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Abstract

We present an evaluation methodology and data for
large scale video-based 3D reconstruction. We evaluate
the effects of several parameters and draw conclusions that
can be useful for practical systems operating in uncon-
trolled environments Unlike the benchmark datasets used
for the binocular stereo and multi-view reconstruction eval-
uations, which were collected under well-controlled condi-
tions, our datasets are captured outdoors using video cam-
eras mounted on a moving vehicle. As a result, the videos
are much more realistic and include phenomena such as ex-
posure changes from viewing both bright and dim surfaces,
objects at varying distances from the camera, and objects
of varying size and degrees of texture. The dataset includes
ground truth models and precise camera pose information.
We also present an evaluation methodology applicable to
reconstructions of large scale environments. We evaluate
the accuracy and completeness of reconstructions obtained
by two fast, visibility-based depth map fusion algorithms as
parameters vary.

1. Introduction

The problem of 3D reconstruction from video is an im-
portant topic in computer vision. Recently, the acquisi-
tion of videos primarily of cities using cameras mounted
on vehicles has been the focus of several research and
commercial organizations. The goal is to generate high-
quality 3D models of complete cities to be used primar-
ily for visualization. In this paper we propose a system
that evaluates two properties of 3D reconstruction: geo-
metric accuracy and completeness. The metrics are sim-
ilar to those of the Multi-view Stereo Evaluation web-
site (http://vision.middlebury.edu/mview/) [14], but they are
used for large scale scene reconstruction and not for the
reconstruction of a single object. Both properties directly
contribute to the visual quality of the reconstruction, since
inaccuracies in geometry create in disturbing artifacts as the
user changes viewpoint, while low completeness coverage
also reduces the effectiveness of the visualization. Besides

the domain, the key difference between our work and pre-
vious evaluation efforts [13, 14] is that our dataset is more
representative of what would be expected in a real-world ap-
plication. Our dataset depicts objects of varying sizes and
texture properties such as specular reflections while the dis-
tance from the camera to the scene and the brightness vary.

Our initial test dataset consists of approximately 3,000
frames of video of a large building captured by cameras
mounted on a vehicle equipped with a Global Positioning
System (GPS) and an Inertial Navigation System (INS).
We use, as baseline reconstruction algorithms, the two
visibility-based depth map fusion algorithms presented in
[10]. They operate like a sliding window on a set of poten-
tially noisy depth maps and their output is a smaller set of
depth maps that minimize visibility violations, improve the
accuracy of the depth estimates and reduce the redundancy
of the input depth maps which have large overlaps with each
other. The basic concepts of the algorithms are presented in
Section 4, while more details can be found in [10].

In order for our evaluation software to be independent
of the algorithm being evaluated, we adopted an approach
that evaluates 3D points and thus applies to point-based and
mesh-based representations. For meshes, the vertices of the
mesh are evaluated. In Section 5, we evaluate the effects of
parameters, such as the window size used in stereo match-
ing, the number of depth estimates per pixel, the number of
images used for the computation of each depth map and the
number of depth maps that are fused to produce one fused
depth map, on both accuracy and completeness.

2. Related Work
In this section, we review 3D reconstruction methods

that are applicable to large scale scenes. Our focus is mainly
on methods that use image and video inputs, but we also re-
view important approaches for general range data. Surveys
of binocular and multiple-view stereo research, which can
be components in a large scale reconstruction system, but
are not able to process more than a few dozen images, can
be found in [4, 15, 13, 1, 14].

A widely used algorithm for merging two triangular
meshes was proposed by Turk and Levoy [16]. A volumet-
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ric approach that also received a lot of attention was later
presented by Curless and Levoy [3] who compute a cumu-
lative weighted distance function from the depth estimates.
The surface is then extracted as the zero-level set of the dis-
tance function. Wheeler et al. [17] increase the robustness
of [3] by requiring a minimum amount of support for each
depth estimate before it is integrated in the final model.

Koch et al. [8] presented a video-based reconstruction
approach which detects binocular pixel correspondences
and then links depth estimates across more cameras to re-
fine their position and reduce uncertainty. Narayanan et
al. [11] compute depth maps using multi-baseline stereo
and merge them to produce viewpoint-based visible surface
models. Koch et al. [9] developed a volumetric approach
in which estimates vote for voxels in a probabilistic way.
Sato et al. [12] also proposed a volumetric method based
on voting. Each depth estimate votes not only for likely
surfaces but also for free space between the camera and
the surfaces. Goesele et al. [6] use a two-stage algorithm
which merges depth maps produced by a simple multiple-
view stereo module. Depth estimates are rejected if cross-
correlation is not large enough for at least two target views.
The remaining depth estimates are merged using [3].

Our depth map fusion approach [10] is viewpoint-based
and generates consensus depths by taking visibility con-
straints into account. We present two algorithms that oper-
ate on the set of depth hypotheses for each pixel of a refer-
ence view to produce one reliable depth per pixel. The eval-
uation metrics we use resemble those of Seitz et al. [14].
Their evaluation is performed using ground truth models
of two objects that have been accurately reconstructed us-
ing active sensors. Accuracy is defined as the distance d
such that 90% of the reconstructed points are within d of
the ground truth. Completeness is defined as the percentage
of points on the ground truth model that are within 1.25mm
of the reconstruction.

3. Evaluation Methodology
In this section, we describe the ground truth data, the in-

put data that are available to the algorithms, and the evalua-
tion procedure. The ground truth model used for the results
presented in this paper is a Firestone building. Its dimen-
sions are 80 × 40m and it was surveyed at an accuracy of
6mm. The surveyed model can be seen in Fig. 1(a). There
are several objects such as parked cars that were not sur-
veyed even though they appear in the video. Several of the
doors of the building were closed during the collection of
the ground truth data, but were left open during the col-
lection of the video data. This caused some of the interior
of the building to be reconstructed. The ground also was
not surveyed. Since accurate measurements of all of these
reconstructed objects were unavailable they are manually
removed from the evaluation.

The test dataset includes 3,000 video frames of the exte-
rior of the Firestone building captured by two cameras on a
vehicle driving around the building. Using GPS and inertial
measurements, the geo-registered position and orientation
of the vehicle is available at each frame. The position and
orientation of the cameras is calibrated with respect to the
GPS unit on the vehicle. Given this information, the cam-
era poses can be computed. There is virtually no overlap
between the two cameras, since one of them was pointed
horizontally towards the middle and bottom of the building
and the other was pointed up 30◦. The input to the recon-
struction algorithm is a set of frames with known camera
intrinsic parameters and poses. Since there is no overlap be-
tween the cameras, reconstruction can only be done using a
single-camera video-based method. The data is representa-
tive of the kind of data expected in a real-world application
where there are many uncontrolled variables such as vari-
ations in texture, brightness, and the distance between the
camera and the scene.

We evaluate two quantities of the reconstructed model:
accuracy and completeness. To measure the accuracy of
each reconstructed vertex, the distance from the vertex to
the nearest triangle of the ground truth model is calculated.
The error measurements for each part of a reconstruction
using the confidence-based algorithm described in the next
section are displayed in Fig. 1(c). Completeness measures
how much of the building was reconstructed. Sample points
are chosen at random on the surface of the ground truth
model so that there are on average 50 sample points per
square meter of surface. The distance from each sample
point to the nearest reconstructed vertex is measured. A
visualization of these distances are shown for one of the re-
constructions in Figure 1(d). Unless otherwise specified, a
threshold of 50cm is used for the completeness measures
presented in Section 5.

4. Baseline depth map fusion algorithms
In this section, we briefly describe the two visibility-

based depth map fusion algorithms of [10]. We employ a
two-stage strategy that allows us to achieve very high pro-
cessing speeds. By decoupling the problem into the recon-
struction of depth maps from sets of images followed by the
fusion of these depth maps, we are able to use simple fast al-
gorithms that can be easily ported to the GPU. Conflicts and
errors in the depth maps are identified and resolved in the
fusion stage. In this step, a set ofN depth maps from neigh-
boring camera positions are combined into a single depth
map for one of the views. The end result is a fused depth
map from the perspective of one of the original viewpoints.
This viewpoint is called the reference view and is typically
selected to be the center viewpoint of the set. Processing is
performed in a sliding window of the data, since it is im-
possible to process thousands of images simultaneously. In



(a) Surveyed Model of the Firestone Building (b) Reconstructed Model using Fused Depth Maps

(c) Visualization of the accuracy evaluation, where white indicates
parts of the model that have not been surveyed and blue, green and
red indicate errors of 0cm, 30cm and 60cm or above, respectively.
Please view on a color display.

(d) Completeness of the Firestone building. The color coding is the
same as in (c). Red areas mostly correspond to unobserved or untex-
tured areas.

Figure 1. Firestone Building Accuracy and Completeness Evaluation

addition, the fusion step produces a more compact represen-
tation of the data because the number of fused depth maps
is a fraction of the original number of depth maps. Much
of the information in the original depth maps is redundant
since many of the closely-spaced viewpoints observe the
same surface. After fusion, a mesh is generated using a
quadtree approach that minimizes the number of triangles
maintaining geometric accuracy. See [10] for details. The
same module detects overlaps between consecutive fused
depth maps and merges the overlapping surfaces.

4.1. Multiple-View Stereo

The first stage of the reconstruction computes depth
maps from sets of images captured from a single mov-
ing camera with known poses using plane-sweeping stereo
[2, 18, 5]. The depth map is computed for the central im-
age in a set of 5 to 11 images. At each pixel, several depth
hypotheses are tested in the form of planes. For each plane,
the depth for a pixel is computed by intersecting the ray
emanating from the pixel with the hypothesized plane. All
images are projected onto the plane and a cost for the hy-
pothesized depth is calculated as the sum of absolute in-
tensity differences (SAD). The set of images is divided in
two halves, one preceding and one following the reference
image. The SAD between each half of the images and the
reference view is calculated in square windows. The min-
imum of the two sums is the cost of the depth hypothesis
[7]. This scheme is effective against occlusions, since in
general the visibility of a pixel does not change more than
once in an image sequence. The depth of each pixel is es-
timated to be the depth d0 with the lowest cost. Each pixel

is processed independently allowing non-planar surfaces to
be reconstructed.

The depth with the lowest cost may not be the true depth
due to noise, occlusion, lack of texture, surfaces that are
not aligned with the plane direction, and many other fac-
tors. Thus, a measure of confidence of each depth estimate
is important. Let c(x, d) be the matching cost for depth d
at pixel x. We wish to estimate the likelihood that the true
depth, do, does not have the lowest cost after the cost is
perturbed. Assuming Gaussian noise, this likelihood is pro-
portional to: e−(c(x,d)−c(x,d0))2/σ2

for some σ that depends
on the strength of the noise. The confidence C(x) is de-
fined as the inverse of the sum of these probabilities for all
possible depths:

C(x) =

 ∑
d6=d0

e−(c(x,d)−c(x,d0))2/σ2

−1

(1)

This equation produces a high confidence when the cost
has a single sharp minimum. The confidence is low when
the cost has a shallow minimum or several low minima.

4.2. Visibility-Based Fusion

The input to the fusion step is a set of N depth maps
denoted by D1(x), D2(x), . . . , DN (x) which record the
estimated depth of each pixel of the N images. Each
depth map has an associated confidence map labeled
C1(x), C2(x), . . . , CN (x) computed according to (1). Typ-
ically the central viewpoint is selected as the reference view
and we seek a depth estimate for each of its pixels. The cur-
rent estimate of the 3D point seen at pixel x of the reference



(a) Visibility relations between points (b) Stability calculation (c) Support estimation
Figure 2. (a) Visibility relations between points. The point A′ seen in view i has its free space violated by A seen in the reference view.
B′ supports B. C seen in the reference view is occluded by C′. (b) Stability Calculation. In this example, there are two occlusions which
raise stability and one free-space violations which lowers it. The stability is +1. (c) Support calculation. Three measurements are close to
the current estimate and add support to it. Outside the support region, there is one occlusion and one free-space violation which lower the
support.

view is called F̂ (x). Ri(X) is the distance between the cen-
ter of projection of viewpoint i and the 3D point X. To sim-
plify the notation, we define the term f̂(x) ≡ Rref (F̂ (x))
which is the distance of the current depth estimate F̂ (x) for
the reference camera.

The first step of fusion is to render each depth map into
the reference view. When multiple depth values project onto
the same pixel, the nearest depth is kept. Let Dref

i be the
depth mapDi rendered into the reference view and Crefi be
the confidence map rendered in the reference view. Given a
3D point X, we need a notation to describe the value of the
depth map Di at the location where X projects into view i.
Let Pi(X) be the image coordinates of the 3D point X pro-
jected into view i. To simplify the notation, the following
definition is used Di(X) ≡ Di(Pi(X)). Di(X) is likely to
be different from Ri(X) which is the distance between X
and the camera center.

Our approach considers three types of visibility relation-
ships between hypothesized depths in the reference view
and computed depths in the other views. These relations
are illustrated in Fig. 2(a). The point A′ observed in view i
is behind the point A observed in the reference view. There
is a conflict between the measurement and the hypothesized
depth since view i would not be able to observe A′ if there
truly was a surface at A. We say that A violates the free
space of A′. This occurs when Ri(A) < Di(A).

In Fig. 2(a), B′ is in agreement with B since they are in
the same location. In practice, we define points B and B′

as being in agreement when |Rref (B)−Rref (B′)|
Rref (B) < ε.

The point C ′ observed in view i is in front of the point C
observed in the reference view. There is a conflict between
these two measurements since it would be impossible to ob-
serveC if there truly was a surface atC ′. We say thatC ′ oc-
cludes C. This occurs when Dref

i (x) < f̂(x) = Dref (x).
Note that operations for a pixel are not performed on a

single ray, but on rays from all cameras. Occlusions are
defined on the rays of the reference view, but free space
violations are defined on the rays of the other depth maps.
The reverse depth relations (such as A behind A′ or C in
front of C ′) do not represent visibility conflicts.

The raw stereo depth maps give different estimates of the
depth at a given pixel in the reference view. We first present
a method that tests each of these estimates and selects the
most likely candidate by exhaustively considering all occlu-
sions and free-space constraints. We then present an alter-
native approach that selects a likely candidate upfront based
on the confidence and then verifies that this estimate agrees
with most of the remaining data. The type of computations
required in both approaches are quite similar. Most of the
computation time is spent rendering a depth map seen in
one viewpoint into another viewpoint. These computations
can be performed efficiently on the GPU.

4.3. Algorithm 1: Stability-Based Fusion

If a depth map occludes a depth hypothesis F̂ (x), this
indicates that the hypothesis is too far away from the refer-
ence view. If the current depth hypothesis violates a free-
space constraint, this indicates the hypothesis is too close
to the reference view. The stability of a point S(x) is de-
fined as the number of depth maps that occlude F̂ (x) minus
the number of free-space violations. Stability measures the
balance between these two types of visibility violations. A
point is stable if the stability is greater than or equal to zero.
If the stability is negative, then most of the depth maps indi-
cate that F̂ (x) is too close to the camera to be correct. If the
stability is positive then at least half of the depth maps indi-
cate that F̂ (x) is far enough away from the reference cam-
era. Stability generally increases as the point moves further
away from the camera. The final fused depth is selected
to be the closest depth to the camera for which stability is



non-negative. This depth is not the median depth along the
viewing ray since free-space violations are defined on rays
that do not come from the reference view. This depth is
balanced in the sense that the amount of evidence that indi-
cates it is too close is equal to the amount of evidence that
indicates it is too far away.

With this goal in mind, we construct an algorithm to find
the closest stable depth. To begin, all of the depth maps
are rendered into the reference view. In the example of Fig.
2(b), five depth maps are rendered into the reference view.
The closest depth is selected as the initial estimate. In the
example, the closest depth is Dref

1 (x) and so its stability is
evaluated first. The point is tested against each depth map
to determine if the depth map occludes it or if it violates
the depth map’s free space. If the depth estimate is found
to be unstable, we move onto the next closest depth. Since
there are N possible choices, the proper depth estimate is
guaranteed to be found after N − 1 iterations. The total
number of depth map renderings is bound byO(N2). In the
example, the closest two depthsDref

1 (x) andDref
3 (x) were

tested first. Figure 2(b) shows the test being performed on
the third closest depth Dref

2 (x). A free-space violation and
two occlusions are found and thus the stability is positive.
In this example, Dref

2 (x) is the closest stable depth.
The final step is to compute a confidence value for the es-

timated depth. Each depth estimate Di(F̂ (x)) for the pixel
and the selected depth Ri(F̂ (x)) are compared. If they are
within ε, the depth map supports the final estimate. The
confidences of all the estimates that support the selected es-
timate are added. The resulting fused confidence map is
passed on to the mesh construction module.

4.4. Algorithm 2: Confidence-Based Fusion

Stability-based fusion tests up to N − 1 different depth
hypotheses. In practice, most of these depth hypotheses are
close to one another, since the true surface is likely to be
visible and correctly reconstructed in several depth maps.
Instead of testing so many depth estimates, an alternative
approach is to combine multiple close depth estimates into
a single estimate and then perform only one test. Because
there is only one hypothesis to test, there are only O(N)
renderings to compute. This approach is typically faster
than stability-based fusion which tests N − 1 hypotheses
and computesO(N2) renderings, but the early commitment
may cause additional errors.

Combining Consistent Estimates Confidence-based fu-
sion also begins by rendering all the depth maps into the
reference view. The depth estimate with the highest confi-
dence is selected as the initial estimate for each pixel. At
each pixel x, we keep track of two quantities which are up-
dated iteratively: the current depth estimate and its level of
support. Let f̂0(x) and Ĉ0(x) be the initial depth estimate

and its confidence value. f̂k(x) and Ĉk(x) are the depth
estimate and its support at iteration k, while F̂ (x) is the
corresponding 3D point.

If another depth map Dref
i (x) produces a depth esti-

mate within ε of the initial depth estimate f̂0(x), it is very
likely that the two viewpoints have correctly reconstructed
the same surface. In the example of Fig. 2(c), the esti-
mates D3(F̂ (x)) and D5(F̂ (x)) are close to the initial es-
timate. These close observations are averaged into a single
estimate. Each observation is weighted by its confidence
according to the following equations:

f̂k+1(x) =
f̂k(x)Ĉk(x) +Dref

i (x)Ci(x)
Ĉk(x) + Ci(x)

(2)

Ĉk+1(x) = Ĉk(x) + Ci(x) (3)

The result is a combined depth estimate f̂k(x) at each
pixel of the reference image and a support level Ĉk(x) mea-
suring how well the depth maps agree with the depth esti-
mate. The next step is to find how many of the depth maps
contradict f̂k(x) in order to verify its correctness.

Conflict Detection The total amount of support for each
depth estimate must be above the threshold Cthres or else
it is discarded as an outlier and is not processed any fur-
ther. The remaining points are checked using visibility con-
straints. Figure 2(c) shows that D1(F̂ (x)) and D3(F̂ (x))
occlude F̂ (x). However,D3(F̂ (x)) is close enough (within
ε) to F̂ (x) to be within its support region and so this occlu-
sion does not count against the current estimate. D1(F̂ (x))
occludes F̂ (x) outside the support region and thus contra-
dicts the current estimate. When such an occlusion takes
place the support of the current estimate is decreased by:

Ĉk+1(x) = Ĉk(x)− Crefi (x) (4)

When a free-space violation occurs outside the support
region, as shown with the depth D4(F̂ (x)) in Fig. 2(c), the
confidence of the conflicting depth estimate is subtracted
from the support according to:

Ĉk+1(x) = Ĉk(x)− Ci(Pi(F̂ (x))) (5)

We have now added the confidence of all the depth maps
that support the current depth estimate and subtracted the
confidence of all those that contradict it. If the support is
positive, the majority of the evidence supports the depth es-
timate and it is kept. If the support is negative, the depth
estimate is discarded as an outlier. The fused depth map at
this stage contains estimates with high confidence and holes
where the estimates have been rejected.



Hole filling After discarding the outliers, there are holes
in the fused depth map. In practice, the depth maps of most
real-world scenes are piecewise smooth and we assume that
any small missing parts of the depth map are most likely to
have a depth close to their neighbors. To fill in the gaps,
we find all inliers within a w × w window centered at the
pixel we wish to estimate. If there are enough inliers to
make a good estimate, we assign the median of the inliers
as the depth of the pixel. If there are only a few neighboring
inliers, the depth map is left blank. Essentially, this is a
median filter that ignores the outliers. In the final step, a
median filter with a smaller window ws is used to smooth
out the inliers.

Median (cm) Mean (cm) Completeness
5 Images 3.02 13.02 55%
7 Images 2.78 12.45 55%
11 Images 2.66 12.95 55%

Table 1. Accuracy and Completeness of the Raw Stereo Depth
Maps using different numbers of stereo images (single camera).

Stereo Window 4× 4 8× 8 16× 16 32× 32
Median Error(cm) 3.40 2.83 2.78 3.17
Mean Error(cm) 13.89 12.76 12.45 11.61
Completeness 39% 48% 55% 55%

Table 2. Accuracy and Completeness of the Raw Stereo Depth
Maps using different stereo window sizes (single camera).

5. Results
We tested our methods on the Firestone building and

generated reconstructions with different settings of four pa-
rameters. The first parameter is the number of images used
to compute each stereo depth map using plane sweeping.
The second is the number of depth maps that are fused.
The third and fourth parameters are the number of planes
used during plane sweeping and the size of the window over
which the best cost is calculated in stereo. The default val-
ues for each of these parameters is 7 images for stereo, us-
ing 48 planes and a 16 × 16 window, and 11 raw depth
maps for each fusion step. In the tables that follow, these
parameters are set to their default values unless noted oth-
erwise. Every 16 frames, the raw depth maps are fused.
The remaining parameters are set to the following values:
ε = 0.05, σ = 120, w = 8 pixels, ws = 4 pixels, and
Cthres = 5. The image size is 256 × 192. Virtually indis-
tinguishable results are obtained on 512 × 384 inputs. Un-
less noted otherwise, we only used the horizontal camera.
Using the default settings, confidence-based fusion takes
38ms and stability-based fusion takes 51ms on a high-end
commodity GPU. As the number of depth maps increases,
the execution times of stability-based fusion grow quadrati-
cally, while those of confidence-based fusion grow linearly.

(a) Part of the Reconstructed Model using Raw Stereo
Depth Maps

(b) Part of the Reconstructed Model using Confidence-
Based Fusion

Figure 3. Firestone Building Reconstruction

To begin, we evaluated the raw stereo depth maps before
any fusion was performed. For the results in Table 3 labeled
as stereo-reference, we evaluate the raw depth maps from
each of the reference views. For the results labeled stereo-
exhaustive, we evaluated the depth maps from all images
as the representation of the scene. Tables 1 and 2 show re-
sult for non-exhaustive raw stereo. Using more images per
stereo computation improves the accuracy without chang-
ing the completeness (Table 1). A stereo window of 16×16
pixels gives both the lowest median error and the highest
completeness (Table 2). Small stereo windows create noisy
depth maps, but large stereo windows may oversmooth the
depths. A comparison of the two fusion methods and the
raw stereo depth maps is shown in Table 3 and Figs. 4 and
5. Confidence-based fusion reconstructs more of the build-
ing, but is less accurate due to the smoothing step and the
non-exhaustive search. A close up of the reconstruction is
shown using raw stereo (Fig. 3(a)) and using confidence-
based fusion (Fig. 3(b)), which reduces the surface noise.

We then compared the results of the two stereo and the
two fusion options using frames from both cameras. Both
fusion methods increase the accuracy while slightly de-
creasing the completeness of raw stereo. The mean error
decreases much more than the median error, since fusion
removes gross outliers. Another benefit of fusion is it pro-
duces a more compact representation of the data. The mod-
els of the Firestone building created by exhaustively using
all of the raw stereo depth maps are huge. They contain



Fusion Method Stereo-exhaustive) Stereo-reference) Confidence Stability
Median Error(cm) 4.87 4.19 2.60 2.19
Mean Error(cm) 40.61 39.20 6.60 4.79
Completeness 94% 83% 73% 66%

Table 3. Accuracy and Completeness for different fusion methods using the default parameters (both cameras).

Confidence-Based Stability-Based
Median Error (cm) 7 Depth Maps 11 Maps 17 Maps 7 Depth Maps 11 Maps 17 Maps

5 Images 2.50 2.35 2.25 2.05 2.00 1.86
7 Images 2.38 2.33 2.26 2.10 2.06 2.01

11 Images 2.36 2.35 2.38 1.36 2.28 2.29
Table 4. Median errors for both fusion methods using different numbers of stereo images and depth maps (single camera).

over 5,600,000 vertices. The models created after fusion
are relatively small. The number of vertices is reduced to
less than 260,000 and 320,000 vertices for stability-based
and confidence-based fusion respectively.

There is a trade off between the accuracy and the com-
pleteness of the reconstruction. Some parts of the building
are more difficult to accurately reconstruct than others. Ar-
eas with little texture are particularly difficult. If the pa-
rameters are set so that more of the difficult parts are recon-
structed the completeness measure increases, but the accu-
racy decreases. The trade-off between accuracy and com-
pleteness cannot be determined without taking into consid-
eration the objective of each reconstruction system. Accu-
racy is more critical for certain applications and complete-
ness for others. Accuracy may be more important for appli-
cations such as path planning and obstacle avoidance and
completeness for image-based rendering. A diagram show-
ing these distances on the model is provided in Fig. 1(c).
A histogram of these distances is shown in Fig. 4. Using
confidence-based fusion 83% of reconstructed the points
were within 5 cm of the ground truth model.

The results in Tables 4 and 5 show that the accuracy
tends to improve as the number of depth maps that are fused
increases. The number of stereo images in stability-based
fusion clearly raises the completeness (Table 6), but lowers
the accuracy (Tables 4 and 5). Increasing the size of the
stereo window generally increases completeness, but low-
ers the accuracy (Tables 7 and 8). Confidence-based fusion
is better able to deal with small stereo windows. As the
number of planes used in plane sweeping increases, the ac-
curacy improves while the amount of completeness hardly
changes (Table 9).

6. Conclusion

We have presented a dataset, which we intend to extend
by adding more scenes, that contains ground truth for a large
building, videos of the building and accurate poses for the
cameras at each frame. We also presented an evaluation
methodology applicable to reconstructions of large scale en-

Figure 4. Histogram of Errors in the Firestone Reconstruction
(both cameras)

Figure 5. Completeness Measurements. Sample points within a
given distance from the reconstruction (both cameras).

Stereo Window 4× 4 8× 8 16× 16 32× 32
Median Error(cm) 1.96 2.19 2.33 2.67
Mean Error(cm) 4.68 5.46 6.60 8.26
Completeness 40% 47% 50% 50%

Table 7. Accuracy and Completeness for confidence-based fusion
using different stereo window sizes (single camera).

vironments. The key difference with previous vision-based
reconstruction evaluation efforts is the fact that our videos
are much more realistic, since they were captured under
sunlight at varying distances from the building which in-



Confidence-Based Stability-Based
Mean Error (cm) 7 Depth Maps 11 Maps 17 Maps 7 Depth Maps 11 Maps 17 Maps

5 Images 7.02 6.58 6.30 3.78 3.57 3.46
7 Images 6.99 6.60 6.28 4.49 4.29 4.24

11 Images 6.91 6.74 6.76 5.47 5.32 5.22
Table 5. Mean errors for both fusion methods using different numbers of stereo images and depth maps (single camera).

Confidence-Based Stability-Based
Completeness 7 Depth Maps 11 Maps 17 Maps 7 Depth Maps 11 Maps 17 Maps

5 Images 51% 49% 46% 39% 39% 39%
7 Images 52% 50% 49% 45% 44% 44%

11 Images 52% 51% 50% 51% 51% 51%
Table 6. Completeness Measurements for both fusion methods using different numbers of stereo images and depth maps.

cludes surfaces with very different properties. We hope that
our work offers useful insights to research efforts on 3D re-
construction of outdoors scenes.

Stereo Window 4× 4 8× 8 16× 16 32× 32
Median Error(cm) 4.44 1.78 2.06 2.82
Mean Error(cm) 6.06 2.83 4.29 8.06
Completeness 8% 33% 44% 51%

Table 8. Accuracy and Completeness for stability-based fusion us-
ing different stereo window sizes.

48 planes 100 planes 150 planes
Median Error(cm) 2.33 2.18 2.16
Mean Error(cm) 6.60 6.37 6.16
Completeness 50% 49% 49%

Table 9. Accuracy and Completeness for Confidence-Based Fu-
sion using different number of planes during plane sweeping.
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