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Abstract

We present an approach for estimating occupancy grids
with an emphasis on robotics applications, where collision
avoidance and robustness to severe noise are of more im-
portance than high resolution. We build upon probabilistic
techniques, typically used in robotics, and techniques based
on signed distance fields, typically used in computer vision,
to obtain an approach that is robust and also allows proba-
bilistic reasoning on free and occupied space. The unique-
ness of our method lies in the use of separate accumula-
tors for positive and negative evidence for the occupancy of
each voxel. This enables our representation to capture the
uncertainty due to potential conflicts among the measure-
ments instead of allowing contradictory evidence to cancel
each other out. We show occupancy grids computed from
multi-view stereo inputs on precisely and imprecisely cali-
brated image sequences. The ground truth that is available
with the former dataset allows quantitative evaluation of the
performance of our algorithm.

1. Introduction

Probabilistic occupancy grids have arguably been the
dominant paradigm for map building in robotics [25, 4, 32]
partly because they are a world-based representation that
enables the fusion of measurements from mobile sensors,
even in the presence of large uncertainties in motion estima-
tion. The space in which the robot operates is divided into
voxels, which should be classified as occupied or empty.
For ground robots, the grid can be 2D, but we will focus
our attention on 3D grids in this paper. While several meth-
ods for computing such occupancy grids have been pro-
posed in the literature (see Sec. 2), most of them share
one characteristic: range measurements are assumed to fol-
low a normal distribution centered around the true range,
possibly contaminated by another distribution representing
false positives, missed obstacles or both. These probabil-

ities are fused in voxels, rays or cones depending on the
sensor model to produce posterior occupancy probabilities.
Final decisions are made by thresholding the posteriors to
minimize risk.

The resolution of occupancy grids in robotics is typi-
cally low since this, on the one hand, acts as low-pass filter-
ing on the measurements and reduces the effects of noise,
and, on the other hand, it is sufficient for tasks such as ob-
stacle avoidance and path planning without putting undue
strain on the limited memory and processing resources of
robots. Not bound by these constraints, researchers in com-
puter graphics and vision also adopted volumetric represen-
tations in order to merge multiple range scans into complete
surface models. In one of the most significant papers in
this line of research, along with that of Hoppe et al. [12],
Curless and Levoy [3] criticized methods based on occu-
pancy probability computations arguing that “a difficulty
with this technique is the fact that the best description of
the surface lies at the peak or ridge of the probability func-
tion” and such peaks and ridges are hard to localize robustly.
To overcome this difficulty and extract high-resolution, de-
tailed surfaces from the voxel grid, Curless and Levoy used
truncated signed distance functions (TSDF) which are gen-
erated from the range scans and aggregated on the voxel
grid. Surfaces can be extracted as the zero-crossings of the
cumulative signed distance function. This is a more stable
problem and its solution can lead to 3D surface models of
outstanding quality. See Fig. 1 for a simple 1D illustration
and Sec. 2 for more details on related work.

Both representations - occupancy probabilities or signed
distance fields - share the following property: two contra-
dictory measurements with the same weight cancel each
other out either after they are added or after Bayesian up-
dates of the posterior. This makes a voxel that has received,
for example, two votes for being occupied and none for be-
ing empty equivalent to a voxel that has received six votes
for being occupied and four for being empty. We argue that
the representation of these voxels should not be oblivious
to the difference in uncertainty between them. The latter
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Figure 1. Left: the addition of truncated signed distance functions
leads to zero-crossings that are easy to detect. Right: the same
is not true for the addition of normal densities, which may result
in multiple local maxima. (The x-axis is defined on a ray of the
sensor.)

voxel may be in a part of space where the input range maps
are particularly noisy, where motion may have occurred or
some other source of uncertainty is present. The former
voxel should be more straightforward to classify as occu-
pied. We would like to provide a risk-averse autonomous
vehicle with information that would allow it to stay away
from uncertain regions.

We accomplish this by maintaining two separate accu-
mulators: one for positive distance values and one for nega-
tive ones. At the end, the ratio of the accumulated evidence
is compared to a threshold determined by a user-specified
loss function, or simply the zero-one loss function, to make
final decisions about occupancy. This approach inherits
the robustness of the TSDF representations, but allows the
specification of prior probabilities for occupancy and free-
space as well as generalized loss functions during the de-
cision making process. To the best of our knowledge, no
previously published work combines these properties.

In this paper, we work solely with depth maps com-
puted via multi-view stereo, but other inputs can be used.
Viewpoint-based depth estimation can be carried out at
higher resolution than volumetric processing due to its
quadratic, instead of cubic memory, requirements. Thus,
the input depth maps are of higher resolution than the voxel
grid and each voxel projects on multiple pixels. We take this
explicitly into account, similar to [1, 27], to increase infor-
mation utilization from the depth maps to the voxel grid.
We also use the confidence of each depth estimate [13] as a
weight during evidence aggregation.

We show the effectiveness of our method on two diverse
datasets. First, we show quantitative results on the accu-
rately calibrated data provided by Strecha et al. [30] and,
then, we show robustness on image sequences we collected
for which calibration is less accurate. We acknowledge that
one could try to improve the structure from motion estima-
tion using techniques such as those proposed by Tylecek
and Sara [33] and Furukawa and Ponce [6], but we opt for
an alternative route and attempt to suppress the adverse ef-
fects of these errors via the robustness of our approach.

2. Related Work
In this section, we review related work on estimating oc-

cupancy grids from range maps. Methods that operate on
image inputs such as voxel coloring [29] or space carv-
ing [21] are considered out of scope in this discussion, as
are silhouette-based methods [31, 22, 5]. We distinguish
between methods that model surfaces as local maxima of
some probability distribution and those that model surfaces
as zero-crossings of an appropriate function.

Occupancy grids were introduced in the robotics liter-
ature as representations to facilitate navigation using sen-
sors such as sonar [25] or stereo [4]. Due to severe sensor
noise, emphasis was placed on robustness and probabilistic
approaches able to fuse uncertain evidence. Critical for the
estimation is the sensor model, which is used to describe
either the probability of observing a measurement condi-
tioned on the state of the environment (forward model) or
the probability of the state conditioned on the measurements
(inverse model). The state here comprises variables repre-
senting the occupancy of each cell of the grid. Inverse mod-
els were preferred by early researchers because they allow
the processing of each voxel independently of other vox-
els resulting in simpler and faster algorithms. Elfes and
Matthies [4] proposed a Bayesian approach that employs
an inverse sensor model and integrates evidence for occu-
pancy. Konolige [19] proposed several improvements to
this approach by using better designed sensor models and
accounting for specularities and redundant measurements.
A forward sensor model was adopted by Thrun [32] who
solved the problem taking into account the dependencies
between voxels using the EM algorithm. A comparison of
these algorithms was performed by Collins et al. [2] and
showed that forward sensor models are more accurate but
very demanding in computational resources. Around the
same time, Pathak et al. [26] presented a formulation using
a forward sensor model that does not require EM and is thus
more efficient.

An approach designed specifically for stereo depth maps
inputs was presented by Andert [1]. It uses an inverse model
and, unlike previous work, explicitly takes into account the
fact that pixel-voxel correspondences are not one to one.
Since depth maps are of higher resolution than the slices
of the occupancy grid, each voxel covers multiple pixels.
The minimum depth among all pixels covered by a voxel is
used to update its occupancy probability in order to be con-
servative. Pyramids are computed from the depth maps to
improve efficiency. Pirker et al. [27] adapted this approach
to process inputs from a Kinect and to interpolate between
pyramid levels for increased accuracy. We use all pixels, in-
stead, to obtain multiple positive and negative measurement
for the voxel.

Occupancy grids are widely used in robotics because
they provide robustness to sensor pose estimation errors



and noise in range estimates. The voxels are typically large
since the size of the robot determines the scale of the rep-
resentation. In the computer vision and graphics literature,
on the other hand, the typical goal is to obtain very accu-
rate surface models preserving fine details. As mentioned
in the previous section, the use of truncated distance fields
has proven to be more robust than the estimation of occu-
pancy probabilities.

Hoppe et al. [12] presented a seminal method for infer-
ring an implicit surface representation from an unorganized
point cloud, by estimating local tangent planes to the points
and from those estimating a volumetric distance function
to the surface. In separate papers in 1996, Curless and
Levoy [3] as well as Hilton et al. [11] proposed algorithms
for merging range maps by combining the signed distance
functions induced by them in volumetric grids to generate
a cumulative distance function, the zero level-set of which
was the surface. Wheeler et al. [35] adapted the method of
[3] to increase its robustness to outliers by extracting sur-
faces only in voxels that are supported by a minimum level
of consensus, measured by accumulating the confidence
of range estimates incident to each voxel. More recently,
Kazhdan et al. [17] formulated implicit surface estimation
from unorganized oriented points as a spatial Poisson prob-
lem whose solution is an indicator function that labels vox-
els as interior or exterior to the surface. Several authors
[9, 23, 7] use the Poisson Surface Reconstruction software
[17] to extract watertight manifold surfaces from partial re-
constructions. Zach et al. [37, 36] proposed a global op-
timization framework based on minimization of total vari-
ation and an L1 data term defined using truncated signed
distance fields computed from the input range images.

Techniques for directly estimating occupancy have also
been published in the computer vision literature. Koch et
al. [18] presented a voting-based approach for depth map
fusion under which depth estimates contained in voxel are
used as evidence of its occupancy. Surfaces can be extracted
by thresholding the accumulated votes. Sato et al. [28] also
advocated a volumetric method based on voting. Each depth
estimate votes not only for the most likely surface but also
for free space between the camera and the surface. The ratio
of votes for surface over free-space is thresholded to decide
on the occupancy of a voxel. Hernández et al. [10] adopted
a Gaussian distribution for the depth on rays, conditioned
on the true depth, contaminated by an outlier process. The
final surface is extracted as a graph cut separating interior
form exterior nodes using evidence of visibility to compute
the unary potentials. Under certain conditions, they argue
that this computation of visibility is equivalent to the use
of signed distance functions as in [3]. Recently, impressive
results have been shown by volumetric methods [34, 16]
based on 3D Delaunay triangulation to tessellate the vol-
ume into tetrahedra followed by interior/exterior segmenta-

tion computed via a graph cut. Reconstructed sparse fea-
tures are clustered in 3D and the cluster centroid are the
vertices of the Delaunay tetrahedra. The cost for labeling a
tetrahedron as occupied is determined by evidence of visi-
bility accumulated from the cameras in which the vertices
are visible.

Our method adopts an inverse model and ignores depen-
dencies between voxels. Signed distance functions are cho-
sen for their robustness, but positive and negative distances
are accumulated separately and used as evidence for occu-
pancy and emptiness. This allows a probabilistic interpreta-
tion and the use of decision rules that take risk into account,
as shown in (7). This has not been pursued in the computer
vision literature where the aim is minimization of errors re-
gardless of their type. The method of Hernández et al. [10]
is, in principle, capable of doing that with minor modifica-
tions to the unary terms of the objective function, but it has
not been shown. It should also be noted that all the methods
mentioned above, except for [36], use a singe accumula-
tor of probability or distance per voxel. Ours is the only
method that uses separate accumulators for the two types
of evidence, while Zach [36] modified the data term of [37]
by dividing the interval [−1, 1] into bins and histogramming
the distance field values at each voxel. The key difference
between our method and that of Zach is that our focus is on
robustness, at low resolution, as opposed to obtaining high
geometric accuracy on cleaner inputs.

3. Input Depth and Confidence Maps
In this section, we briefly describe how the input depth

and confidence maps are estimated from the images. Cam-
era poses are assumed to be externally provided.

Raw depth maps are computed from a set of cali-
brated images using plane-sweeping stereo implemented on
the GPU similar to [8] with normalized cross-correlation
(NCC) as the similarity function. NCC is computed in small
windows defined in the reference image and mapped to sev-
eral target images via a homography through the hypoth-
esized plane. For all the experiments in this paper, we use
four sets of planes: one horizontal and three vertical. One of
the vertical sets is fronto-parallel and the other two are ro-
tated 45o clockwise and counter-clockwise around the grav-
ity direction. Horizontal planes are very effective for re-
constructing surfaces such as the ground, which are heavily
distorted when projected via homographies defined on ver-
tical planes. To compute the photoconsistency of a candi-
date depth along a sweeping orientation, all pairwise NCC
scores are averaged. The depth for every pixel is selected as
the one with maximum score among all sweeping directions
independently of its neighbors.

Concurrently with the depth maps, confidence maps are
also computed. Based on a recent comparison of confidence
measures [15], we selected a form of confidence introduced



by Merrell et al. [24] to obtain a probability mass func-
tion for depth given NCC scores, assuming a uniform depth
prior. The confidence of a depth candidate di is defined as
follows:

C(di) =
e−

NCC(d0)−NCC(di)
2σ2∑

j e
−
NCC(d0)−NCC(dj)

2σ2

, (1)

where d0 is the depth with the maximum NCC score for that
sweeping direction. Taking into account NCC(d0) is cru-
cial for allowing confidence values to transfer across depth
maps. Here, we only consider the candidate with the highest
NCC value, d0.

The raw depth maps are subsequently fused to generate
fused depth maps which are the inputs to the occupancy grid
computation. We follow our least commitment depth map
fusion approach [14], published concurrently with this pa-
per. Fusion begins by rendering the input depth and con-
fidence maps onto the reference view. Support for each
depth candidate is accumulated from depth candidates that
are likely to have been generated by the same 3D point.
Consistent depth candidates are then merged by taking their
average weighted by confidence. These merged depth es-
timates are penalized according to violations of visibility
constraints, namely occlusions and free space violations,
which indicate inconsistencies among depth maps. Both
support and penalties are weighed according to the con-
fidence of the participating depth estimates. Unlike the
greedy approach of [24], we adopt a least commitment strat-
egy and fully evaluate a number of depth candidates for
each pixel before making hard decisions. Fused confidence
maps are also generated during this process by aggregating
the support and penalties of the fused depth values. See [14]
for details. It should be noted that any depth maps can be
used as inputs. If confidence maps are not available, all pix-
els can be treated equally in the subsequent stages resulting
in some loss of accuracy.

4. Occupancy and Free Space Estimation
In this section, we describe how the accumulators of pos-

itive and negative evidence are populated from the depth
maps and how decisions are made for the occupancy of each
voxel. We adopt an inverse sensor model and consider the
occupancy of each voxel as independent of the occupancy
of all other voxels. The grid is defined so that it covers the
area of interest. Including all visible surfaces, however, is
not necessary. Depths beyond the far end of the grid pro-
vide evidence in support of the free space hypothesis for all
affected voxels.

Given n input depth maps, each with an associated con-
fidence map, every voxel of the grid is projected to each
depth map. We handle the notorious voxel-pixel correspon-
dence problem similar to [1, 27] by determining the area a

voxel covers on the depth map. Specifically, we project the
center of the voxel onto the depth map and denote its pixel
coordinates by (u, v). If the length of the voxel’s edge is S
and its depth with respect to the camera center is Z, then the
projection of the voxel is approximately s = Sf/Z pixels
wide. (This would be exact if the voxels were spherical.)
Then, we aggregate data from all pixels in a s × s window
centered around (u, v). Unlike [1, 27], we do not use image
pyramids during this operation. This process is repeated for
all depth maps in which the voxel is visible.

A pixel contributes to a voxel positive or negative evi-
dence for its occupancy according to the truncated signed
distance function model. Our implementation follows that
of Zach et al. [37]. Let Di denote the distance from the
camera center to voxel mi and d(u, v) denote the depth of
pixel (u, v), then the signed distance function is:

fi =
Di − d(u, v)

δ
, (2)

where δ defines the width of the “near surface” region. Pos-
itive distances correspond to occupied voxels and negative
distances to free space. The signed distance function is
truncated to be within [−1 1], as shown below. If the confi-
dence of the depth estimate is C(u, v), then the accumula-
tors are updated as follows. We use pi and ni for the positive
and negative accumulator and p−i and p+

i for the values of
pi before and after the update respectively. Only one accu-
mulator is affected by each measurement.

n+
i = n−i − C(u, v) if fi < −1 (3)

n+
i = n−i − C(u, v)fi if − 1 ≤ fi < 0 (4)

p+
i = p−i + C(u, v)fi if 0 < fi ≤ 1 (5)

p+
i = p−i + C(u, v) if 1 < fi ≤ ηδ (6)

The influence of each depth estimate stops at some distance
behind the estimated surface determined by η, which can be
viewed as the minimum thickness of objects allowed. While
a measurement with high confidence and fi = 0 does not
affect either pi or ni, it affects the voxels in front and behind
the current voxel and prevents large errors.

Optionally, for noisy data, we perform a few iterations of
diffusion to impose smoothness to the voxel space. Diffu-
sion is applied separately in the positive and negative accu-
mulators with larger weights for connections between verti-
cally neighboring voxels to favor vertical surfaces.

While in 3D reconstruction for visualization purposes
over and under-estimation of depth have the same signif-
icance, this is not true for navigation and other applica-
tions. If depth is over-estimated, the vehicle may collide
with an obstacle and, if it is under-estimated, a traversable
path may be rejected. We name these two types of errors
from the perspective of occupancy and use efp to represent



false positives (obstacles detected where they do not exist)
and emd for missed detections (true obstacles labeled as free
space). We cast our decision making process as one of risk
minimization and assign potentially different costs, λfp and
λmd, to the two types of errors. This leads to the following
decision rule, where z denotes all the measurements:

if
P (z|OCC)
P (z|EMP )

>
λmdP (EMP )
λfpP (OCC)

= θ mi = OCC

else mi = EMP
(7)

θ is the threshold of the likelihood ratio test and depends on
the priors and the relative costs for each type of error. In the
remainder, we will use θ as a single parameter encompass-
ing all these factors, but if priors were available, they could
have been used explicitly. So far, we have not estimated the
likelihoods on the left-hand side of (7), but we are able to
approximate their ratio by the ratio of the evidence we have
accumulated, which leads to the final decision rule:

if
pi

ni
> θ, mi = OCC, else mi = EMP (8)

This formulation is similar to the TSDF paradigm where
signed distances are aggregated in one accumulator, but it
captures the presence of conflicting information better. Re-
visiting the example of Sec. 1, a voxel that received six
positive and four negative votes has a likelihood ratio of 1.5
which is equivalent to a 60% probability of occupancy, but
not equivalent to the 100% probability of a voxel that re-
ceived only two positive votes. A mobile robot should avoid
the former voxel to reduce the risk of collisions.

5. Experiments on Controlled Data
In this section, we present an evaluation of our algo-

rithm on two real outdoor datasets with ground truth [30].
We used the fountain-P11 and Herz-Jesu-P8 datasets which
contain 11 and 8 images respectively, which we downsam-
pled to 1536× 1024. All experiments were performed with
fixed parameters: three adjacent images were used for the
computation of each depth map, the NCC window was 7×7,
σ in (1) was set to 0.2 and the sweeping planes where dis-
tributed in space so that the disparity step between them
was no more than 0.2, with disparity defined between the
reference view and the farthest target view. Finally, median
filtering in 13× 13 windows was applied to fill the holes in
the fused depth maps. See [14] for details.

Starting from the fused depth and confidence maps as
inputs (Fig. 2), we computed occupancy grids according to
the previous section. The grids were configured according
to the provided bounding box information. The grid dimen-
sions for fountain-P11 were 342× 228× 200 with 4.25cm

Figure 2. One of the input images for each of the fountain-P11 and
Herz-Jesu-P8 datasets. Input fused depth and confidence maps for
the former.

Figure 3. ROC curves for false positives (FP) and missed detec-
tions (MD) as a function of θ for the Herz-Jesu-P8 dataset. At
each end, all voxels have been assigned the same label produc-
ing the maximum possible error of the relevant type. The abrupt
transitions occur when θ causes the label assigned to voxels that
received only positive or only negative evidence to change. The
inset is a zoom in on the middle part of the curves. The equal error
rate is 0.47% for θ ≈ 1.8.

voxels, while the grid for Herz-Jesu-P8 was 328×218×200
and the voxel size was 7.5cm. We set δ equal to one half of
the depth range of the grid and η to a large value. (Smaller
values could have been more effective for objects with thin
parts, but no such data with ground truth was available to
us.) No diffusion was performed to isolate the core of the
algorithm for the evaluation and also because independent
computation for each voxel generated very accurate results.

In the first experiment, we verified that using fused depth
maps as inputs is superior to using raw depth maps. With
θ = 1, the occupancy grid computed for the fountain-P11
from raw depths had efp (false obstacles) of 0.596% and
emd (missed obstacles) of 0.020%. The same figures us-
ing fused depth maps for θ = 1 were 0.546% and 0.016%
respectively. Only fused depth maps were used in all subse-
quent experiments.

Varying the threshold θ in (8), we obtained ROC curves
for the two types of error. The ROC curves for Herz-Jesu-
P8 are shown in Fig. 3. The curves for fountain-P11 look
similar and have been omitted. As expected, for very small



Figure 4. Screenshots of occupancy grids for both datasets.

or very large values of the threshold all voxels are assigned
the same label. The important observation from this figure
is that for a broad range of θ values, both types of errors
are very small. In fact they are in the order of 0.5% which
corresponds to one voxel per ray on average. Considering
that a large error can cause several voxels to be wrong, this
is an encouraging result. Screenshots of occupancy grids
for both datasets can be seen in Fig. 4.

Besides the stability mentioned above, our algorithm
also allows the user to direct the solution toward over and
under-estimation of occupancy. Figure 5 shows difference
grids in which voxels that agree with the ground truth are
blank, voxels that are labeled as occupied, but are actu-
ally empty, are colored red and voxels that are labeled as
empty, but are occupied in the ground truth, are colored
green. As shown in the figure, results can be adjusted to be
more or less conservative without producing gross outliers
that would be dangerous for a mobile robot.

6. Experiments on Imprecise Data
The previous section contains results that show good per-

formance on imagery acquired very carefully and for which
calibration was aided by fiducial markers in the scene. Ob-
taining similar image quality and calibration accuracy is
hard for a number of reasons, especially outdoors. In this
section, we show how our method can still be effective un-
der less than ideal conditions. We collected video sequences
using two video cameras rigidly mounted on a cart, syn-
chronized and pre-calibrated in the lab so that their intrinsic
parameters and the relative transformation from one camera
to the other were known with high accuracy. Then, we used
a slight modification of the binocular stereo visual SLAM
package of the Robotics Operating System (ROS)1 [20] to
estimate their motion.

While the estimated trajectory is reasonably accurate and

1http://www.ros.org/wiki/vslam

reprojection errors are small in nearby frames, it is not per-
fect. Instead of trying to improve the quality of camera
motion estimation, in this paper we apply our occupancy
grid method to reduce the effects of noise and produce low
resolution 3D models of acceptable quality for navigation.
We kept the same parameters as in Section 5 with the fol-
lowing differences. Due to the different spacing between
camera poses and the inability to use wide baselines due to
drift in pose estimation, we compute raw depth maps using
seven images and then fuse seven raw depth maps to obtain
each fused one. We divide the space using multiple voxel
grids with 10.5cm voxels and apply the algorithm of Sec-
tion 4 using five fused depth and confidence maps as input
for each grid. Finally, we apply 50 iterations of diffusion
in the voxel grid weighing the central voxel by 8, its two
vertical neighbors by 2 and its four horizontal neighbors by
0.5. (These weights were chosen arbitrarily and no tuning
was attempted.) We use θ = 0.4 to facilitate hole filling.

Due to the much lower quality of our images and cali-
bration data, there are significant errors in the inputs to our
algorithm, as can be seen in Fig. 6. Accumulating evi-
dence independently for each voxel results in a 3D model
with large holes between the first and second floor, in win-
dows and other surfaces for which depth was estimated in-
correctly. At the same time, large protrusions further dimin-
ish the visual quality and usefulness of the model. These
errors are systematic, in the sense that they appear in all
depth maps and thus cannot be corrected by fusion. The
confidence, however, of the noisy parts of the depth maps
is much lower than that of well-imaged, textured parts that
produce accurate matches. After diffusion, reliable, occu-
pied and empty, voxels dominate unreliable ones resulting
in large reductions of both holes and protrusions. See Fig.
7 for images of the input point cloud and of our final re-
sults. In the absence of ground truth, we overlayed the in-
put sparse point cloud consisting of the most confident re-
constructed points with the final result after diffusion and



Figure 5. Screenshots of difference grids for both datasets. False positives of occupancy are colored red, missed detections are colored
green and voxels in agreement with the ground truth are left blank. Each screenshot is from a different model using different values for θ,
resulting in bias for one type of error over the other.

Figure 6. Two of the input images from our sequence and the fused
depth and confidence maps for the image on the left. Notice the
CCD blooming in the top left image, which appears curved after
radial undistortion. Depth maps contain errors due to lack of tex-
ture, reflections on the windows and miscalibration. Fortunately,
most of the depth errors are associated with low confidence values.

observed that the surfaces do not “move” further or closer
to the viewer. Since the geometry of this building is less
characteristic than fountain-P11 and Herz-Jesu-P8, we gen-
erated colored point clouds by taking boundary occupied
voxels and coloring them using the central image of the rel-
evant grid.

7. Conclusions

We have presented a novel approach for volumetric oc-
cupancy estimation that combines the advantages of proba-

Figure 7. Screenshots of results on our sequence. Top point cloud
reconstructed from input fused depth maps. Bottom: point cloud
of surface voxels after diffusion.

bilistic methods with those based on signed distance func-
tions. Using this approach, we have shown very accurate,
low-resolution results on real data with ground truth, as well
as acceptable performance on data captured “in the wild”.

The initial success of this line of research opens several
directions for future work. On the one hand, we plan to
improve the core of the approach by investigating the ben-
efits of a forward sensor model and of more sophisticated
diffusion guided by the input images. On the other hand,
we plan to develop a real-time version of our software by
leveraging octrees, depth map pyramids, parallel processing
on the GPU and by determining the degree to which depth
map resolution can be reduced without significant adverse
effects on accuracy.
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