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1. Introduction

According to the National Institute of Child Health and
Human Development (NICHD), 2.2 million people in the
United States depend on a wheelchair for day-to-day tasks
and mobility [1]. Most of them are elderly or disabled
individuals, to whom independent mobility is very impor-
tant. However, operating the existing manual or power
wheelchairs could be difficult or impossible for many in-
dividuals [6]. Even with power wheelchairs, people with
severe upper body motor impairment may not have enough
hand functionality to use the joystick. To accommodate
these severely disabled individuals and support their inde-
pendent mobility, researchers developed a number of alter-
native wheelchair controls [2, 3], which can improve the
quality of life of these individuals.

Although users are able to navigate the wheelchair us-
ing the above methods, these hands-free driving controls
require the users’ full attention. For elderly or disabled
individuals, it would be desirable to increase the level of
autonomy during navigation, when possible, to reduce the
effort required by the users. The long term objective of our
work is to provide wheelchair users with a range of nav-
igation controls at varying levels of autonomy according
to the needs of the situation they are in. In this context,
given a well-specified navigation target, the wheelchair sys-
tem should be expected to navigate to it without involving
the user. Existing control methods enable selection among a
set of pre-defined locations or objects for autonomous nav-
igation. However, it is inconvenient, if not impossible, for
the existing methods to specify a navigation target that is a
priori unknown. Even in an indoor scenario, it is difficult to
label every potential navigation target and keep the labeling
up-to-date over time.

In this work, we enable the user to select any object as
the navigation target based on attention modeling using an
egocentric camera as the primary interface between the user
and the robotic wheelchair. This natural interface provides
hands-free navigation with minimal effort for disabled indi-
viduals, who have limited or even no hand functionality at

all. In addition to the egocentric camera, which is mounted
on a baseball cap worn by the user, our robotic wheelchair
is equipped with a consumer RGB-D camera (a Kinect V2)
and a tablet for displaying information to the user. A micro-
phone (the built-in mic of the egocentric camera) is used for
simple speech recognition tasks. The Kinect is fixed with
respect to the wheelchair and serves as the primary naviga-
tion sensor. A key property of our sensor suite is that its
cost is low compared to many of the existing, competing
technologies for hands-free navigation and also compared
to the cost of the power wheelchair.

This robot enables a novel attention-driven navigation
mode initiated using images captured by the egocentric
camera, which makes target selection without prior knowl-
edge about the targets possible. The user triggers this nav-
igation mode with a voice command and moves his/her
head to draw attention to the target. The robotic wheelchair
shows the captured target in the frontal display (the tablet)
and asks the user for confirmation by voice. Then the
robotic wheelchair autonomously navigates to the selected
target. We consider the approach presented here as proof of
concept that egocentric vision can be an invaluable technol-
ogy for people with disabilities. We believe that a number of
other applications in assistive computer vision and robotics
will be enabled by the core technologies presented in the
remainder of the paper.

2. Egocentric Attention-driven Navigation

For users who might have limited or no hand function-
ality at all, navigating the wheelchair using alternative con-
trol methods requires their full attention on driving. On the
other hand, autonomous navigation is only applicable when
the destination is given to the motion planner.

Our method provides a natural interface to specify the
destination for autonomous navigation. The egocentric vi-
sion naturally follows the user’s attention. When the user
stares at an object for a short period of time, it is regarded
as an object of interest. Our system then autonomously nav-
igates to it upon the user’s request.
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Figure 1. Work-flow of the proposed attention-driven navigation.

As shown in Figure 1, in attention-driven navigation,
the user initiates the attentional object detection with voice
commands. For example, the voice command can be “robot,
attention” or simply “attention”. In the attentional object
detection stage, the object of interest is detected from the
egocentric camera view. The user sees the detected object in
the frontal display. After the user confirms, the object local-
ization process begins, in which the RGB-D sensor is used
to obtain the location of the object. The robotic wheelchair
then autonomously navigates to the object. During the au-
tonomous navigation, the user is free to look around. Hence
the user can initiate another attention-driven navigation to
any other object without waiting for the current navigation
to finish.

Our application scenario requires an efficient solution to
detect the object of interest. Here we present an intuitive
and practical technique. Given the image from the ego-
centric camera, we apply contour detection [7] to detect all
the closed contours. Then for each closed contour, we es-
timate a bounding rectangle as a detection candidate. For
each candidate window, its confidence score is defined as
the Intersection-Over-Union (IoU) overlap ratio to a pre-
defined attentional bounding box. Once the IoU overlap ra-
tio exceeds a pre-defined threshold (0.2 in this work), the
current frame is selected as the anchor frame and the object
is marked as the candidate object of interest.

Then, we track the candidate object in the following
frames. We estimate the optical flow from the anchor frame
to the current frame and then apply RANSAC to estimate
a homography. Once the number of well tracked frames
(inlier ratio larger than 50%) exceeds a threshold (50 in this
work), the candidate object is regarded as the attentional ob-
ject. We then proceed to localize it in the RGB-D camera,
which is fixed with respect to the wheelchair. After the user
confirms via a voice command, the object is handed over by
the egocentric to the RGB-D camera.

Because the user’s gaze may be turned to the left or right
with respect to the forward direction of the wheelchair when
the attentional object is detected, it is possible that the ob-
ject is out of the field of view of the Kinect. Hence, in order
to localize the object, the robotic wheelchair needs to rotate
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Figure 2. The scenario of our experiment.

to the right direction so that the Kinect sensor sees the ob-
ject. Based on the head pose when the object is detected, we
can infer the right direction to rotate the robotic wheelchair
to complete the object hand-over.

While the robotic wheelchair is rotating (if necessary),
we apply feature based matching to the RGB image from
the Kinect sensor given the object from the egocentric cam-
era. In this work, we use OpenCV’s implementation of
FAST [4] feature detector with ORB [5] feature descriptor.
Then we use RANSAC to search for the best homography
from matched points. We set the center of all inlier points
on the image from the Kinect as the center of the object.
From the corresponding depth image, we average the depth
values in a 10×10 window around the object center and cal-
culate the relative location of the object from the robotic
wheelchair from the depth.

3. Experiment
We demonstrate the proposed attention-driven navi-

gation in an indoor scenario (Figure 2). The video
of the experiment is shared at https://youtu.be/
2lg8GgYqfaY.
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