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Abstract

We address multiple-view reconstruction under an opti-
mization approach based on belief propagation. A novel
formulation of belief propagation that operates in 3-D is
proposed to facilitate a true multi-image processing scheme
that takes visibility into account and thus is applicable to
scenes that contain significant occlusions. Visibility is not
approximated but is estimated and used in a modified plane
sweep stereo scheme. Optimization is performed in a sim-
plified belief propagation framework in which messages
are passed in 3-D, instead of 2-D, neighborhoods utiliz-
ing information from all available images. The informa-
tion propagated from a point to one of its neighbors factors
in the distance between the two points in 3-D, their differ-
ence in color. In contrast to traditional belief propagation,
the observation is updated at each iteration to incorporate
changes in visibility. The proposed approach is capable of
enforcing smoothness on the evolving 3-D surfaces without
being limited to a coarse resolution due to a volumetric rep-
resentation. Moreover, our approach is applicable to both
open and closed surfaces with no need for a priori knowl-
edge of the type. We present dense reconstructions of pub-
licly available image sets.

1. Introduction

Reconstruction of a scene from sets of images or video
has been one of the central themes in computer vision. As
most computer vision problems, multiple-view reconstruc-
tion is an inverse problem of recovering 3-D structure from
its 2-D projections. The task is further hindered by the am-
biguities and difficulties associated with the detection of
pixel correspondences in images. Smoothness is the most
common constraint that is enforced to overcome these ob-
stacles and states that scenes are smooth almost everywhere.
It is usually enforced by allowing only small variations in a
property of neighboring points, such as depth, disparity or

surface normal. Extensive research has been conducted for
binocular stereo [10], where the input consists of just two
images. A wide range of methodologies have been applied
in order to impose smoothness and other constraints in a
way that simultaneously preserves the discontinuities of the
scene. Recently, belief propagation [13, 12] has gained ac-
ceptance among the most successful frameworks for binoc-
ular stereo.

Here, we focus our attention to the case where more than
two images are available. While more images obviously
provide more information, one must be able to utilize that
information correctly. By that we mean that processing the
images in pairs is clearly sub-optimal since information that
could have resolved some of the ambiguities remains un-
used. As shown in [10] and the Middlebury College Stereo
Evaluation webpage (http://www.middlebury.edu/stereo),
the major difficulties in establishing pixel correspondences
are occlusion and lack of texture. We argue, as have other
researchers, that if one attempts to match pixels in pairs
of images to obtain partial reconstructions and then merges
these partial reconstructions, some of the errors will not be
corrected. The addition of more cameras reduces the ambi-
guity of uniform regions while the number of monocularly
visible pixels in each image decreases for reasonable scene
and camera configurations.

The practical aspect of true multiple-view processing is
the need for a computational framework that allows effi-
cient processing of potentially large amounts of data. The
generalization of binocular approaches is not trivial in gen-
eral. For instance the generalization of the work of Sun
et al. [12] to more than two images would soon become
computationally impractical as the number of images in-
creases. Kutulakos and Seitz [8] proposed the space carv-
ing algorithm that computes the photo-consistent hull of the
scene by carving away inconsistent voxels. Space carving
inspired a large body of research but suffers from its inabil-
ity to impose surface smoothness in a framework that rea-
sons about pixels and voxels but not surfaces. Approaches
that pose the problem as global optimization of an energy



function suffer from limitations such as the need to operate
on rather coarse resolution grids or the inability to represent
surfaces with sharp discontinuities.

We propose an approach that operates in 3-D and simul-
taneously considers information from all available images
to update the positions of reconstructed points. To this end
we employ the belief propagation framework that updates
each point’s belief (the probability distribution function for
its depth) via messages from its neighbors. 3-D space is
not discretized and thus resolution is determined by that of
the images. Visibility is taken into account during message
passing and updated after each iteration. This allows us
to reconstruct scenes with large occlusions. It should be
noted that current published results are typically for single
objects or scenes where the foreground is relatively close
to the background and visibility can be approximated with-
out causing significant problems to the reconstruction. It
should also be noted that our method does not use any fore-
ground/background segmentation.

The paper is organized as follows: Section 2 is an
overview of our approach; we review related work in Sec-
tion 3; Section 4 provides the details on our novel algorithm
and implementation; Section 5 describes the visibility-
constrained plane sweep algorithm; Section 6 presents ex-
perimental results; and the paper concludes with Section 7.

2. Overview

Processing begins from a set of images with complete
internal and external calibration information. The first pro-
cessing step is to initialize the observation for each pixel
in all images. For this purpose we use the plane sweep al-
gorithm [3], which considers all images simultaneously to
compute the cost of selecting a particular position for a 3-D
point on a ray of the reference camera. We run a separate
plane sweep for each camera, with the sweeping planes par-
allel to the image plane of the current camera. The results
of the plane sweep at candidate depth values are used to
initialize a pdf for each pixel, corresponding to surface like-
lihoods for the sampled depth values (distances from the
camera center) on the ray.

We associate a single node with each pixel in each image.
Our iterative algorithm updates the best depth estimate and
confidence for each ray at each iteration. To do this, it steps
along each candidate depth value and evaluates support for
that depth value using its “neighbors”. We define the neigh-
bors for a candidate depth value as the nodes corresponding
to the projections of that 3-D point into all other images,
and the immediate neighbors of those projections (in image
space). Note that this implies that the “neighborhood” for
a node is a function of which of its candidate depth values
is currently being evaluated. Details are in the next section
but, for illustration, we consider the single node P, being

Figure 1. lllustration of the neighborhood def-
inition for a candidate depth along a single
ray. For the ray that goes trough pixel p in (s,
P, is a candidate 3-D point. Its neighborhood
includes the four neighbors of p in the refer-
ence image, as well as its projections ¢; and
g3 in the other images, rounded to the nearest
pixel, along with their four-neighborhoods.

updated in Figure 1. This node corresponds to pixel p in im-
age ¢. In performing the update for this node, we evaluate at
all depth values, P;—F,,, the support for a 3-D point there.
For all images j, including ¢, we project this 3-D point into
the image to get the pixel ¢; = Pr([;, P;) - with Pr(I, P)
representing the projection operator on the 3D point P into
the image I. The neighborhood is the union of ¢; and nodes
immediately adjacent to g; in image space, for projections
into all images.

Belief propagation [18], [9], detailed in the next section,
is a message passing system that stores at each node a sep-
arate message for each of that node’s neighbors. In our sys-
tem, the “neighborhood” for a node is not unique for all
positions along its state space (each depth candidate has a
different set of neighbors), making storage and evaluation
of separate messages intractable. Further, the states at each
node do not directly correspond to each other (i.e. depth
d at one node is not directly comparable to depth d at an-
other node, especially from some other image with different
pose). Overcoming these two difficulties gives rise to our
Simplified Belief Propagation algorithm, in Section 4.

A key contribution of our approach is the visibility-
constrained update mechanism for the observations. As de-
tailed in Section 5, our approach updates visibility at every
iteration and makes a fundamental change to belief propa-
gation by allowing the observation term to vary over the it-
erations. In that section, we show that our technique can ac-
tually make a dramatic reduction in resource requirements,



while properly addressing occlusions. It is implemented
also as a plane sweep that does not include in cost com-
putation images in which the point under consideration is
invisible. The scheme is sketched in Fig. 3. Simply stated,
an image is not used for the evaluation of a cost of a 3-D
point if the point lies behind the current estimate of the sur-
face for that image.

3. Related work

In this section we briefly review related work on
multiple-view reconstruction. Koch er al. [6] begin by es-
tablishing binocular pixel correspondences and proceed by
linking more cameras with these correspondences. When a
correspondence is consistent with a new camera, taking un-
certainty explicitly into account, directly preceding or fol-
lowing the cameras that already support it, the new camera
is added to the chain and the position of the point in the
scene is updated using the wider baseline. Taking a different
approach, Collins [3] presents a true multi-image matching
framework by evaluating the matching cost for all images
simultaneously on a plane that sweeps through the scene.
Kutulakos and Seitz [8] introduce the space carving algo-
rithm which is based on the notion of “photoconsistency”
to derive the visual hull of the scene. Voxels from an initial
volume are progressively carved away if their projections
on the images are not photoconsistent, that is if they exhibit
large color variations. A limitation of the original space
carving algorithm is that it cannot recover from the erro-
neous carving of a voxel. Some of the variations that have
been proposed to address this problem include [2, 1, 17].

Kolmogorov and Zabih [7] extend the graph-cut frame-
work, that has been very successful at binocular stereo, to
multiple images. The optimization of a global energy func-
tion enforces smoothness to the solution while preserving
boundaries. Smoothness is a critical limitation of the vol-
umetric methods of the previous paragraph, which operate
at the pixel-voxel correspondence level without considering
the resulting surfaces. Vogiatzis et al. [15] also propose
a volumetric algorithm using graph-cut optimization. The
graph they use has an outer and an inner surface as the sink
and source respectively. This allows for finer depth reso-
lution between the two boundary surfaces but the topology
of the scene has to be known a priori. Zeng et al. [20] offer
a different combination of a volumetric representation with
piece-wise graph cut optimization. The space is quantized
in large voxels and a graph cut in each of them determines
the validity of a potential surface patch. The trade-off be-
tween depth resolution and computational complexity is a
major limitation of the graph-cut based approaches. Visi-
bility is approximated in all these cases.

An alternative formulation of the problem includes the
work of Faugeras and Keriven [4] who pose multiple view

stereo in a variational framework where an initial surface
evolves according to cross-correlation computed on the tan-
gent plane of the surface, instead of the images. Yezzi and
Soatto [19] address a different class of scenes in which sur-
faces have smooth or constant albedo. They do not rely
on local correspondence, but on region similarity measures
which are more effective for the types of objects they han-
dle. Strecha er al. [11] present a pixel-based variational ap-
proach for recovering dense depth maps from wide-baseline
views that can handle open surfaces. An anisotropic diffu-
sion scheme that favors information from reliable points is
used to guide surface evolution. Level set methods achieve
excellent results, but are limited to closed surfaces, with the
exception of [11], and more importantly to surfaces with
smooth derivatives. Corners and other sharp features are
smoothed. Visibility treatment is exact. This is an inherent
property of variational approaches due to their global notion
of the evolving surface.

Vogiatzis et al. [16] present an MRF based stereo algo-
rithm that is applicable to multiple images given base sur-
faces in 3-D. If such a surface can be inferred or approxi-
mated, then a number of points can be sampled on it. These
points are allowed to move on their estimated surface nor-
mals and their optimal positions are computed through be-
lief propagation after collecting evidence from all images.
Visibility is approximated. Tsin and Kanade [14] introduce
kernel correlation as a robust framework that removes view-
point induced artifacts from reconstructions. It minimizes
the distance from each point to all other points with empha-
sis given to neighboring via a Gaussian kernel that attenu-
ates with distance. The method is similar to ours in that it
takes distance in 3-D and color similarity in all images into
account as we do in Section 4. It does not model occlusion
however. Zitnick et al. [21] are among the few researchers
to address image sets with strong occlusion effects. In fact,
we use the images captured by their system for some of
our experiments. Their approach, however, relies heavily
on segmentation and is targeted toward novel image gener-
ation and not necessarily depth accuracy.

4. Simplified Belief Propagation

Belief propagation algorithms can be used for, among
other things, optimization with an energy function for a
pairwise Markov Random Field (MRF) as

E(f)==> Wo(fp) — Y Wp(fy fo) (1)
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This energy function operates on a graph, with P a set of
all nodes and NV a set of node pairs, i.e. the set of edges.
The set of nodes ¢ € A (p) with (p,q) € N is termed the
neighborhood of the node p. Each node takes a labeling f,,



from some finite state space (e.g. disparity values). In these
equations, 9( f,,) will be referred to as the observation - the
data consistency term, and ¥ (f,, f,) as the compatibility
term - the smoothness term.

Belief propagation is an iterative message passing algo-
rithm defining the belief at a node q at iteration 7" as

bq(fq) = w(fq) H mgﬂq(fq)v (2
PEN (q)
where mgé q 18 the message that node p sends to node ¢ at

iteration 7'. Note that each message is a pdf over the state
space (in our case, depth values).

There are two classes of belief propagation algorithms
([18], [9]), one termed “sum-product” and the other “max-
product,” denoted for their methods of updating messages.
The sum-product algorithm updates the message from p to

q at iteration 7" via
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and the max—product algorithm uses
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Note that max-product is often expressed and/or imple-
mented in — In space, in which it is min-sum and takes a
form like the original energy equation (1).

In the update equations (3,4), the compatibility functions
combined with the operation on it (sum or max) behave
as a “filter” on the pdfs. Common implementations (and
equational expressions) will combine incoming messages
and filter the resulting outgoing message: “filter on output”.
Note that an alternative method, sometimes seen in imple-
mentations, is to instead filter incoming messages: “filter on
input.”

For the max-product algorithm, the two variations are not
necessarily identical, but in practice are nearly the same.
The first step in obtaining our algorithm is the explicit
movement of the compatibility function to the incoming
messages instead of the outgoing messages.

The next steps to our algorithm are using the compatibil-
ity function in two important, and uncommon, ways. The
first is to actually make compatible two pdfs that would oth-
erwise not be compatible. E.g. a pdf over depth values from
one pixel is not directly compatible with a pdf over depth
values from a pixel in some other camera, plainly seen if
that camera has dramatically different orientation and posi-
tion.

The second use of the compatibility function is to make
compatible pdfs that are actually represented differently.
E.g. one a discrete pdf over a range of depth values, and
a single Gaussian distribution, from a ray with drastically
different orientation and origin.

4.1. Representations

Each pixel in each image, identified p, corresponds to a
node in the simplified belief propagation graph. Each pixel
directly maps to a single ray (we use the pinhole camera
assumption) with Py being the 3-D point corresponding to
the depth value d along the ray for p.

4.1.1 Observations

At each node, the observation O, is a discretely sampled pdf
over candidate depth values. We initialize the observation
O(P,) for each depth d via plane sweeping, similar to [3],
using an nxn SAD kernel with

> 6i(Po)|Pr(Ii, Pa) — Pr(Les. Pa)|l, (5)
i#ref

cost(Py) =

with ¢; being 0 or 1 distinguishing if Pr(I;, P;) is outside
or inside the view frustum of [;. The final cost for a pixel is
the usual sum across the window and across all color chan-
nels, normalized by the sum of the §; terms. We normalize
by the number of cameras that participate in each computa-
tion in order not to favor points visible by fewer cameras.

The initial observation for a pixel (equivalently a ray) is
in terms of a cost for each potential depth value. We need to
convert this to a pdf through a mapping that converts high
cost values to low likelihood values. We have selected a
Gaussian function for this mapping. We can also define the
confidence at a depth with the same scheme. We do not use
the magnitude of the cost directly since the existence of a
low cost for a certain depth does not preclude the existence
of numerous other low costs which would make the depth
ambiguous and the entire observation unreliable. The obser-
vation for a depth P; and the confidence for P; we define
in terms of the cost for depth cost(P;) as follows:
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where o, is selected in a way that extends the useful range
of observation values.

4.1.2 Nodes and Messages

Due to our complex definition of a neighborhood and the
significant resource requirement of storing a separate mes-
sage for all neighbors, we instead store the belief at each
node. We compress the belief pdf to be a single pair of val-
ues: the current best estimate depth value for that node and
the confidence in that depth value, and will denote the belief



at the node for pixel p as a depth value and confidence in it.
Nodes are initialized based on the observation, as

Bp) = maxO(Fy) ®)
Bgonf (p) = CO’I?,f(BO(p)) (9)
4.2. Node Updates

The different representation form of observations and
beliefs, along with the lack of separate messages for each
neighbor, necessitates that we construct a variation of the
node update equations. Instead of updating messages (as
there are none), we update the belief at each node by re-
considering each candidate depth value via an accumulation
of support from all of its neighbors. The likelihood of each
node is updated by collecting messages from all neighbors
in all images. For each Py, a neighborhood is defined by
projecting Py on all the images and adding to P;’s neigh-
borhood the nodes at the nearest integer pixel position along
with the nodes at its four pixel neighbors (see Fig. 1). Mes-
sages from all nodes in this neighborhood of P, are accu-
mulated as support for d being the new best estimate depth
value for the node at p.

The node at pixel g in the neighborhood for P; sends a
message to p when depth d is considered. This message is
weighted by a 3-D distance term d3 (P, ¢) and a color (ra-
diance) similarity term r (P, ¢). The compatibility function
for this message is the weighting of that node, having dif-
ferent values for each step of d when updating node p. This
compatibility function allows this compressed pdf belief at
node ¢ to be evaluated differently, in 3-D, for each candi-
date depth value when updating node p using the discretely
sampled observation pdf. Specifically, the new belief for
node p is updated according to

support(Py) = O(Py) +
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gEN(p)

bt (p) = ml?xsupport(Pd) (11)

Veans(p) = support(b™+'(p)) (12)

with

_ dist(Pg,n)?

ds(Paq) = e (13)
_Z{R,G,B}(pﬂz)2

r(pg) = e o7 . (14)

The distance term reduces the amount of support for points
that project on neighboring pixels but are far from each
other in the scene. The color distance is computed using
the color of the ray under consideration p in the reference
image and the color of ray ¢ in its own reference image.

This term ensures that a node does not receive support from
a region whose colors are different from its own. Its main
purpose is to preserve depth discontinuities by not allowing
interference across occlusion boundaries in the images, un-
der the assumption that different surfaces have different col-
ors. It also enhances smoothness enforcement on uniform
surfaces without over-smoothing areas with texture where
stereo works well.

4.3. Summary

The sum-product algorithm produces a new value for
state d by accumulating evidence from every state value ¢
in the incoming message weighted by some compatibility
function relating d and q. This is exactly what our algorithm
does: for candidate state d we accumulate support from all
neighboring nodes across all of their states weighting via a
similarity function between d and the states of each other
node. So, the term

> W(for f)mETE () (15)
I

is doing “filter on input” instead of “filter on output”. The
messages coming in are similar to delta functions, as a re-
sult of our compression method of picking the best state
and only storing that and its confidence. Our compatibility
function

> U fo) = $(Payq")ds(Pa, ¢ )r(p,g)  (16)
fp

is expressed functionally and takes constant computational
time, instead of linear [5] or quadratic computational time.
Yet, our expression is not a perfect match to either sum-
product (3) or max-product (4). We call our variation “max-
sum,” expressed as

b(q) = max | NS+ D w(fe VTN |
T PENa)
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Finally, note the ¢-1 iteration notation on ¢(f). This in-
dicates our final contribution: a method for dealing with
occlusions by updating the observation as a function of the
current estimate of the system. This is detailed in the next
section. Note that Vogiatzis et al. [16] also allowed the
observation term to be updated as the iterations progressed.

5. Visibility-constrained Plane Sweep

The plane (or space) sweep stereo algorithm [3] is a true
multi-image matching method that operates by projecting
all the input images on a plane that sweeps through the



scene. When parts of the plane are placed at the locations
of the actual scene surfaces, all images should agree on the
color of these surfaces, as long as they are visible. Typically
these planes are parallel with one of the image planes and
are moved in discrete distance increments perpendicular to
themselves. Each ray intersects each plane once creating a
depth hypothesis. The cost for this hypothesis is computed
as the sum of absolute color differences between the pro-
jections of all other images with the reference image on that
point on the plane (Fig. 2).

A !

G,

Figure 2. Plane sweep stereo. Depth hypothe-
ses are validated by measuring the color sim-
ilarity of the projection of points on each
plane to all the images. For instance if point
P is indeed a point of the scene, its projec-
tions on the three cameras have to be similar.
On the other hand if @ is not at that depth, it
is more likely to project to different colors.

While plane sweep stereo is very effective due to the use
of multiple images, it does not take occlusion into account.
Initially, such information is not available, but after select-
ing the most likely point on each ray, we can start reasoning
about visibility and occlusion. We do so by choosing which
images are allowed to participate in the cost evaluation for a
certain hypothesis. The key observation is that a ray should
not be included in cost evaluation if its current depth esti-
mate occludes the hypothesis under evaluation. The pres-
ence of a surface does not affect what can happen behind
it. On the other hand, the ray must be included if the hy-
pothesis is at or in front of its current depth estimate. In this
case, the hypothesis is assumed to be visible from the cam-
era and the cost should be evaluated using this information.
See Fig. 3 for an illustration of the proposed algorithm. The
visibility-constrained plane sweep is repeated after each be-
lief propagation iteration to refine the observations.

T eP
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Figure 3. Visibility-constrained plane sweep.
The dark curve is a cut of the current sur-
face estimate for camera C,. The reference
camera is C,. Rays from C; are not used for
the computation of costs if the current most
likely point of the ray occludes the position
under consideration. Ray R is considered
when computing the cost for point P that is
in front of the surface but not for Q) which is
occluded in ;.

We have had the most success eliminating visibility ef-
fects by altering the §; term in 5. This term was originally
a binary term, determined by whether or not Pr(I, Py) ac-
tually projected in the image or not. Now, we set this value
to be 0 if the confidence of that node is high and it is nearer
to that image’s center of projection than Py - i.e. it is confi-
dent that it occludes. Otherwise, we set §; to the confidence
of that node, thereby penalizing the occlusion of reliable
points. This is very comparable to the probabilistic space
carving method of modeling occlusions used by Broadhurst
et al. [2].

6. Experimental Results

For the experiment presented here, we use images
captured with a synchronized eight-camera rig by Zit-
nick et al. [21]. The datasets have been made
available by the authors, to whom we are grateful, at
http://www.research.microsoft.com/vision/ImageBased Re-
alities/3DVideoDownload/. The included images illustrate
the visual quality of our algorithm using 8 cameras. For
parameters, we use o4 = 1.6 - 1072 (distance attenuation),
o, = 150 (for all three color channels combined), with 50
candidate depth steps, and a 11x11 observation SAD win-
dow.



Figure 4. Results for cameras 3 and 4. The top row is the color reference images. The second row is
the initialization (from plane sweep[3]), the next is the result after nine iterations.



As the observations are being re-computed at each itera-
tion, we implement the algorithm by stepping all rays from
a camera in lock-step. This allows us to not need to store the
observation data explicitly. Combined with storing only the
compressed beliefs, our memory requirements are dramati-
cally reduced: for 8 images of with 1024x768 pixels each,
we need less than a Gigabyte of memory, whereas just stor-
ing observations for 50 steps requires just under 4GB. Fur-
ther, not only does this reduce memory requirements, but
we can now increase the granularity of the depth steps we
use, limited now only by computation time.

7. Conclusion

We have presented a novel approach for multiple view
reconstruction that is capable of handling scenes with
stronger occlusion effects than current methods. The
key factor that allows us to achieve this is our visibility-
constrained plane sweep stereo algorithm. Instead of ap-
proximating visibility or using an initial estimate through-
out processing, we effectively update the visibility at ev-
ery iteration by not using images from which a certain part
of the scene is invisible in surface estimation for that part.
Since we do not use a voxel-based representation, resolu-
tion is not limited by the size of the voxels and we do not
suffer from the effects of perspective projection of the vox-
els on images at oblique angles. Our approach is applicable
to both open and closed surfaces since we make no assump-
tion about the surfaces and the rays are oriented toward the
centers of the cameras. Further, no background segmenta-
tion is needed for our algorithm.

We have also introduced a simplified, approximate for-
mulation of belief propagation that operates in 3-D and is
able to relate nodes whose states do not correspond. Fur-
thermore, unlike traditional belief propagation, we update
the observation for each ray at every iteration as new visi-
bility information becomes available. Maintaining observa-
tions corrupted by image measurements that do not actually
observe the point under consideration does not aid conver-
gence to the right depth.
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