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Abstract

We present a computational framework for the inference of
dense descriptions from multiple view stereo with general
camera placement. Thus far research on dense multiple
view stereo has evolved along three axes: computation of
scene approximations in the form of visual hulls; merging
of depth maps derived from simple configurations, such as
binocular or trinocular; and multiple view stereo with re-
stricted camera placement. These approaches are either
sub-optimal, since they do not maximize the use of avail-
able information, or cannot be applied to general camera
configurations. Our approach does not involve binocular
processing other than the detection of tentative pixel cor-
respondences. We require calibration information for all
cameras and that there exist camera pairs which enable au-
tomatic pixel matching. The inference of scene surfaces is
based on the premise that correct pixel correspondences,
reconstructed in 3-D, form salient, coherent surfaces, while
wrong correspondences form less coherent structures. The
tensor voting framework is suitable for this task since it can
process the very large datasets we generate with reasonable
computational complexity. We show results on real images
that present numerous challenges.

1 Introduction

Reconstruction of three-dimensional scenes from sets of
images is a fundamental problem in computer vision. The
minimum number of images required for reconstruction,
be it projective or metric, is two. The major challenge is
the establishment of pixel correspondences, which is a core
problem that has received extensive attention since the early
days of computer vision. For a review of research on binoc-
ular stereo, the case of exactly two images, interested read-
ers should refer to the work of Scharstein and Szeliski [1].
Even though one might justifiably argue that the core issues
of stereo vision are addressed in the binocular case, the gen-

eralization to multiple images is not straightforward. Note
that by “multiple images or views” we always refer to cases
where the number of images is greater than two.

The additional difficulties in the multiple image case
stem from insufficiencies of either the representation or
the computational framework. View-centered representa-
tions are inadequate for general camera placement, while
the computational complexity associated with processing
a possibly very large number of pixels is prohibitive for
certain methodologies. To bypass these difficulties, re-
searchers have taken different paths. One such path is re-
quiring all cameras to be “on the same side” of the scene.
This class of approaches includes multi-baseline stereo and
other approaches that have one or more privileged images,
for which a depth map is computed and validated using the
remaining images. The2 1

2 -D, view-centered representation
is sufficient for such configurations. A different approach
is to adopt a world-centered representation but restrict all
processing to a limited number of features to keep com-
putational complexity manageable. Once the structure of
the feature points has been estimated, dense stereo is per-
formed on image pairs. Conversely, other researchers com-
pute depth maps from image pairs and merge the results.
Both these approaches do not utilize all the images where a
world point appears at the same time. Recently, a consider-
able amount of work has been devoted to computing scene
approximations, instead of reconstructions, in the form of
“visual hulls”, inspired by Laurentini [2] and by Seitz and
Dyer [3]. Section 2 contains a more extensive review of
multiple-view reconstruction methods.

We present an approach (a preliminary implementation
of which appeared in [4]) that allows truly general camera
placement, employs a world-centered representation and is
able to process large numbers of potential pixel matches,
typically in the order of a few millions, efficiently. No im-
ages are privileged and features are not required to appear
in more than two views. The restriction on camera place-
ment is that cameras must be placed in pairs in such a way
that for each camera there exists at least another one with



a similar viewpoint that allows for automatic correlation-
based dense pixel matching. One could place such cam-
eras pairs arbitrarily in space with no other considerations
for image overlap or relationships between the locations of
camera centers and the scene. Moreover, unlike other lead-
ing multiple view reconstruction methods [5][6][7][8][9],
we do not segment and discard the “background” but at-
tempt to reconstruct it together with the foreground. Cam-
era calibration information and a common world coordi-
nate frame for all cameras have to be provided. We cast
the problem as one of perceptual organization of potential
pixel matches reconstructed in 3-D. The premise is that cor-
rect potential matches should form coherent surfaces, while
erroneous potential matches should not align in ways that
form surfaces that are as salient as those formed by the cor-
rect matches. The tensor voting framework [10] provides
an effective, computationally efficient means for achieving
this type of perceptual organization even under severe noise
contamination.

We present results on challenging datasets captured for
the Virtualized Reality project of the Robotics Institute
of Carnegie Mellon University and distributed freely at
http://www-2.cs.cmu.edu/virtualized-reality. Besides the
people that appear in the images, we also reconstruct the
floor and the visible parts of the dome. To our knowledge,
no reconstructions of these scenes, using static images only,
have been published, even thought the data have been avail-
able for a few years. Some of the input images can be seen
in Fig. 1. The outputs presented in these paper are in the
form of 3-D point clouds. Inference of surfaces from such
data is out of the scope of this paper and can be addressed
as in [11][12].

The paper is organized as follows. Related work is pre-
sented in the next section, an overview of the approach is
presented in Section 3, the initial processing steps in Sec-
tion 4, and the tensor voting framework in Section 5. Ex-

Figure 1: Some of the input images of the “meditation” set
captured at the CMU dome. Some of the cameras are visible
in each image

perimental results are shown in Section 6, while a summary
and perspectives are given in Section 7.

2 Related Work

Early research on multi-baseline stereo includes the work
of Okutomi and Kanade [13] who use both short and long
baselines, which offer different advantages, from a set of
cameras perfectly placed on a straight line with parallel op-
tical axes. A layer based approach that can handle occlusion
and transparency was presented by Szeliski and Golland
[14]. The assumption is that the cameras are sufficiently
far away from the scene so that it can be represented as a
set of planes in 3-D. The number of these layers, however,
is hard to estimate a priori and initialization of the algo-
rithm is difficult. Kanget al. [15] advance the state of the
art in multi-baseline stereo by taking occlusion into account
when selecting the subset of images in which each pixel
can be matched. The representation in all these approaches
is view-centered and dense disparity maps are produced for
one or more privileged images.

Approaches that employ 3-D representations are also nu-
merous. They fall into two categories: those that recon-
struct sparse features initially and then use binocular stereo
to produce dense depth estimates; and those that merge the
view-centered depth maps that have been produced from
binocular or multi-baseline stereo. A landmark approach
of the former category is the work of Pollefeyset al. [16]
that performs self-calibration of the cameras, even in the
case of varying internal parameters, based on a set of sparse
features and then uses binocular matching to complete the
models. Lhuillier and Quan [17] increase the robustness
of scene and camera geometry estimation by using “quasi-
dense” instead of sparse features. Then, the results from im-
age pairs and triplets are merged to produce the final recon-
struction. Other approaches the fall in the category of merg-
ing depth maps, include the work of Fua [11], Narayananet
al. [18] and Taylor [19]. We argue that even though these
schemes are effective, the fact that they do not utilize all the
available information during binocular processing does not
allow them to achieve the best possible quality in the pro-
duced depth maps, and thus the merged surfaces are also not
as good as possible.

Recently, volumetric multiple view methods have at-
tracted a lot of attention from the computer vision commu-
nity. Kutulakos and Seitz [6] introduced the space carving
framework which is based on the notion of “photoconis-
tency” to derive the visual hull of the scene, which is an ap-
proximation of shape, from a set of images. Voxels from an
initial volume, which must contain the scene, are progres-
sively carved away if their projections on the images are
not photoconsistent, that is if they exhibit large color vari-
ations. This indicates that the voxel under consideration is



empty and the projections come from voxels occluded by it,
which are revealed once it is removed from the volume. The
formulation of [6] alleviates the camera placement restric-
tions of [3] and the only assumption is that of “free space”,
which states that the photoconsistent scene must completely
lie within an arbitrary volume, which must not contain the
optical centers of the cameras. A limitation of the original
space carving algorithm is that it cannot recover from the
erroneous carving of a voxel which leads to further carv-
ing into the volume since photoconsistency is violated by
voxels behind the actual surface. Techniques that have been
proposed to address this problem can be found in recent sur-
veys of volumetric methods such as [20] and [21].

Outstanding results on binocular stereo have been
achieved using graph cuts. Kolmogorov and Zabih [8] ex-
tended the framework to multiple images. The problem is
formulated as finding the approximate minimum of a global
energy function via graph cuts. The framework treats all im-
ages equally, takes visibility into account and most impor-
tantly enforcessmoothnessto the solution while preserving
boundaries. Smoothness in the form of spatial coherence
of the reconstructed surfaces is a critical limitation of the
volumetric methods of the previous paragraph, which op-
erate at the pixel-voxel correspondence level without im-
posing any form of smoothness in the resulting surfaces.
While the cameras can be placed according to the restric-
tions of voxel coloring [3], results are only presented for
examples in which all the cameras lie on a plane looking at
the same direction. Furthermore, computational complexity
is quadratic with respect to the number of possible labels
(depth layers), which has to be kept low (16 in the experi-
ments presented in [8]).

Variational approaches have also been proposed for the
problem of the multiple view stereo with excellent results.
Faugeras and Keriven [5] pose multiple view stereo in a
variational framework where an initial surface evolves ac-
cording to image correspondence criteria. Cross-correlation
on the tangent plane of the surface, instead of regular square
windows which imply fronto-parallel surfaces, is used as
the similarity measure. Yezzi and Soatto [7] address a dif-
ferent type of scenes in which surfaces have smooth or con-
stant albedo, or fine homogeneous texture. To avoid the dif-
ficulties associated with the computation of image deriva-
tives, they do not rely on local correspondence, but on re-
gion similarity measures which are very effective for the
types of objects they handle. Jinet al. [9] extend the frame-
work to handle any type of surface including non Lamber-
tian ones by imposing a rank constraint on the radiance ten-
sor. They achieve excellent results, but are limited, as are
the previous two approaches, by the “blue sky” assumption
[7] regarding the background which must be segmented and
discarded.

Our work differs in that camera pairs can be arbitrar-

ily placed, as long as calibration information is provided
or computed as in [16], without any requirements for free
space or blue sky type background. The proposed approach
utilizes all available information simultaneously for recon-
struction and does not approximate the scene surfaces. It is
important to note that we do not make any decisions about
pixel correspondence at the binocular level. We only make
hypotheses for potential correspondences.

3 Overview of the Approach

The input to our algorithm is a set of images of a static
scene and complete calibration information (both internal
and external parameters). The output consists of a set of
3-D points that belong on the scene surfaces. Processing
entails the following steps:

• selection of image pairs and rectification to align con-
jugate epipolar lines

• initial binocular matching to generate matching candi-
dates

• reconstruction of matching candidates in 3-D

• tensor voting on the point cloud to infer surface inliers.

Tensor voting [10] is an effective framework to infer per-
ceptual structures, such as surfaces, curves and junctions,
from noisy data. For the problem at hand we can assume
that each pixel is a projection of an elementary scene surface
patch (surfel) and that the only structure types we are likely
to encounter are surfaces and surface intersections, were
abrupt changes of surface orientation occur. Each match-
ing candidate is reconstructed as a 3-D point and encoded
as a second order tensor that contains the point’s orienta-
tion information. During the voting process, tensors cast
to their neighbors votes that can be interpreted as support
for an orientation at the receiver consistent with that of the
voter. Therefore, points that are aligned to form coherent
smooth surfaces (not necessary planar, or of any other para-
metric form) reinforce each other’s orientation estimate and
develop a preference for a certain surface orientation. We
assume that these are the true scene surfaces that are formed
by the correct matching candidates. On the other hand,
points that were derived from wrong matches are, if not ran-
dom, not aligned to form surfaces as smooth and coherent
as the correct ones. Thus, these points receive contradicting
votes and do not develop a strong preference for a particu-
lar surface orientation. We propose to use surface saliency,
the amount of support points receive as being inliers of a
smooth surface, as the measure to select the correct match
among all the candidates on each line of sight.



4 Initial Processing Steps

In this section we describe the processing stages that pre-
cede the main tensor voting stage.

Image pair selection and rectification As can be seen in
Fig. 1, the input images suffer from severe radial distortion.
The first step, therefore, is to correct the distortion using the
providedκ1 coefficient. The next step is the selection of
image pairs taken from similar viewpoints. Only when the
images are taken from a similar angle and a similar distance
is automatic pixel matching possible. Otherwise scaling and
perspective effects make the matching process really hard.
This is why we need pairs of images from similar view-
points to proceed. Once the image pairs have been selected
(manually, even though automatic selection would not have
been very complicated to implement), the images are recti-
fied in pairs so that all epipolar lines in both images become
horizontal and conjugate epipolar lines share the row coor-
dinate. This is accomplished using the calibration informa-
tion, but no correspondences, by our implementation of the
work of Gluckman and Nayar [22]. An example pair can be
seen in Fig. 2(a-b). Note that the effects of radial distortion
have not been entirely removed close to the image bound-
aries, and that in these areas corresponding features do not
lie on conjugate epipolar lines. Each image can be used in
more than one pair, but rectification has to be performed
separately for each pair.

Generation of matching candidates The input to this
stage is rectified image pairs. The output is matching can-
didates reconstructed in 3-D world coordinates, labeled ac-
cording to the line of sight (going through the optical center
and the image pixel) they belong to. It can be viewed as
binocular processing, even though no decisions are made
and the objective is the inference of potential 3-D points
that belong to the scene.

Matching candidates are generated for each image pixel
of the “left” or reference image of each pair by a7 × 7
normalized cross-correlation window. We apply a simple
parabolic fit using the neighboring values of peaks in the
correlation function to achieve subpixel precision. All sig-
nificant peaks of cross-correlation are retained as matching
candidates. As a result, more than one candidate can be
generated for each pixel. Figure 2(c) shows a disparity map
of the matching candidates, where candidates for the same
pixel with larger disparity are written on top of ones with
smaller disparity, for one pair of the “meditation” set.

Figure 2(d) shows an attempt to process the pair in the
same way we process datasets generated by multiple pairs
in the remainder of the paper. The results are not satisfac-
tory since wrong matches caused by occlusion (around the
head of the person for instance), misalignment due to ra-

(a) Left image (No. 20) (b) Right image (No. 01)

(c) Matching candidates (d) Disparity map after
in disparity space binocular processing

Figure 2: Two images of a rectified pair (a-b), the generated
matching candidates in disparity space (c) and an attempt
to produce a disparity map with binocular processing (d)
(lighter intensity corresponds to larger disparity, white indi-
cates no match)

dial distortion (close to the borders) and lack of texture (on
the floor) cannot be discriminated from the correct ones.
However, when processing is done using all matching can-
didates generated from all image pairs, consistent matches
form surfaces that stand out among the clutter. We consider
this a significant advantage of processing all data simultane-
ously over merging inaccurate depth maps produced binoc-
ularly. The next section discusses how these surfaces can be
inferred using tensor voting.

5 Tensor Voting

The use of a voting process for structure inference from
sparse and noisy data was presented in [10]. The methodol-
ogy is non-iterative and robust to considerable amounts of
outlier noise. It has one free parameter: the scale of vot-
ing σ, which essentially defines the size of the neighbor-
hood of each point. The input data is encoded as second-
order symmetric tensors, and constraints, such as proximity,
co-linearity and co-curvilinearity are propagated by voting
within the neighborhood. The tensors allow the represen-
tation of points on smooth surfaces, surface intersections,
curves and junctions, without having to keep each type in
separate spaces. In 3-D, a second-order tensor has the form
of an ellipsoid, or equivalently of a3 × 3 matrix, whose
eigenvectors correspond to the axes of the ellipsoid and
whose eigenvalues correspond to their lengths. Its shape
encodes the type of feature that it represents, while its size
the saliencyor the confidence we have in this information



(a) Example tensors (b) Vote generation

Figure 3: Tensor Voting. (a) The shape of the tensor indi-
cates if there is a preferred orientation, while its size corre-
sponds to the confidence of this information. The top tensor
has a strong preference of orientation and is more salient
than the bottom tensor. (b) Vote generation as a function of
the distance and curvature of the arc and the orientation of
the voter

(Fig. 3(a)).
Tensors communicate information to their neighbors in

the form ofvoteswhich are also second order tensors. Their
shape corresponds to the orientation the receiver would
have, if the voter and receiver were in the same structure.
The saliency (strength) of a vote cast by a unitary stick
tensor (an elementary surface) decays with respect to the
length of the smooth circular path connecting the voter and
receiver, according to the following equation:

S(s, κ, σ) = e−( s2+cκ2

σ2 ) (1)

Wheres is the length of the arc between the voter and re-
ceiver, andκ is its curvature (see Fig. 3(b)),σ is the scale
of voting, andc is a constant.

As shown in Fig. 3(b), the vote from the voterO (which
has a surfacenormalorientation indicated by the thick vec-
tor) to the receiverP has the orientation thatP would have
had, if O andP indeed were in the same smooth surface,
which is not restricted to being planar. If more points were
consistent with this surface,P would receive a number of
votes with similar preference for orientation. Thus, it would
develop highsurface saliencyand, thus, it would be inferred
as a surface inlier, while an estimate of its orientation would
also be available.

In practice, vote accumulation is performed by tensor ad-
dition, which is equivalent to the addition of3×3 matrices.
After voting is complete, the eigensystem of each tensor is
analyzed and the tensor is decomposed as in:

T = λ1ê1ê
T
1 + λ2ê2ê

T
2 + λ3ê3ê

T
3 =

= (λ1 − λ2)ê1ê
T
1 + (λ2 − λ3)(ê1ê

T
1 + ê2ê

T
2 )

+ λ3(ê1ê
T
1 + ê2ê

T
2 + ê3ê

T
3 ) (2)

whereλi are the eigenvalues in decreasing order andêi are
the corresponding eigenvectors. Whether a point belongs

Figure 4: A view from above of all matching candidates (a
little over one million) of the “meditation” set reconstructed
in world coordinates. Notice the rays of matching candi-
dates emanating from the cameras that are contained in the
dome (close to the center of the point cloud)

to a smooth perceptual structure is determined as follows.
The difference between the two largest eigenvalues encodes
surface saliency, with a surface normal given by~e1. The
difference between the second and third eigenvalue encodes
curve saliency, with~e1 and~e2 being normal to the curve and
~e3 tangent to it. Finally, the smallest eigenvalue encodes
junction saliency. If surface saliency is high, the point most
likely belongs on a surface and~e1 is its normal. Outliers
that receive no or inconsistent support from their neighbor-
hood can be identified by their low saliency and the lack of
a dominant orientation. In the case of stereo, we assume
that that all inliers lie on surfaces that reflect light towards
the cameras, and therefore we do not consider curves and
junctions.

The size of the voting neighborhood is a function of the
scaleσ of equation (1). It is the only free parameter of
the framework and controls the amount of smoothness. The
size of the voting neighborhood is set as the distance from
the voter beyond which the magnitude of the vote is less
than 1% of the magnitude of the voting tensor. In all cases,
reasonable outputs can be produced over a large range of
scales, with gradually varying degree of smoothness and ro-
bustness to noise.

Application to multiple view reconstruction The input
to the tensor voting stage is a cloud of points (Fig. 4) and
the desired output is a subset of those points that includes
the inliers of the most salient surfaces. Since we need to
process over one million points in the examples presented
here, the fact that tensor voting operates in neighborhoods
of fixed size is beneficial since the number of votes cast by
each point is a function of the size of the neighborhood and
thus complexity is not quadratic.



Taking into account visibility, we initialize the tensor at
each point as an oriented surfel with a stick tensor point-
ing to the midpoint of the optical centers of the cameras
that generated the matching candidate. This orientation es-
timate, that can be corrected after voting, assures that the
point supports surfaces that could be visible from the ap-
propriate cameras. All points cast tensor votes to their
neighbors in 3-D, regardless of which images were used to
generate each point, thus combining all information in one
processing stage. Analysis of the accumulated tensors af-
ter voting produces corrected surface normal estimates and
saliency values based on the support each point receives. A
second pass of tensor voting using this information is per-
formed before the final decisions are made.

Then, uniqueness with respect to the lines of sight is en-
forced, leaving one candidate for every image pixel. The
criterion is maximum surface saliency. Therefore, for each
pixel of all images, the match that receives the maximum
support as an inlier of a salient surface, remains in the
dataset. This step is not enough to guarantee the removal of
all wrong matches, since we cannot assume that the match-
ing candidates for some pixels, especially the ones in dis-
torted or textureless areas, include the correct match. The
remaining wrong matches can be rejected based on their low
surface saliency, since, if no accidental alignment has oc-
curred, they do not form coherent surfaces and, therefore,
do not receive significant support from their neighbors as
surface inliers. Simple thresholding with respect to average
surface saliency is enough to produce datasets with mostly
correct surface points, as shown in the next section.

6 Experimental Results

For the experiments presented in this section, we used two
image sets captured at the CMU dome. Both the “medita-
tion” and “baseball” sets were captured with identical set-
tings and the results we present were produced with the
same parameters. The input consists of the same 10 image
pairs using a total of 17 images that were selected among the
51 total images based on viewpoint similarity to facilitate
automatic matching. The images are320 × 245 with 8 bits
of grayscale values. Besides the distortion issues that were
mentioned above, there is also motion blur in the “baseball”
set (Fig. 6(a-b)).

Matching candidates are generated using a7×7 correla-
tion window as in Section 4. Nine pairs are processed with
the same disparity range (-40 to 40 for “meditation” and -20
to 55 for “baseball”) and the last pair, which is elevated, is
processed using 20 to 75 for the disparity range. The only
negative effect of a large disparity range is an increase in
processing time for the generation of matching candidates.

The matching candidates are reconstructed in 3-D by tri-
angulating the rays that go through the two pixels and the

(a) All reconstructed points (b)45o view of all points

(c) Side view of all points (d) Most salient surface inliers

(e) Points at the center (f) Rotated view of center
of the dome

Figure 5: Results for the “meditation” set. Three views of
all the reconstructed points with surface saliency at least
twice its average value (a-c). A view of the points with
surface saliency at least 12 times the average, which are
mostly on the person and the floor (d); and two views of
only the center of the entire dataset (e-f)

optical centers of the cameras. Given the poor image reso-
lution, quantization noise is significant and the localization
of the reconstructed points is not perfect. They do, however,
form surfaces that are close to the true scene surfaces. We
are able to infer these surfaces from the point cloud after
tensor voting since the points they comprise receive more
support than the outliers. Unfortunately, we do not have
ground truth data to compare our results to. We use4mm
as the unit of distance in the world coordinate system and
perform tensor voting withσ2 = 500, which corresponds to
a voting radius of 48 units of distance.

The execution times of the un-optimized implementation
of our code on a Pentium IV at 2.8GHz for the “meditation”
set are the following:

• The generation of matching candidates using a7 × 7
normalized cross-correlation window and searching 80
possible disparity levels takes 16 seconds.

• The reconstruction of all points in 3-D takes 1 minute
and 21 seconds.

• Tensor voting and analysis of the results for 1,126,554
points withσ2 = 500 takes 44 minutes and 30 seconds.
(In the case of “baseball” tensor voting for 1,117,920



(a) Rectified image (No. 17) (b) Rectified image (No. 16)

(c) All reconstructed points (d) Rotated view

(e) Points at the center (f) Rotated view of center
of the dome

Figure 6: Results for the “baseball” set. One of the ten pairs
used (a-b). Two views of all the reconstructed points with
surface saliency at least twice the average value (c-d); and
two views of only the center of the dataset (e-f)

points takes 40 minutes and 2 seconds.)

Due to the nature of the scenes, visualization of the re-
sults is hard. Besides the entire output which includes the
person, the visible parts of the dome and the floor, we have
also included in Figs. 5 and 6 views of the center of the data
only, where the person is, as well as of the topmost salient
surfaces, which again tend to be those of the person where
maximum point concentration occurs since they are visible
from a larger number of cameras.

7 Concluding Remarks

We have presented an approach for multiple view recon-
struction that can deal with scene and camera configura-
tions that cannot be handled by current state of the art al-
gorithms. The typical “blue sky” and “free space” assump-
tions are not required, with the only constraint on camera
placement being that viewpoints must be similar enough to
allow automatic pixel matching. The tensor voting compu-
tational framework allows the simultaneous processing of
all matching candidates, utilizing all the available images
to a far greater extend than approaches based on the fusion
of binocular results. The computational cost is reasonable
since all processing is local and distant points do not affect
each other. Methods with quadratic complexity with respect

to the number of pixels would incur severe computational
requirements in examples with close to one million pixels,
such as the ones presented here. We have strived to maintain
a high level of generality. All images are treated equally and
there are no privileged views for which depth maps are com-
puted. The representation is fully three-dimensional and
there are no view-dependent elements.

Satisfactory results can be produced even with low res-
olution and low quality images. This is due to the fact
that features are not required to appear in more than two
views. Given the poor resolution of the available images
(320 × 245), matching a feature in multiple views is hard.
In fact, very few matches where validated in additional im-
ages, besides the two used for the matching. However, since
features are validated by the support the receive as surface
inliers, the problem is transformed from validation at the
point level to validation at the surface level. Therefore, as
long as a matching candidate can be reconstructed in 3-D
sufficiently close to the true surface, exact point correspon-
dence in multiple images is not required. Thus, we are able
to achieve reconstructions at a resolution higher than what
would have been possible with methods such as [16] that re-
quire point correspondences in multiple frames or methods
based on space carving [6] that require exact pixel-voxel
correspondences.

Processing all data at the same time maximizes perfor-
mance at occluded and textureless regions where binocu-
lar stereo typically encounters difficulties. The “fattening”
of occluding surfaces, which is a problem in the binocular
case, is diminished in the multiple view case because parts
of both the occluding and occluded surfaces that are invisi-
ble in a particular image can be seen in different views and
thus produce correct matches that outweigh the wrong ones.
Errors in textureless regions that are caused by the ambigu-
ity of matching are less severe when matching candidates
from more than one pair are combined. Then, the correct
surface is more likely to be formed, even in the midst of
a large number of outliers. The same is not guaranteed to
happen in the binocular case with the same error rate in the
matching stage. Figure 2(d) shows a disparity map for one
pair of the “meditation” set that was processed the same
way as the entire dataset. We do not by any means claim
that this is the best result that can be achieved for this pair,
but it is worth noticing the number of errors that occur in
occluded and textureless areas which are eliminated when
all matching candidates are processed simultaneously. Fu-
sion of binocular reconstructions cannot be more effective
than simultaneous processing of all available information.

The proposed approach fails when the assumption that
correct matches form more salient surfaces than incorrect
ones does not hold. This is the case when systematic er-
rors in the initial matching stage occur for some reason and
the algorithm “hallucinates” non-existent surfaces. This is



a weakness of all perceptual organization approaches, but
does not occur often. The noise that appears in the results
presented in this paper could have been eliminated by an-
other pass of tensor voting or during the surface extraction
process, but this is beyond the scope of this paper.

The contributions of this paper over the preliminary ver-
sion of this work published in [4] improve the quality of
the reconstruction and expand the range of configurations
where our algorithm is applicable. Initial matching is now
dense and no pixels are considered “unmatchable”. It is also
performed with subpixel accuracy leading to more accurate
reconstruction of the matching candidates. The input set of
images is not limited to equally spaced turntable sequences
and there is no need for manual background segmentation.
As discussed above, matches do not need to be validated in
more than two views. In the examples presented here, very
few matches are exactly confirmed by more than one pair of
images due to low image resolution.
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