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Abstract

We address the problem of large-scale 3D reconstruc-
tion from calibrated images relying on a viewpoint-based
approach. The representation is in the form of a collection
of depth maps, which are fused to blend consistent depth
estimates and minimize violations of visibility constraints.
We adopt a least commitment strategy by allowing multiple
candidate depth values per pixel in the fusion process and
deferring hard decisions as much as possible. To address
the inevitable noise in the depth maps, we explicitly model
its sources, namely mismatches and inaccurate 3D coordi-
nate estimation via triangulation, by measuring two types
of uncertainty and using the uncertainty estimates to guide
the fusion process. To the best of our knowledge, this is the
first attempt to model both geometric and correspondence
uncertainty in the context of dense 3D reconstruction. We
show quantitative results on datasets with ground truth that
are competitive with the state of the art.

1. Introduction
Undeniably, there has been significant progress in multi-

view 3D reconstruction in terms of accuracy, scalability

and more rigorous benchmarking [27, 28]. One question

that has not been resolved yet, however, since the an-

swer depends on the specific variant of the problem one

is faced with, is which is the “best” approach for multi-

view reconstruction. There are methods that achieve out-

standing results on single objects surrounded by cameras

[13, 3, 26, 37, 20, 38] by taking advantage of silhouettes

and the fact that the final surface is a watertight manifold.

These assumptions, however, require almost the entire sur-

face of the object to be visible and often relatively easy fore-

ground/background segmentation. In this paper we focus

on a different flavor of multi-view stereo where the inputs

are images of large-scale scenes that do not provide 360o

coverage of the surfaces. In the last few years, several al-

gorithms [12, 23, 30, 9, 11] with moderate processing and

storage requirements that do not require any global compu-

tations have been instrumental to the success of large-scale,

dense 3D modeling [25, 8, 7]. Our approach can also be a

component of such systems.

A common characteristic of many problems in computer

vision, including 3D reconstruction, is that more regulariza-

tion is needed when the data are barely sufficient to solve the

problem, as for example in binocular stereo which has been

addressed via sophisticated global optimization techniques

[36, 1]. As more data become available, the need for reg-

ularization is reduced since outliers are easier to detect and

remove [23, 9] and the solution emerges from the consensus
of inliers. To achieve this, it is important that the outliers are

random and uncorrelated with the inliers so that systematic

errors do not reinforce each other. As long as there is even a

Figure 1. Screenshots of 3D point clouds generated by our method

on the data of Strecha et al. [28]. Top: a point cloud from a single

depth map of the fountain-P11. Bottom: three overlayed point

clouds from Herz-Jesu-P8.
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small number of inliers, they cluster around the correct solu-

tion, which can be detected because of this consensus. This

suggests a least commitment strategy which generates inde-

pendent hypotheses and infers the final surfaces based on

consensus. Regularization in our approach occurs primar-

ily across depth maps and not in pixel neighborhoods. Un-

like other methods, we delay making inlier/outlier decisions

until we accumulate all evidence for each hypothesis. In

fact, we include more than one depth value per pixel in each

depth map to account for cases where the true depth was not

assigned the maximum photoconsistency score. The differ-

ence with other methods that generate multiple candidates

per pixel [3, 22, 24] is that they select one of them based

on neighborhood and photoconsistency criteria on the same

depth map, while our approach allows these candidates to

be evaluated on multiple depth maps until the end.

For our method to be applicable to very large image se-

quences, it should allow the decomposition of the prob-

lem into manageable pieces. This can be achieved either

by a representation in the form of surface patches in 3D

[12, 17, 9] or depth maps [23, 30, 32]. Both types of al-

gorithms, besides depth, also estimate visibility. Patch-

based methods often make early hard decisions by assuming

that the seeds used to initialize the patches are correct and

not considering alternative candidates. Criteria for resolv-

ing conflicts between patches include counting the num-

ber of images in which a 3D point is visible [9] or se-

lecting the candidate with highest average photoconsistency

[12, 17, 9]. Parameters, such as the minimum number of

supporting images or the threshold for acceptable photocon-

sistency, depend on the dataset. We propose a soft way of
enforcing long-range free-space and occlusion constraints,

similar to [23], that does not require parameter tuning and

does not make hard decisions before considering all evi-

dence for and against each depth hypothesis.

In order for our approach to succeed, it must overcome

errors due to the small triangulation angle and mismatches.

The former cause large uncertainty in the coordinates of the

reconstructed 3D points, while the latter introduce spurious

depth candidates and may prevent the correct depth value

from being among the candidates for a pixel. We address

these challenges by explicitly modeling geometric and cor-
respondence uncertainty. Geometric uncertainty is related

to the expected error in a depth estimate’s 3D position,

given the camera configuration (focal length, resolution,

baseline). Here, it is used to determine whether two depth

candidates refer to the same part of the surface and, there-

fore, should be fused. Correspondence uncertainty mea-

sures the likelihood of establishing wrong matches on the

images. The opposite of correspondence uncertainty will

be referred to as confidence throughout the paper. Note that

the two types of uncertainty are independent: a depth esti-

mate in the near range has low geometric uncertainty, but

may have high correspondence uncertainty due to repetitive

texture; conversely, a distinctive point far from the cameras

can be matched unambiguously, but it has high geometric

uncertainty. To the best of our knowledge, ours is the first

dense 3D reconstruction method that considers both types

of uncertainty.

Our approach is designed to be part of a large-scale 3D

reconstruction system capable of generating high-quality

reconstructions in the form of point clouds (Fig. 1) with-

out requiring global processing of the entire sequence which

may contain thousands of frames. In this paper, we focus

on the core depth map fusion module and not on a complete

pipeline encompassing for example pose estimation, view

selection and mesh generation. We think that our work pro-

vides new insights into a central problem in computer vi-

sion and demonstrates that very accurate 3D reconstruction

is possible with minimal regularization.

2. Related Work
Seitz et al. [27] categorize multi-view reconstruction al-

gorithms according to whether they represent shape using

volumetric grids, global surfaces, depth map collections or

surface patches. Due to the requirements for scalability and

applicability to large-scale, open surfaces, the latter two cat-

egories are of more interest to us.

Methods using depth map collections generate the final

3D surfaces by fusing the input depth maps. This can be

achieved by computing signed distance functions on a 3D

grid [5, 14, 37] or by generating point clouds [2, 22] and

reconstructing meshes from them using the method of [18].

Volumetric fusion does not meet our requirements due to the

limitations it imposes on the resolution of the final surface,

which is limited by the cubic memory requirement of the

grid. Recently, volumetric methods have been scaled up us-

ing a two-stage algorithm [35, 16] that estimates the surface

by solving a minimum s-t cut problem on the 3D Delau-

nay mesh of a point cloud extracted by matching keypoints.

This allows space away from the surfaces to be represented

by very small numbers of tetrahedra.

Alternatively, depth maps can be fused by rendering

them on common planes: the images [29, 23, 30, 32] or

the ground [11]. Operating on surfaces instead of volumes

allows processing at high resolution. The methods of [23]

and [32] are of particular interest to us because they take

into account the correspondence uncertainty of depth can-

didates rendered onto a reference view.

Other authors have used individual rays as reference on

which to link multiple depth estimates [19, 33] under the

assumption that each true depth will be supported by mul-

tiple depth maps. Depth linking methods keep track of the

uncertainty of the current depth hypothesis and reject unre-

liable candidates, but do not model long range interactions

among points.



Patch-based methods integrate information on small [12,

17, 9] or large patches [21, 34]. Most of them use sparse

feature correspondences to initialize patches in 3D, which

are filtered to reject outliers and grown according to pho-

toconsistency, which is estimated on several images. Visi-

bility constraints, which are necessary for accurate results,

are evaluated by projecting on reference planes, images or

patches.

3. Initial Depth and Confidence Estimation

In this section, we describe how the inputs for the fu-

sion process are generated. Depth maps computed from a

set of calibrated images using plane-sweeping stereo im-

plemented on the GPU similar to [10] with normalized

cross-correlation (NCC) as the similarity function. NCC

is computed in windows defined in the reference image and

mapped to several target images via a homography through

the hypothesized plane. For all experiments in this paper,

we sweep four sets of planes: one horizontal and three

vertical. One of the vertical sets is fronto-parallel and the

other two are rotated 45o clockwise and counter-clockwise

around the gravity direction. Horizontal planes are very

effective for reconstructing surfaces such as the ground,

which are heavily distorted when mapped via homographies

defined on vertical planes. (An alternative that approxi-

mately models horizontal foreshortening only was proposed

by Bradley et al. [2].) Furukawa and Ponce [9], among oth-

ers, argued for the importance of estimating the normal of

the hypothesized planes correctly in achieving high match-

ing accuracy. Our experiments are consistent with their

finding, but our approach is faster. We have observed that

increasing the sweeping directions has very little impact on

the results.

To compute the photoconsistency of a candidate depth

di of pixel (x, y) of the reference view for a given plane,

all pairwise NCC scores are averaged, excluding cameras

where the candidate is invisible (projects out of bounds),

and stored in the matching volume. The candidate with the

highest NCC among all sweeping directions is selected for

each pixel in winner-take all fashion. When multiple hy-

potheses per pixel are used in fusion, the local maxima with

the highest NCC values are kept regardless of the sweeping

direction that generated them.

The second type of inputs to the fusion stage is confi-
dence maps, one for each depth map, that represent the cor-

respondence uncertainty of each depth candidate. Based on

our evaluation of confidence measures [15], we selected a

form of confidence introduced by Merrell et al. [23], and

named AML in [15], to obtain a probability mass func-

tion for depth given NCC scores, assuming a uniform depth

prior. The confidence of a depth candidate di is defined as

follows:

C(di) =
e−

NCC(d0)−NCC(di)
2σ2

∑
j e−

NCC(d0)−NCC(dj)

2σ2

, (1)

where d0 is the depth with the maximum NCC for that

sweeping direction. Taking into account NCC(d0) is cru-

cial for allowing confidence values to transfer across depth

maps. The choice of (1) was made in part because it al-

lows the assignment of confidence values to depth candi-

dates other than the one with the maximum NCC. Confi-

dence is computed separately per sweeping direction, us-

ing the corresponding NCC maximum as NCC(d0). Mul-

tiple candidates (different depths) from the same direction

compete and decrease each other’s confidence, while if ap-

proximately the same depth were selected by multiple di-

rections, this depth receives large support during fusion. By

converting photoconsistency to a probability mass function

over depth, our algorithm is less sensitive to NCC values

which depend on image content.

The fact that we allow the depth probability mass func-

tion to be multimodal distinguishes our approach from that

of Vogiatzis and Hernández [33] who restrict it to being

unimodal. Ambiguity in stereo is manifested as multiple

distinct depth candidates which often exist for a pixel and

which cannot be modeled by a unimodal distribution. The

fusion process of the next section is able to handle a large

number of candidate depths per ray of the reference view.

4. Depth Map Fusion
Our depth map fusion algorithm is a synthesis of the con-

fidence and stability-based fusion algorithms [23] and new

ideas introduced here. In its design we aimed at eliminating

failure modes, heuristics and suboptimal choices of the pre-

vious algorithms. We begin by discussing the shortcomings

of [23] and how they are addressed here.

Both algorithms of [23], as well as ours, begin by render-

ing the input depth and confidence maps onto the reference

view. (All renderings in this paper are done on points.) They

consider violations of visibility constraints, namely occlu-

sions and free space violations, which indicate inconsisten-

cies among the depth maps. An occlusion occurs when a

depth map from view v appears in front of the current depth

estimate on the ray of the reference view (Fig. 2(b)), while

a free space violation occurs when a depth estimate of the

reference view appears in front of depth map v on the ray of

view v (Fig. 2(c)). Both visibility constraints are required;

if only free space violations were considered, the algorithm

would select hypotheses far away from the cameras, while

the opposite is true for occlusions.

Stability-based fusion [23] seeks a depth that balances

the two types of violations. This “median” depth is found

by rendering all depth candidates accumulated on the refer-

ence view to all other views and evaluating their free space



Figure 2. Depth map fusion. (a) All depth and uncertainty maps

are rendered onto the reference view. (b) Depth hypotheses are

formed by fusing depth values that support each other. (c) Occlu-

sions are detected on the rays of the reference camera. Surface

1 occludes the hypothesis, while there is no conflict with surface

2. (d) Free-space violations are detected on the rays of the target

cameras. One hypothesis violates the free space of surface 3; the

other does not conflict with surface 4. All four surfaces in (c) and

(d) are parts of input depth maps.

violations, while occlusions are evaluated on the reference

view. The hypothesis that has an equal number of occlu-

sions and free space violations is selected, as it is not too

far neither too close to the reference camera according to all

the depth maps. The main disadvantage of stability-based

fusion is that it only selects one of the existing depth can-
didates, thus deriving no benefit in terms of accuracy from

having multiple measurements of the same depth.

Confidence-based fusion [23] is linear in complexity be-

cause it greedily selects the depth candidate with the highest

confidence and evaluates the support it receives versus the

violations of visibility constraints it causes. Its drawback is

that if the correct depth is not initially selected, the depth for
that pixel will be wrong or missing. Moreover, the support

range is heuristically chosen independent of depth.

Both methods fail if the true depth is not among the set of

candidates for a pixel. We address this limitation by keeping

several candidates with high confidence for each pixel in

every depth map. In this paper, three local NCC maxima
are used as candidates for every pixel. For pixels with clear

matches the two additional candidates have minimal impact

on the result due to their low confidence values.

4.1. Uncertainty-guided Depth Map Fusion

The inputs to our algorithm are depth and confidence

maps, but not images, for a set of calibrated views. Us-

ing the estimated depths, this information is rendered onto

the reference view. For clarity, readers can initially assume

that depth maps include one depth candidate per pixel in the

following description.

Let us denote by Hv(x, y) a hypothesized 3D point for

pixel (x, y) of the reference view, generated by view v, and

by Du(Hv(x, y)) its depth on view u. This is not gener-

ally equal to D̂u(x, y) which denotes the depth estimated

for pixel (x, y) of view u. C(Hv(x, y)) is the confidence

of Hv(x, y) and S(Hv(x, y)) is the radius of its support re-

gion which is defined below. (These quantities can only be

defined with respect to view v that generated Hv(x, y).)
Support. For each pixel (x, y) of the reference view, we

examine the depth hypotheses rendered on it and compute

the support each of them receives from the other depth hy-

potheses for the same pixel (Fig. 2(b)). To do this, we

need to address a fundamental computer vision problem:

how to distinguish whether two samples are from the same

or different surfaces. We accomplish this by examining

the geometric uncertainty of a triangulated 3D point. Even

though our images are not rectified, a rectifying transforma-

tion could have been applied and we can introduce effective
disparity, denoted by δ, which determines the depth of the

3D point given the image coordinates of two correspond-

ing pixels. The relationship between depth and disparity is

Z = bf/δ, where f is the focal length and b is the baseline.

(We set b equal to the widest baseline between the refer-

ence and any of the target views. Determining the effective

baseline for multi-view stereo more precisely is outside the

scope of this paper.)

Having written depth as a function of disparity, we can

propagate the uncertainty of disparity to determine the un-

certainty of depth. Unlike uncertainty in depth which is a

function of depth itself, uncertainty in disparity can be con-

sidered identically distributed over the entire depth map. Its

sources include primarily quantization noise due to limited

pixel resolution as well as slight mismatches. Assuming

that disparity errors are zero-mean and ignoring higher than

second-order moments, the variance of the errors in Z can

be written as a function of σδ as follows [4, 6]:

σ2
Z =

∂Z

∂δ
σ2

δ

∂Z

∂δ
=

−Z2

bf
σ2

δ

−Z2

bf
=

Z4σ2
δ

b2f2
. (2)

The standard deviation of the error in depth σZ grows

quadratically with depth. Therefore, the radius within

which we will consider two points as being indistinguish-

able should also grow quadratically with depth.

For each depth hypothesis Hi(x, y) for pixel (x, y), we

seek other depth hypotheses on the same ray that support it

by testing whether they are within its support region S(Hi),
which depends on its σZi

and a constant cs. We omit (x, y)
for clarity.

Csupp(Hi) =
∑

j C(Hj), (3)

Bi =
∑

j C(Hj)Hj
∑

j C(Hj)
,

if |Dref (Hi) − Dref (Hj)| ≤ S(Hi) = csσZi
,



Figure 3. Raw and fused, but not filtered, depth map for the central

view of the fountain-P11 dataset. Notice the improvements espe-

cially near depth discontinuities where depth estimation is likely

to fail. Wrong depth estimates, however, have low confidence and

are corrected by depths estimated from more favorable viewpoints.

(The surface on the far right is beyond the specified depth range.)

We update the confidence of Hi(x, y) by adding the con-

fidences of all hypotheses that support it. The depth of the

blended hypothesis Bi(x, y) is computed as the confidence-

weighted average of the depths of all hypotheses that sup-

port it. The number of supporting hypotheses Ni(x, y) is

also recorded.

Occlusions. Blended hypotheses are penalized if they are

occluded on the ray of the reference view since this is an

indication that they may not be visible from that viewpoint,

and thus that they may potentially be wrong. For each oc-

clusion, the confidence of the occluding depth estimate is

subtracted from the updated confidence of Bi.

Cocc(Bi) = Csupp(Bi) −
∑

j C(Hj), (4)

if Dref (Bi) − Dref (Hj) > S(Bi)

where S(Bi) is taken equal to S(Hi). Hypotheses that sup-

port Bi are not considered to be occluding it.

Free space violations. Blended hypotheses are then ren-

dered onto all depth maps to assess whether they violate the

free space of the estimated surfaces. Let us denote the pro-

jection of a 3D point onto view v as P v(Bi)
.= (xv, yv)

and its depth with respect to view v as Dv(P v(Bi)). If a

blended hypothesis Bi is in front of the current depth es-

timate D̂v(xv, yv) by more than its support range, then a

violation occurs and the blended hypothesis is penalized by

the confidence value at (xv, yv) in the confidence map for

view v. This test is repeated for all views.

Cfin(Bi) = Cocc(Bi) −
∑

v Cv(xv
i , yv

i ), (5)

if D̂v(xv
i , yv

i ) − Dv(P v(Bi)) > S(Bi)

Hypothesis selection and hole filling. After the above

computations, the blended hypothesis with the highest con-

fidence is selected for each pixel. If its number of sup-

porting hypotheses Ni(x, y), however, is much lower than

the maximum observed for that pixel, it is rejected and the

next hypothesis is considered. We require that Ni(x, y) >

max{Ni(x, y)}−2 for a hypothesis to be accepted. If its fi-

nal confidence Cfin(Bi) is negative, then it is also rejected

and no depth is assigned to the pixel. Figure 3 shows an

example of fusion. The resulting depth map is iteratively

filtered by a median filter to fill in the holes. At least 50%

of the pixels in the window must have valid depths for a

hole at the center to be filled. Valid depths are not altered.

A final, but important, note in this section is that the al-
gorithm does not change when multiple candidates for each
pixel are used. In fact, we run the code without modifi-

cation by providing as input three “different” depth, confi-

dence and geometric uncertainty maps for the same camera.

Allowing these additional hypotheses to compete and sup-

port other hypotheses is precisely what our objective was.

5. Experimental Results

In this section, we present an evaluation of our algorithm

on two real outdoor datasets with ground truth1 [28]. We

rendered the provided 3D models to generate ground truth

depth maps for fountain-P11 and Herz-Jesu-P8, which con-

tain 11 and 8 images respectively. All images were down-

sampled to 1536 × 1024 and experiments were performed

with fixed parameters: three adjacent images were used for

the computation of each depth map, the NCC window was

7×7, σ in (1) was set to 0.2 and the sweeping planes where

distributed in space so that the disparity step between them

was no more than 0.2, with disparity defined between the

reference view and the farthest target view. The derivative

of depth with respect to disparity (2) was used to determine

the steps between planes. All depth maps are fused on each

view, except for the two extreme views of each dataset. The

support range was set to 4σZ , i.e. cs = 4 in (4), and median

filtering for hole filling was performed in 13× 13 windows.

Due to the high resolution of the input images, storing

the entire cost volume on the GPU is impossible. While

depth can be computed by just keeping track of the current

best candidate, computing confidence according to (1) re-

quires the entire volume which has to be computed in parts

and transferred to CPU memory. To avoid this very time

consuming operation, we approximate confidence computa-

tion by explicitly maintaining the three highest NCC scores

for every pixel and histogramming the remaining NCC val-

ues in histograms of 16 bins. This allows us to only transfer

the top depth candidates and their associated confidence val-

ues from the GPU to the CPU resulting in a major speedup

with negligible loss of accuracy.

We also compare our final fused depth maps with results

kindly provided to us by their authors. 3D models were

given to us by Furukawa and Ponce [9], Zaharescu et al.

[38], Tylecek and Sara [31] and Jancosek and Pajdla [16]

and they are denoted by FUR, ZAH, TYL and JAN, respec-

1The online evaluation system for these data was unavailable for several

months before the submission deadline.



tively, in the remainder. We label our results with LC, for

“least commitment”. We are grateful to all the authors for

making their models available to us.

We use two types of errors to evaluate the depth maps:

absolute errors which are defined as the absolute values of

the difference between depth estimates and the correspond-

ing ground truth depths and relative errors which are de-

fined as:

erel =
|Z − ZGT |

Z2
GT

bf

, (6)

where Z is the estimated depth and ZGT is the ground truth,

f is the focal length of the reference camera and b is the

widest baseline between the reference and either of the tar-

get views, as in (2). Relative errors show how well the sur-

face is reconstructed taking into account camera configura-

tion and distance to the scene. They can be viewed as mea-

sures of the effective standard deviation of noise in pixel

correspondences that would give rise to the observed 3D er-

rors. For example, erel = 4 means that the effective match-

ing error, due to quantization, calibration errors and failures

of the matching function, was 4 pixels. We use cumulative

histograms, similar to those of [28], of both types of errors

to compare the results of all methods. Note, however, that

the standard deviation of the LIDAR data used in [28] was

not available to us.

Table 1 presents quantitative results comparing various

stages of our algorithm, as well as our results with those

of other algorithms. Only pixels with ground truth depth

are considered. The table contains statistics of absolute

and relative errors for: i) raw depth maps (top candidate

per pixel according to confidence), ii) fused depth maps us-

ing one depth candidate per pixel, iii) fused depth maps us-

ing three candidates per pixel and iv) median-filtered fused

depth maps using three candidates per pixel (LC), which is

our final result.

The error statistics of fused depth maps in which one

or three candidates per pixel were used are similar, but al-

ways in favor of using more candidates, the qualitative dif-

ference is significant. This is because using multiple can-

didates is more effective near depth discontinuities where

stereo is prone to errors. See Fig. 4 for examples from the

fountain-P11 dataset.

To compare our results with those of other methods,

Figure 4. Details of fused depth maps for fountain-P11 before fil-

tering, using one (left) and three (right) depth candidates per pixel.

Boundaries are reconstructed more precisely using more candi-

dates.

Error 2cm 10cm σ 3σ
fountain-P11

Raw 0.695 0.874 0.732 0.838

Fuse-1 0.740 0.915 0.760 0.874

Fuse-3 0.749 0.919 0.768 0.876

LC 0.754 0.930 0.774 0.886

FUR 0.731 0.838 0.760 0.828

ZAH 0.712 0.832 0.732 0.818

TYL 0.732 0.822 0.754 0.811

JAN 0.824 0.973 0.842 0.948

Herz-Jesu-P8
Raw 0.584 0.781 0.695 0.776

Fuse-1 0.638 0.817 0.735 0.811

Fuse-3 0.637 0.822 0.739 0.817

LC 0.649 0.848 0.757 0.841

FUR 0.646 0.836 0.746 0.837

ZAH 0.220 0.501 0.377 0.533

TYL 0.658 0.852 0.788 0.853

JAN 0.739 0.923 0.831 0.912

Table 1. Percentage of pixels with absolute errors below 2 and 10

cm and relative errors below 1 and 3σ in intermediate and final

depth maps generated by our method and rendered depth maps

generated from models provided to us by the authors of [9, 38, 31,

16], labeled FUR, ZAH, TYL and JAN, respectively. Our final

results are labeled with LC. The two extreme images are excluded

from each dataset since we do not compute fused depth maps for

them, leaving nine fused depth maps for fountain-P11 and six for

Herz-Jesu-P8.

meshes were rendered onto the image planes to generate

depth maps and all reported errors are computed on the pix-

els of these depth maps. Figure 5 shows cumulative his-

tograms of relative error for all methods compared to the

ground truth. (Cumulative histograms of absolute error are

similar and have been omitted due to space constraints.) Ta-

ble 1 contains statistics for a few thresholds on absolute

and relative errors. The most salient conclusion is that the

method of Jancosek and Pajdla [16] ranks first. This can be

observed in the results published in [35, 16]. Our method

ranks clearly second on fountain-P11, while the other meth-

ods form essentially one cluster. On Herz-Jesu-P8, our

method forms a cluster with TYL and FUR, outperform-

ing the latter slightly for all thresholds and being better than

the former for larger thresholds. It should be noted that the

ground truth provided with Herz-Jesu-P8 does not include

the handrails next to the steps and the horizontal bar above

the left entrance (see Fig. 6), which our method is able

to reconstruct. TYL reconstructs smaller pieces of these

parts, but their overall effect on error statistics is hard to as-

sess. Our method produces depths for more pixels and thus

achieves higher density at large values of the threshold. Re-

sults by other methods can be seen at the currently inactive
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(a) fountain-P11 (b) Herz-Jesu-P8

Figure 5. Cumulative relative error histograms. The x-axis is the

distance from the ground truth divided by σZ and the y-axis the

fraction of points within the threshold.

web site of [28] 2.

Revisiting one of the questions we set out to answer in

this paper, our method seems to outperform FUR on both

datasets, while it produces denser depth maps by recon-

structing areas of high uncertainty that are bypassed by

FUR. We speculate that this is due to not initializing patches

because reliable sees could not be detected.

For visualization purposes, we generated colored point

clouds using the depth maps and captured screen shots

shown in Figs. 1 and 6.

All experiments were performed on a PC with a quad-

core Intel i7-920 at 2.67GHz, 6GB of RAM and an Nvidia

GTX570 with 1.3GB of memory. Computing a 1536×1024
depth map for fountain-P11 using on average 8309 planes

and NCC in 7 × 7 windows takes 320 sec on the GPU us-

ing OpenCL. The same operation for Herz-Jesu-P8 requires

an average of 6717 planes and takes 268 sec. Fusion of 27

depth maps of fountain-P11 (3 depth maps for each of the

9 views) takes 182 sec, while it takes 73 sec for 18 depth

maps for Herz-Jesu-P8 using C++ on the CPU. Median fil-

tering in 13 × 13 windows takes 22.6 sec in Matlab. Port-

ing all steps to the GPU, further optimizing the code and

investigating the effectiveness of subpixel approximations

are among our priorities for future work.

6. Conclusions
We have presented a method for multi-view 3D recon-

struction that, compared to other methods, delays the tran-

sition to a world-based representation and most importantly

delays hard decisions on the correctness of depth hypothe-

ses. We have shown that viewpoint-based approaches can

effectively aggregate information and take into account long

range interactions, in the form of occlusions and free-space

violations, which are harder to implement using 3D repre-

sentations. Experiments on data with ground truth show that

viewpoint-based methods, which have fallen out of favor re-

2http://cvlab.epfl.ch/˜strecha/multiview/
denseMVS.html is still online

Figure 6. Screen shots of reconstructed colored point clouds: mul-

tiple overlayed point clouds from fountain-P11; multiple point

clouds from entry-P10; ground truth depth map, view from above

of multiple point clouds and from the side of a single cloud of

Herz-Jesu-P8. Notice the accuracy of the pediments and the

slightly ajar windows in the entry-P10 model, as well as the miss-

ing bar and rails in the ground truth of Herz-Jesu-P8, which have

been reconstructed by our method.

cently, can compete with the state of the art in multi-view

reconstruction while being faster.

Our analysis of relative errors can be used to characterize

the expected performance of multi-view stereo systems as a

function of depth given the configuration parameters (focal

lengths and baselines). If the results of ZAH on Herz-Jesu-
P8 are excluded, all methods perform consistently in terms

of relative error. The same cannot be said for absolute er-

ror since it strongly depends on the actual depth. Extending

this preliminary study to more diverse datasets will hope-

fully lead to empirical sensor models, i.e. expected error

distributions for a given depth, for stereovision sensors.
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