A Quantitative Evaluation of Surface
Normal Estimation in Point Clouds

Krzysztof Jordan! and Philippos Mordohai'

Abstract— We revisit a well-studied problem in the analysis
of range data: surface normal estimation for a set of unorga-
nized points. Surface normal estimation has been well-studied
initially due to its theoretical appeal and more recently due
to its many practical applications. The latter cover several
aspects of range data analysis from plane or surface fitting
to segmentation, object detection and scene analysis. Following
the vast majority of the literature, we also focus our attention
on techniques that operate in small neighborhoods around the
point whose normal is to be estimated. We pay close attention
to aspects of the implementation, such as the use of weights
and normalization, that have not been studied in detail in the
past. We perform quantitative evaluation on a diverse set of
point clouds derived from 3D meshes, which allows us to obtain
accurate ground truth.

[. INTRODUCTION

Point clouds are increasingly becoming more prevalent as
a form of data. They are directly acquired by range sensors
such as LIDAR or depth cameras based on structured light.
While range images can be analyzed relying partially on
image processing techniques, if more than one range image is
available, these techniques become inapplicable in general.
Point clouds are often directly sufficient for tasks such as
obstacle avoidance, but require further processing for higher
level tasks. The most common estimation on point cloud
inputs is per-point normal estimation, since surface normals
are useful for the segmentation of range data [1], [2] and for
computing shape descriptors [3], [4], [5], [6], [7].

While surface normal estimation is typically treated as a
tool that does not require any attention in terms of algorithm
design, similar to a mean filter for instance, normals are often
estimated sub-optimally even by state of the art systems.
The differences in accuracy due to these choices may be
small, and the impact on overall system performance may
also be small, but there is no reason to include a sub-optimal
estimator in a system. It is possible that an increase in error of
a few degrees in surface normal estimation will not affect the
results of a sophisticated segmentation algorithm, but why
should one use a worse estimator when better options are
available at the same or similar computational cost?

Along the lines of most surface normal estimation methods
from point clouds [8], [9], all algorithms in this paper operate
in local neighborhoods around each point. They aim at
estimating the normal at a point based on minimizing the
fitting error of planar or quadratic surfaces passing through

IDepartment of Computer Science, Stevens Institute of Technology,
Hoboken, NJ 07030, USA

{kjordanl, Philippos.Mordohai}@stevens.edu

This work was supported in part by a Google Research Award.

each point of the neighborhood, or by estimating a 2D
subspace that is tangent at the point of interest based on
pairwise point relationships. Even though at least three points
would be required to infer a plane, the vector from each
point of the neighborhood to the anchor point of the plane
must lie in the desired plane. Thus, pairwise operations
provide constraints that can be aggregated to lead to complete
solutions. Techniques that operate on triplets of points have
also been reported in the literature, but are out of scope of
this paper because they either require Delaunay triangulation
as pre-processing or they consider all combinations of three
points and are computationally expensive.

In this paper, we extend a recent study by Klasing et
al. [10] in two ways: by augmenting the set of methods
evaluated and by performing the evaluation on a much larger,
diverse set of 3D shapes. We keep four of the methods
proposed in [10] (Section III-A) and augment the set by
considering three modifications: (i) using the reference point,
instead of the neighborhood mean, as the anchor point of
the plane, (ii) normalizing the vectors formed by points in
the neighborhood and the anchor point, and (iii) applying
weights to the contributions of neighboring points that decay
with distance.

Fig. 1.

Screenshots of the armadillo, girl, airplane and glasses models that
are used as inputs in our experiments. The models are displayed as meshes,
but only the vertices are actually used in the computation.

We evaluate all methods on a set of 40 3D models made
available online by Dutagaci et al. [11] (Fig. 1). The models
are in the form of meshes, which allow the computation of
surface normals with much higher accuracy than what is
possible using just the point cloud as input. Most of the
surfaces have regions of high curvature and are not just
smooth planar or quadratic patches. Only the point clouds
are provided as input to the various method in the exper-
iments and the accuracy of the estimated surface normals
is compared to the ground truth. As expected, we observe
non-trivial errors even without additional noise. This loss
of accuracy is inevitable due to the absence of connectivity
information. While this may appear as an unfair comparison,
the estimation of normals of the original continuous surfaces,
which are approximated by the point clouds, is precisely the
problem we tackle.

II. RELATED WORK

The prevailing approach for estimating surface normals
from unorganized point clouds was introduced in the classic
paper by Hoppe et al. [8] and is based on total least
squares (TLS) minimization. This approach has been adopted
by numerous authors without modifications. Among these
publications, the paper by Mitra et al. [9] contains an in depth
analysis of the effects of neighborhood size, curvature, sam-
pling density, and noise in normal estimation using the TLS
approach. We study different aspects of the computation,
focusing on the objective function itself, but refer readers
to [9] for a rigorous analysis of the TLS approach including
error bounds on the estimated normals.

An early comparative study on surface normal estimation
for range images was published by Wang et al. [12]. While
the methods evaluated and the authors’ observation remain
relevant, we adopt the notation and terminology of the more
recent work by Klasing et al. [10]. Details on the latter can
be found in Section III and are not repeated here. Badino
et al. [13] also evaluated different techniques surface normal
estimation from points recently, but their focus was on range
images exploiting the inherent neighborhood structure to
further accelerate computation.

Tombari et al. [7] also solve the standard total least
squares formulation, but apply weights the linearly decay
with distance on the contribution of each neighboring point.
For efficiency, they chose to not compute the centroid of
the region, centering the computation on the reference point
itself. We evaluate both of these modifications to the TLS
formulation, but we use Gaussian instead of linear weights.

III. METHODS

In this section, we present the methods that are evaluated
in Section IV. We begin with the methods presented by Klas-
ing et al. [10] and proceed by introducing the modifications
that are the focus of our study. We adopt the notation of [10]
to allow direct comparisons and only consider methods they
classify as “optimization-based”, as opposed to “averaging”
which require Delaunay triangulation of the point cloud.

The input point cloud is a set of n points P =
{p1,p2,-sPn}> pi € R3. We are interested in the estimation
of the surface normal for a point in the point cloud, which
we refer to as the reference point. The reference point
is denoted by p; = [piz,Piy, piz]T and its normal by
ni = [Niz,Niy,niz]*. Only points in the neighborhood of
pi, which is denoted by @Q; = {qil,qu,...,qi}g}, qij € P,
q¢i; 7 Di, are used for the estimation. The number of points
k included in the neighborhood is a key parameter for all
methods. Standard nearest neighbor searches based on k-d
trees are used to find the neighbors of each point. Following
[10], we define the data matrix, the neighbor matrix and the
augmented neighbor matrix as follows:

P = [p1.p2, o)’ (1
Qi = (@i, @2, qik)” 2
Q = [piain,qizs i)’ 3)

The augmented neighbor matrix Q?’ contains the reference
point p; in addition to its neighbors.

A. Objective Functions for Normal Estimation

As Klasing et al. [10] remark, seemingly different criteria,
such as minimizing the fitting error of a local plane passing
through Qi+ or maximizing the angle between the surface
normal at p; and the vectors formed by p; and its neighbors,
result in very similar objective functions to be optimized. In
all cases, the desired solution is the singular vector associated
with the minimal singular value of an appropriate matrix.

PlaneSVD: This method [12] fits a local plane
Si(2,y,2) = NizT + Niyy + nizz + d to the points in Q5.
The objective function is:

Ji(bi) =] [Qf Let1] bill2,)

where 1; 1 is column vector of k+1 ones and b; = [n! d]T.
The minimizer of (4) is the singular vector of [QlJr 1p41]
associated with the smallest singular value. The first three
elements of this vector are normalized and assigned to n;.

PlanePCA: PlaneSVD minimizes the fitting error of the
local plane in the neigborhood of p;. A different criterion is
to find the direction of minimum variance in the neighbor-
hood Q. If the points in @; formed a perfect plane, the
direction of minimum variance would be the normal to this
plane and the variance would be 0. In the presence of noise
or non-planar surfaces, the direction of minimum variance is
the best approximation to the normal. To obtain the objective
function (TLS) we subtract the empirical mean of the data
matrix [8], [14], [9]:

Jo(ni) = 1 1QF — Q] nill2, (5)

where Q;f is a matrix containing the mean vector g;” =
k%‘_l(pi +Z§:1 ¢i;) in every row. The minimizer of (5) is the
singular vector of [Q;f — Q7] associated with the smallest
singular value. The name PlanePCA is justified because this
computation is equivalent to taking the principal compo-
nent with the smallest variance after performing Principal

Component Analysis (PCA) on Qi*. On the other hand, in
PlaneSVD the data are not centered by subtracting the mean.
This is also equivalent to forming the empirical covari-
ance matrix of the points in Qi+ , computing its eigen-
decomposition and setting n,; equal to the eigenvector as-
sociated with the minimum eigenvalue [15], [12].
VectorSVD: An alternative formulation for inferring the
surface normal at p; is to seek the vector that maximizes the
angle between itself and the vectors from p; to ¢;;, which
should be in the two-dimensional tangent subspace of p;.
The difference with the previous methods is that VectorSVD
forces the estimated plane to pass through the reference
point p;. The maximization of angles can be formulated as
the minimization of the inner products between n; and the
vectors from p; to g;;.

(%’1*]%);
T =11 @2 P g, ©
(qir. — pi)™

The singular vector associated with the minimum singular
value of the matrix above is the minimizer of this objective
and the desired normal.

Following Klasing et al. [10], we omit the VectorPCA
method due to its similarity to PlanePCA.

QuadSVD: This is the only quadratic method evaluated
in this paper. QuadSVD [16], [17] assumes that the surface is
composed of small quadratic patches, instead of small planar
patches as all other methods in this paper do. Specifically, a
surface in the form of S;(z,y,2) = c12? + coy? + 322 +
caxy + c5xz + ceyz + crx + cgy + coz + ¢y is fitted to to
the points in Qif The objective function is:

Ja(ci) = ||Ricil |2, @)

where ¢; is the vector of coefficients and each row of
R; contains the linear and quadratic terms corresponding
to a point in Qi*, that is, each row of R,; contains:
[qzzjm Qz?jy q?jz QijzQijoy Qijxijz QijyQijz Qijaz Qijy dijz 1]
with the first row corresponding to p;. The final normal n;
is computed by evaluating the gradient of .S; at p;.

B. Modifications

In this section, we introduce three modifications that are
sometimes applied in the literature to improve the robustness
of surface normal estimation. To the best of our knowledge,
however, a quantitative analysis of their effects and a set
of recommendations for practitioners have not been pub-
lished before. We begin with an equivalent formulation of
VectorSVD, but not centered on the reference point, as the
baseline here. For each neighborhood Q;, we form a 3 x 3
square matrix M; as follows:

Mi= > (g — @) ai; —)", (8)
qi; €Q;

where (j;r is the mean of the neighborhood including the
reference point. The eigenvector of M; corresponding the

minimum eigenvalue minimizes the following criterion and
is taken as the normal at p;.

J5(ni) = [[Minil|2.)

Anchoring on the reference point: A variation that has
already appeared in the methods of Section III-A is the use
of either the neighborhood mean or the reference point itself
as the anchor point through which the plane is assumed
to pass. While in many cases, especially for large values
of k, this choice should not make a large difference, it
is worth investigating the advantages and disadvantages of
either choice. The conventional TLS approach [8], [15], [9],
termed PlanePCA here, uses the neighborhood mean as the
anchor, while VectorSVD uses the reference point as the
anchor.

Conceptually, if the data are assumed noise-free, using
the reference point should lead to more precise estimates.
Conversely, if the data are assumed to be corrupted by noise,
the neighborhood mean, may be a better proxy for the anchor
point than p;. In terms of processing time, avoiding the
computation of the neighborhood mean saves a number of
operations that is linear in k.

R
M = > (g —pi)gi; —pi)"-
qi; €Q;

(10)

Normalized vectors: An observation that can be made
from (8) and all preceding objective functions is that vectors
formed using neighbors closer to the anchor point are shorter
than vector formed using the furthest points in Qj;. This
is not a desirable property in general, since it violates the
assumption that the surface is only locally planar. The second
modification of (8) we examine is by normalizing the vectors
in the outer products that form Mj:

MM = 3

qi; €Q;

(9 — @)(aij —@")"
llaij — @' 113
in case the plane is anchored at the neighborhood mean, or

MgNR) _ Z

qi; €Q;

(an

(Qij - pi)(%‘j — pz‘)T

H%‘j —pi||§

. 12)

in case the plane is anchored at the reference point.

As a result of normalization, all the matrices contributing
to the sum are rank-1 with their non-zero eigenvalue equal
to 1.

Weighted contributions: For similar reasons to the
above modification and in order to reduce the effects of
points that were included in Q; despite being far from p;,
several authors [18], [7] have applied weights to the outer
products as they are summed to form Mj;. The weights
decrease with distance to make the effects of distant points
smaller.

(W) laig—a; 113
M7 = Y e
qi; €Q;

¢ij —) a; —)T (13)

The distances used in the weight computation above are for
the case the plane is anchored at the neighborhood mean.
The computation of Mi(WR) is analogous when the plane is
anchored on p;.

In this paper, we define the weights as shown in (13),
but other alternatives exist. For example, Tombari et al.
[7] choose a linear decay with distance. In most cases, an
additional parameter is required for specifying the weights.

We set o equal to the average distance from each point in
the point cloud to its k*" neighbor. o remains fixed for a point
cloud and assigns non-trivial weights to all points in most
neighborhoods, as long as they are not outliers, very far from
the anchor point. Making ¢ a function of the distance to a
certain nearest neighbor allows us to use the same procedure
for setting it, regardless of scale and number of points in the
input point cloud. We did not attempt to quantify the effects
of ¢ in this paper.

Notation: Having three binary choices leads to a total of
eight methods. We use N for normalization, W for weights
and R for reference point to denote which modifications
are active. For example, the method with all modifications
active is denoted by NW R and computes the normal as the
eigenvector corresponding to the minimum eigenvalue of the
following matrix.

)T

MNWR) _ Z 67% (qij — pi)(asj —Zpi
4 €Qs ||Q7,] _piHQ
(14
Note that all methods in Section III-B operate in neighbor-
hoods that have not been augmented by the reference point
p;, except for the computation of the neighborhood mean. We
made this choice because we do not assume that pi(j;r lies on
local plane. When none of the modifications are active, the
method is denoted by base and is similar to the PlanePCA
algorithm up to the exclusion of the reference point from the
neighborhood. R is identical to VectorSVD, since p; is used
as the anchor.

IV. EXPERIMENTAL RESULTS

In this section, we describe the data and ground truth
generation for our experiments followed by quantitative
results.

A. Experimental Setup

We performed experiments on 40 3D meshes, made avail-
able online by Dutagaci et al. [11]. Some examples are
shown in Fig. 1. These are more challenging than the data
used by previous studies [10], [13] that consisted of smooth
surfaces with fewer discontinuities. The average number of
vertices per model is 8,548, for a grand total of 341,909
vertices. Each point cloud is centered and scaled so that
the diagonal of its bounding box is equal to one unit of
distance. It should be pointed out that the vertices are not
uniformly sampled. Instead, they are denser in areas with
more details. We decided against re-sampling the meshes,
since non-uniform density is a common challenge for normal

f

(b) Gargoyle, o, = 0.3%

(d) Glasses, g,, = 0.3%

(c) Ant, o, = 0.6%

Fig. 2. Screenshots of meshes corrupted by noise with oy, given as a
fraction of the diagonal of the bounding box of the entire mesh. Only the
vertices are used for surface normal estimation.

estimation in practice. We only use the mesh connectivity
information to generate ground truth, but provide only the
point clouds as input to the normal estimation methods of
Section III.

Ground truth normal estimation: We exploit mesh
connectivity information to compute the ground truth as the
weighted average of the surface normals of all triangles
incident at a vertex. We choose to weigh the normal of each
triangle according to the angle under which the triangle is
incident at the vertex of interest [19]. (Weighing the normals
according to the areas of the triangles [20], [19] produces
estimates within 1° of the angle-weighted ones on average.
Either weighting scheme could have been used.)

We estimated surface normals for all vertices in all 40
meshes with k ranging from 10 to 50 in steps of 10. We
report the average error per point in degrees, dividing by
the total number of points. Since we are only interested in
surface normal estimation accuracy over a large set of points,
this error metric is more relevant than averaging the error per
mesh and then averaging the per-mesh errors.

Additive zero-mean Gaussian noise was added to the
points. We set the standard deviation of the noise o, to
0.15%, 0.3%, 0.45% and 0.6% of the diagonal and repeat the
experiments as above. Increasing o, even further resulted in
extremely noisy models. Some examples of the effects of
noise can be seen in Fig. 2. The ground truth normals of
the noise-free meshes were used as ground truth for these
experiments as well. Otherwise, the experiments would be
equivalent to the noise-free case on deformed inputs.

B. Quantitative Results

We begin by evaluating the effects of the three modifica-
tions presented in Section III-B, before comparing the most

effective among them to the methods of Section III-A.

Figure 3 shows the average orientation error per point in
degrees as a function of k for the noise-free case, as well as
for additive noise with o,, = 0.3%.

18
16
14
12

10 //

10 20 30 40 50

o N OB O

——NWR NW NR N ——WR ——W ——R —ebase

(a) Noise-free inputs
20
18
16
14
12

o N A O

10 20 30 40 50
—~—NWR ——NW ——NR
(b) Additive noise o,, = 0.3%

N —=WR ——W =R ——base

Fig. 3. Average orientation error per point in degrees over all 3D models as
a function of k for the methods of Section III-B. The lowest overall error is
achieved by N on the noise-free data, while NW R shows greater stability
as k increases. NW R shows similar behavior on noisy data as well. The
lowest error is achieved by N for k > 20 for all values of o,.

Effects of anchor point selection: One of the most
consistent findings among all combinations of noise, nor-
malization and use of weights is that anchoring the plane
on the neighborhood mean leads to higher accuracy. Table I
shows the average error in degrees for the noise-free case
comparing methods with different choices for the anchor
point side by side. The middle column shows error values
when the local planes are anchored at the reference point (R
on) and the right column the same errors when the planes
are anchored on the neighborhood mean (R off). Results for
all noise levels are very similar and have been omitted.

Effects of normalization: A second consistent finding
in all our experiments is that normalizing the vectors used
in the formulation of the objective functions is beneficial
since it does not give more weight to distant points. Table
IT shows a similar comparison with that of Table I focusing
on the effects of setting N on or off. The results below are
for the noise free case.

Effects of weights: The conclusion from these experi-
ments is less clear. The use of weights improves accuracy

TABLE 1
AVERAGE ORIENTATION ERROR PER POINT IN DEGREES OVER ALL 3D
MODELS FOR k = 10.

Ron | R off
NW 6.28 5.46
N 6.43 543

w 7.67 6.00
base 8.10 6.08

TABLE II
AVERAGE ORIENTATION ERROR PER POINT IN DEGREES OVER ALL 3D
MODELS FOR k& = 10.

N on | N off
WR 6.28 7.67
W 5.46 6.00
R 6.43 8.10
base 5.43 6.08

when the reference point is used as anchor. On the other
hand, it is detrimental when the neighborhood mean is used
as anchor. As noise levels increase, the use of weights has a
slight positive impact on accuracy. It is possible that adapting
o in (13) appropriately may reveal more positive effects,
but our conclusion from this study is that normalization is
more effective than the use of weights in reducing the effects
of distant neighbors and it also does not require additional
parameters.

Comparison of all methods: Figure 4 shows the av-
erage orientation error over all 3D models for PlaneSVD,
PlanePCA, VectorSVD, QuadSVD, NW R and N. We chose
N as the top performing among the modifications we evalu-
ated above and NW R due to its more stable behavior with
respect to variations in k.

The lowest error is achieved by N on the noise-free
data for £ = 10, while NW R shows greater stability as
k increases. (There is no benefit from considering more
neighbors since the data is noise-free.) When noise with
on = 0.3% is added, N still achieves the smallest error
(8.04°) for k = 20. PlanePCA and PlaneSVD are virtually
indistinguishable from NV for all values of k. Increasing o,
to 0.6% does not alter the results significantly. PlanePCA
achieves the smallest orientation error at kK = 30 by a very
small margin over PlaneSVD and N.

VectorSVD, or equivalently R, is clearly worse than the
other methods. QuadSVD does not work well based on
a minimal sample of 10 neighbors and keeps improving
as k grows without coming particularly close to the other
methods. NW R appears to be more sensitive to noise then
the other methods.

Figure 5 contains visualizations of various models with
different levels of additive noise generated by the base
method. In general, discerning the per-point differences
among different methods is essentially impossible, so we do
not provide visualizations of results from other methods. The
vertices in these models have been color-coded according

18

16
14
12
10 /
. .
6
4
2
0
10 20 30 40 50
——PlaneSVD ——PlanePCA VectorSVD QuadSVD ——NWR ——N
(a) Noise-free inputs
20
18
16
14
12
10 T —
8 ——
6
4
2
0
10 20 30 40 50
——PlaneSVD ——PlanePCA VectorSVD QuadSVD ——NWR ——N
(b) Additive noise o,, = 0.3%
30
25
20
10
5

10 20 30 40 50
——PlaneSVD ——PlanePCA

(c) Additive noise o, = 0.6%

VectorSVD QuadSVD ——=NWR =——=N

Fig. 4. Average orientation error per point in degrees over all 3D models as
a function of k for PlaneSVD, PlanePCA, VectorSVD, QuadSVD, NW R
and N. See text for an analysis of the results. PlaneSVD and PlanePCA
overlap almost perfectly and cannot be distinguished in the plots.

to the errors of the estimated normals. Figure 6 shows the
average orientation error for £ = 20 as a function of o,,. N
and PlanePCA appear to be more robust to additive noise,
while QuadSVD and NW R show a steep increase in error.

V. CONCLUSIONS

We presented an evaluation of surface normal estimation
methods applicable to point clouds that is extensive both
in terms of the number of methods being evaluated and
also in terms of the size of the validation set. The use of
40 3D meshes of complex geometry poses challenges to
these algorithms and exposes potential weaknesses. These
challenges are due to the presence of details (large curvature)

(d) Glasses, o, = 0.3%

Fig. 5. Screenshots of meshes color-coded according to surface normal
orientation error. All models were generated by the base method. The color
coding is with respect to the mean error for the specific mesh. Vertices
within 25% of the mean are colored blue, vertices with error larger than
125% of the mean are colored red and vertices with error less than 75% of
the mean are colored green. The color of the interior points in each triangle
is the result of barycentric blending of the vertex colors producing shades
of purple or cyan. As before, oy, is given as a fraction of the diagonal of
the bounding box of the mesh.

on the surfaces, and due to the non-uniform density of the
points, since density is proportional to the local level of
detail. Moreover, we perturbed the vertices by adding zero-
mean Gaussian noise to them.

Our results shows that the use of the reference point,
the point for which the normal is estimated, as the anchor
through which the plane must pass is detrimental for accu-
racy. This is due to the non-isotropy of the neighborhoods
and, in some experiments, the presence of strong additive
noise that make the reference point unsuitable for this
role. Using the neighborhood mean has proven to be more
effective. As a result, VectorSVD is inferior to the other
methods presented in [10].

A second clear conclusion from our work is that all
vectors used to construct the matrices whose spectral analysis
produces the sought-after normals should be normalized.

While the use of weights did not seem to be beneficial
in our experimental setup (non-isotropic neighborhoods and
additive noise), it has shown to be very effective when the
data are corrupted by outliers [21], [22], [23]. We plan to
perform further analysis on data corrupted by both additive
and outlier noise in our future work.

It is well known that PlaneSVD may suffer from numerical
instability. This behavior is not observed on our data because
the point clouds are centered and scaled so that the diagonal
of their bounding box is equal to one, but practitioners should
be aware of this drawback.

Our experiments do not support fitting quadratic surfaces

18.000
16.000
14.000
12.000
10.000
8.000
6.000
4.000
2.000

0.000

0.00% 0.15% 0.30% 0.45% 0.60%

——PlaneSvD PlanePCA VectorSVD QuadSVD ——NWR ——N

Fig. 6. Average orientation error per point in degrees over all 3D models
as a function of o, for PlaneSVD, PlanePCA, VectorSVD, QuadSVD,
NWR and N. The number of neighbors is fixed at 20 for all noise
levels. PlaneSVD and PlanePCA overlap almost perfectly and cannot be
distinguished in the plot.

to the data. QuadSVD does not perform particularly well
and comes at a much higher computational cost due to the
need to perform SVD on a 10 x 10 matrix for each point, in
contrast to most of the other methods that operate on 3 x 3
scatter matrices.

Our final recommendation is the use of the optimal total
least squares solution, termed PlanePCA in [10], modified
to use normalized vectors. Normalization, in general, signif-
icantly improves the numerical stability and accuracy of TLS
optimization. See, for example, the work of Hartley [24].

REFERENCES

[1] D. Anguelov, B. Taskarf, V. Chatalbashev, D. Koller, D. Gupta,
G. Heitz, and A. Ng, “Discriminative learning of markov random fields
for segmentation of 3d scan data,” in IEEE. Conf. on Computer Vision
and Pattern Recognition, vol. 2, 2005, pp. 169-176.

[2] A. Golovinskiy, V. Kim, and T. Funkhouser, “Shape-based recognition
of 3d point clouds in urban environments,” in Int. Conf. on Computer
Vision, 2009.

[3] A. E. Johnson and M. Hebert, “Using spin images for efficient object
recognition in cluttered 3d scenes,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 21, no. 5, pp. 433449, 1999.

[4] A. Frome, D. Huber, R. Kolluri, T. Bulow, and J. Malik, “Recognizing
objects in range data using regional point descriptors,” in European
Conf. on Computer Vision, 2004, pp. Vol III: 224-237.

[5]1 A. Patterson, P. Mordohai, and K. Daniilidis, “Object detection from
large-scale 3D datasets using bottom-up and top-down descriptors,” in
European Conf. on Computer Vision, 2008, pp. 553-566.

[6] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(fpth) for 3d registration,” in IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2009, pp. 3212-3217.

[7]1 F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of his-
tograms for local surface description,” in European Conf. on Computer
Vision. Springer, 2010, pp. 356-369.

[8] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Surface reconstruction from unorganized points,” ACM SIGGRAPH,
pp. 71-78, 1992.

[9]1 N. J. Mitra, A. Nguyen, and L. Guibas, “Estimating surface normals
in noisy point cloud data,” International Journal of Computational
Geometry and Applications, vol. 14, no. 4-5, pp. 261-276, 2004.

[10] K. Klasing, D. Althoff, D. Wollherr, and M. Buss, “Comparison of
surface normal estimation methods for range sensing applications,” in
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2009, pp. 3206-3211.

[11] H. Dutagaci, C. Cheung, and A. Godil, “Evaluation of 3D interest
point detection techniques via human-generated ground truth,” The
Visual Computer, vol. 28, pp. 901-917, 2012.

[12] C. Wang, H. Tanahashi, H. Hirayu, Y. Niwa, and K. Yamamoto,
“Comparison of local plane fitting methods for range data,” in /EEE.
Conf. on Computer Vision and Pattern Recognition, vol. 1, 2001, pp.
1-663-1-669.

[13] H. Badino, D. Huber, Y. Park, and T. Kanade, “Fast and accurate
computation of surface normals from range images,” in /IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2011, pp.
3084-3091.

[14] M. Gopi, S. Krishnan, and C. T. Silva, “Surface reconstruction based
on lower dimensional localized delaunay triangulation,” in Computer
Graphics Forum, vol. 19, no. 3, 2000, pp. 467-478.

[15] K. Kanatani, Statistical Optimization for Geometric Computation:
Theory and Practice. Elsevier Science, 1996.

[16] W. Sun, C. Bradley, Y. Zhang, and H. T. Loh, “Cloud data modelling
employing a unified, non-redundant triangular mesh,” Computer-Aided
Design, vol. 33, no. 2, pp. 183-193, 2001.

[17] D. OuYang and H.-Y. Feng, “On the normal vector estimation for point
cloud data from smooth surfaces,” Computer-Aided Design, vol. 37,
no. 10, pp. 1071-1079, 2005.

[18] G. Medioni, M. S. Lee, and C. K. Tang, A Computational Framework
for Segmentation and Grouping. Elsevier, New York, NY, 2000.

[19] S. Jin, R. R. Lewis, and D. West, “A comparison of algorithms for
vertex normal computation,” The Visual Computer, vol. 21, no. 1-2,
pp- 71-82, 2005.

[20] G. Taubin, “Estimating the tensor of curvature of a surface from a
polyhedral approximation,” in Int. Conf. on Computer Vision, 1995,
pp. 902-907.

[21] G. Guy and G. Medioni, “Inference of surfaces, 3d curves, and
junctions from sparse, noisy, 3d data,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 19, no. 11, pp. 1265-1277, 1997.

[22] W. Tong, C. Tang, P. Mordohai, and G. Medioni, “First order augmen-
tation to tensor voting for boundary inference and multiscale analysis
in 3d,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 26, no. 5, pp. 594-611, May 2004.

[23] M. Liu, F. Pomerleau, F. Colas, and R. Siegwart, “Normal estimation
for pointcloud using gpu based sparse tensor voting,” in IEEE Inter-
national Conference on Robotics and Biomimetics (ROBIO), 2012, pp.
91-96.

[24] R. L. Hartley, “In defense of the eight-point algorithm,” IEEE Trans.
on Pattern Analysis and Machine Intelligence, vol. 19, no. 6, pp. 580—
593, 1997.

