) Caterpillar PS (b) Caterpillar COLMAP

(c) Ignatius PS (d) Ignatius SBPS

Fig. 4. Depth maps of Caterpillar and Ignatius. PS and SBPS results are
binocular, while COLMAP results are trinocular.

Table IV shows statistics of representative runs of all
algorithms. PS, SBPS, PS-NCC and SBPS-NCC use one
target view, while COLMAP and MVSNet use two target
views. PS-7, SBPS-7, and COLMAP-7 use 7 views: the
reference and target views 7, 14 and 21 frames away in both
directions. All SBPS results refer to a 5% sampling density.
Averages are taken over the six scenes and fps values are
divided by 15 before computing the harmonic mean (HAR).
Binocular SBPS provides the best balance between speed and
accuracy. The vectorized implementation of NCC makes PS-
NCC also competitive. COLMAP performs well in terms of
FI, but is slow. MVSNet is faster but less accurate.

A broad conclusion from our experiments is that the
baseline is indeed the most critical factor that affects 3D
reconstruction. Other factors, such the matching function or
the window size had small impact on this dataset.

VI. CONCLUSIONS

We have created a benchmark that we hope will aid
progress in video-based 3D reconstruction. This is an area

TABLE III
EFFECTS OF VARYING THE DENSITY OF PIXELS WITH DEPTH ESTIMATES

IN SBPS ON MEAN ABSOLUTE ERROR (MAE) AND FRACTION OF

INLIERS (FI)

Density MAE FI fps
Truck 100% 0.410 0.491 0.137

50% 0.412 0.489 0.266
10% 0.411 0.483 1.181

5% 0.417 0.478 2.052
Caterpillar 100% 0.892 0.322 0.137

50% 0.888 0.322 0.267
10% 0.886 0.320 1.156

5% 0.878 0.320 1.731

TABLE IV
STATISTICS OF REPRESENTATIVE RUNS OF ALL ALGORITHMS. SEE TEXT

FOR DETAILS.

Algorithm MAE FI fps HAR
Truck PS 0.498 0.436 1.120 0.127

SBPS 0.417 0.477 1.902 0.200
PS-7 0.438 0.579 0.174 0.023
SBPS-7 0.435 0.594 0.481 0.061
PS-NCC 0.460 0.497 1.157 0.134
SBPS-NCC 0.348 0.558 1.037 0.123
COLMAP 0.752 0.248 0.014 0.002
COLMAP-7 0.682 0.306 0.006 0.001
MVSNet 1.811 0.288 0.057 0.008

Ignatius PS 0.198 0.502 1.128 0.131
SBPS 0.215 0.474 2.026 0.210
PS-7 0.146 0.672 0.180 0.024
SBPS-7 0.172 0.640 0.516 0.065
PS-NCC 0.174 0.570 1.257 0.146
SBPS-NCC 0.188 0.548 1.033 0.122
COLMAP 0.176 0.585 0.014 0.002
COLMAP-7 0.155 0.632 0.006 0.001
MVSNet 0.614 0.140 0.057 0.007

Church PS 3.039 0.171 1.109 0.103
SBPS 2.933 0.168 1.881 0.144
PS-7 2.277 0.299 0.182 0.023
SBPS-7 2.208 0.294 0.531 0.063
PS-NCC 2.456 0.222 1.219 0.119
SBPS-NCC 2.930 0.206 1.021 0.102
COLMAP 3.758 0.177 0.015 0.002
COLMAP-7 2.982 0.214 0.006 0.001
MVSNet 2.985 0.285 0.057 0.008

Caterpillar PS 0.896 0.316 1.122 0.121
SBPS 0.878 0.319 1.913 0.182
PS-7 0.553 0.502 0.175 0.023
SBPS-7 0.592 0.481 0.483 0.060
PS-NCC 0.759 0.392 1.222 0.135
SBPS-NCC 0.737 0.402 1.020 0.116
COLMAP 0.584 0.446 0.015 0.002
COLMAP-7 0.484 0.500 0.006 0.001
MVSNet 1.748 0.300 0.057 0.008

Barn PS 2.705 0.202 1.014 0.101
SBPS 2.521 0.196 1.603 0.138
PS-7 1.845 0.347 0.174 0.022
SBPS-7 1.802 0.347 0.460 0.056
PS-NCC 2.674 0.225 1.240 0.121
SBPS-NCC 2.412 0.228 1.011 0.104
COLMAP 2.156 0.239 0.015 0.002
COLMAP-7 1.935 0.282 0.006 0.001
MVSNet 3.199 0.331 0.057 0.008

Meetingroom PS 2.165 0.150 1.133 0.100
SBPS 1.937 0.148 1.962 0.139
PS-7 1.746 0.262 0.176 0.022
SBPS-7 1.627 0.239 0.494 0.058
PS-NCC 2.087 0.173 1.232 0.111
SBPS-NCC 1.852 0.172 1.035 0.098
COLMAP 2.754 0.180 0.015 0.002
COLMAP-7 2.449 0.214 0.001 0.000
MVSNet 1.579 0.239 0.057 0.007

AVERAGE PS 0.296 1.104 0.114
SBPS 0.297 1.881 0.169
PS-7 0.444 0.177 0.023
SBPS-7 0.433 0.494 0.061
PS-NCC 0.346 1.221 0.128
SBPS-NCC 0.352 1.026 0.111
COLMAP 0.313 0.015 0.002
COLMAP-7 0.358 0.005 0.001
MVSNet 0.264 0.057 0.007

of geometric vision with crucial applications, such as in
autonomous driving, UAV perception and augmented reality,
that suffers from the lack of data with ground truth. We
are optimistic that our dataset can accelerate development
by providing the means to objectively measure performance,
assess algorithmic design choices and also serve as a refer-
ence for comparing different algorithms. We plan to release
the data and the ground truth of the training set and create
a website that will accept and score depth maps submitted
by the research community and host the leaderboard. The
source code of PS and SBPS will also be released.
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