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Abstract—We present an extensive evaluation of 17 confidence measures for stereo matching that compares the most widely used

measures as well as several novel techniques proposed here. We begin by categorizing these methods according to which aspects of

stereo cost estimation they take into account and then assess their strengths and weaknesses. The evaluation is conducted using a

winner-take-all framework on binocular and multibaseline datasets with ground truth. It measures the capability of each confidence

method to rank depth estimates according to their likelihood for being correct, to detect occluded pixels, and to generate low-error depth

maps by selecting among multiple hypotheses for each pixel. Our work was motivated by the observation that such an evaluation is

missing from the rapidly maturing stereo literature and that our findings would be helpful to researchers in binocular and multiview stereo.

Index Terms—Stereo vision, 3D reconstruction, confidence, correspondence, distinctiveness

Ç

1 INTRODUCTION

WHILE several confidence measures for stereo matching
have been proposed in the literature and benchmarks

with ground truth depth have been available for years, the
criteria for selecting a confidence measure and the relative
merits of different measures have not been investigated
thoroughly. We study these issues using binocular and
multibaseline stereo imagery with ground truth [1], [2], [3].
Our goal is to categorize the different methods and to shed
light on their performance according to the criteria
described below.

We focus on methods that estimate the confidence of
disparity assignments in a winner-take-all (WTA) setting,
without considering neighboring pixels or global informa-
tion. Cost or similarity values for each disparity hypothesis
are computed and a disparity map is generated by selecting
the hypothesis with the minimum cost, or maximum
similarity, for each pixel. The cost values for all hypotheses
are used as input to 17 methods that assign confidence values
to the selected disparities. We require that these confidence
values have the following properties:

. Be high for correct disparities and low for errors. If
matched pixels were ranked in order of decreasing
confidence, all errors should be ranked last. The
ranking should also be correct for pixels of special
interest, such as those near discontinuities.

. Be able to detect occluded pixels.

. Be useful for selecting the true disparity among
hypotheses generated by different matching
strategies.

We have evaluated the degree to which each method
satisfies the above criteria using a set of experiments on
stereo matching using both cost and similarity functions
aggregated in square windows of various sizes. We have
performed these tests on binocular stereo images in
the rectified canonical configuration [1] and on multibase-
line imagery collected indoors [2] and outdoors [3].

Since stereo matching is known to be prone to errors, the
capability of predicting where these errors occur is desirable.
A WTA framework is appropriate for our evaluation
because, in general, confidence for a particular match cannot
be estimated using global optimization methods such as
Markov Random Fields without a cumbersome procedure
for estimating marginals for each pixel [4]. Confidence
estimation is more practical when dynamic programming
is used for optimization; Gong and Yang [5] defined the
reliability of a disparity assignment (match) for a pixel as
the cost difference between the best path that does not pass
through the match and the best path that passes through it.
Here, we restrict the analysis to a WTA stereo framework.

In summary, the contributions of this paper are:

. A classification of several confidence measures.

. A set of criteria for evaluating them.

. Four new confidence measures that often perform
better than conventional methods.

. Quantitative and qualitative comparisons of a large
number of confidence methods on binocular and
multiview imagery.

A preliminary version of this work presenting some of
the following results on a subset of the methods and a much
smaller dataset appeared in [6].

1.1 Motivation

One of the motivations for our work is the observation that
conventional matching functions, such as the Sum of
Absolute Differences (SAD) or Normalized Cross Correla-
tion (NCC),1 do not assign the lowest cost or highest
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similarity to the most unambiguous matches. Fig. 1 shows
the left image of the Teddy stereo pair [7] and the minimum
cost for each pixel computed using SAD. If we use cost to
select matches in order to make the best possible disparity
map of 10 percent density, the error rate would be
28.8 percent. On the other hand, we show that if we use the
Self-Aware Matching Measure (SAMM) [8] instead, we can
obtain a disparity map of the same density containing only
4.62 percent wrong matches. Selecting matches with mini-
mum cost fails due to competing hypotheses (multiple local
minima) or flat valleys around the true minimum, as shown
in Fig. 1d. Matching cost is still of some value, as evidenced
by the success of methods that detect ground control points
or seed matches [9], [10], [11], [12], [13] based on their low
cost values, but we are not the first to claim that improve-
ments are possible. Several authors [8], [14], [15], [16], [17],
[18], [19] have proposed algorithms that examine the cost
curve and assign a scalar confidence value to each potential
pixel match. These confidence values can be used to rank
matches from most to least reliable. In the remainder of this
paper, we examine these methods and compare them
according to their ability to rank potential matches.

In this study, we focus on methods that operate on
individual pixels by examining their cost curves. The “ideal”
cost curve as a function of disparity for a pixel is shown in
Fig. 2a. It has a single, distinct minimum. The cost curves in
Figs. 1d and 2b are more ambiguous because they have
multiple local minima or multiple adjacent disparities with
similar cost making exact localization of the global minimum
hard. Most confidence measures extract local or global
features of the cost curve to characterize the reliability of the
match corresponding to the minimum cost. In Section 3, we

classify these methods according to the type of features they
take into account.

To the best of our knowledge, this is the first survey and
experimental comparison of confidence measures for stereo
since the work of Egnal et al. [20]. We have included the
methods evaluated by Egnal et al. as well as a large number
of other methods. We perform experiments on the core depth
estimation modules, namely, the binocular and multibase-
line configurations, but expect our findings to have poten-
tially larger impact on multiview systems that merge partial
reconstructions in order to reconstruct large-scale scenes
[21], [22], [23], [24].

2 RELATED WORK

Our work complements surveys on binocular [1], [25] and
multiview [26] stereo, as well as on specific aspects of stereo,
such as cost functions [27], [28], cost aggregation [29], [30],
and color spaces [31], [32]. These efforts, aided by
standardized benchmarks [1], [26], have led to significant
progress and more principled design of stereo algorithms.
For clarity, we present the confidence measures in Section 3.
Here, we only discuss related work that is not included in
our evaluation.

Arguably, the most significant and most recent compar-
ison of stereo confidence measures was carried out by Egnal
et al. [20]. Five measures, four of which are included here,
were evaluated on single-view stereo in predicting matching
errors on three stereo pairs with ground truth. It is worth
noting that the stereo algorithms struggled with two of the
pairs, resulting in error rates around 80 percent. In our case,
matching is considerably more effective, making a compar-
ison of the findings of [20] and ours hard.

Approaches that combine multiple confidence measures
[17], [33], [34] aim at rejecting erroneous matches to obtain
error-free quasidense depth maps. Different indicators of
matching errors, such as left-right consistency (LRC), flatness
of the cost curve, and the matching cost itself, are combined
using heuristic rules to detect mismatches. Results show that
these methods work reasonably well, but provide little
information on the contribution of each element and the
suitability of different techniques to specific types of imagery.

A relevant problem to the detection of mismatches is the
detection of occluded pixels. An evaluation of four methods
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Fig. 1. (a) The left image of the Teddy stereo pair from the Middlebury
Stereo Vision Page and (b) the minimum cost map computed using the
Sum of Absolute Differences in 5� 5 windows. High intensity
corresponds to large cost. Note that pixels in uniform areas have lower
cost values under SAD since the cost can approach 0, while larger
values are observed at textured pixels, even though they may be
correct. A sparse disparity map (red pixels indicate wrong disparity) that
includes the 10 percent of the matches with the lowest cost has an error
rate of 28.8 percent (c) and examples of cost curves that lead to
matching errors (d).

Fig. 2. The ideal cost curve for stereo has one distinct minimum. A less
ideal cost curve has several local minima and/or flat regions of low cost.
c1 denotes the minimum value of a cost curve, c2 is the second smallest
value, and c2m is the second smallest local minimum. c2 and c2m may
coincide in some cases.



for occlusion detection was performed earlier by Egnal and
Wildes [35]. A region-based approach was presented by
Jodoin et al. [36], who first segment the images and classify
segments as occluded or not according to the density of
matched pixels in them. Ideally, occlusion detection should
not be performed locally since occlusion is a result of long
range interaction between remote surfaces. Depth and
occlusion estimation are coupled and one can benefit greatly
from correct estimates of the other. This relationship is
expressed by the uniqueness [37] and visibility [38] con-
straints. Global optimization approaches [38], [39], [40] have
achieved good results by jointly estimating disparity and
occlusion maps. We are more interested in the fundamental
question of whether occlusion can be detected locally based
on confidence. Following the common assumption that
occluded pixels can be identified due to high matching cost,
we evaluate matching cost as an indicator of occlusion and
compare it with the other confidence measures.

3 CONFIDENCE MEASURES

Before describing the confidence measures, let us introduce
the notation used throughout. Square N �N windows are
used in all cost computations. The experiments were carried
out using the sum of absolute color differences in RGB (SAD),
which is a cost measure, and zero-mean normalized cross
correlation, which measures similarity:

SADðx; y; dÞ ¼
X
i2W
jILðxi; yiÞ � IRðxi � d; yiÞj;

NCCðx; y; dÞ ¼
P

i2W ðILðxi; yiÞ � �L
ÞðIRðxi � d; yiÞ � �R

Þ
�
L
�
R

;

where IL and IR are the two images of the stereo pair, �
L

and �
R

are the means, and �
L

and �
R

are the standard
deviations of all pixels in the square window in the left and
right image, respectively. Means are computed separately
per RGB channel, but a single standard deviation is
estimated for the 3�N �N vector obtained by stacking
all the elements in the window after the mean RGB values
have been removed. This reduces sensitivity to image
regions with small variance in any one channel. For
uniformity, NCC is converted to a cost function by
replacing it with 1�NCC so that all values are nonnegative
and 0 is the minimum attainable cost value. SAD values are
normalized by the number of pixels in the window.

The cost value (SAD or 1�NCC) assigned to a disparity
hypothesis d for a pixel ðx; yÞ is denoted by cðx; y; dÞ or cðdÞ,
if pixel coordinates are unambiguous. The minimum cost
for a pixel is denoted by c

1
and the corresponding disparity

value by d1; c
1
¼ cðd

1
Þ ¼ min cðdÞ. We also define c

2
to

denote the second smallest value of the cost that occurs at
disparity d

2
, as well as c

2m
at disparity d

2m
to denote the

second smallest local minimum (see Fig. 2b). The default
reference image for a binocular pair is the left one. If the
right image is used as reference, c

R
ðx

R
; y; d

R
Þ denotes the

cost function, with d
R
¼ �d.

The disparity map for the reference image is denoted by
Dðx; yÞ and is obtained by simply selecting the disparity
with the minimum cost for each pixel.

3.1 Categorization of Confidence Measures

We can now introduce the confidence measures grouped
according to the aspects of cost they consider.

1. Matching cost. The matching cost is used as a
confidence measure.

The Matching Score Measure (MSM) is the simplest
confidence measure [20] and serves as the baseline in our
experiments. We use the negative of the cost so that large
values correspond to higher confidence:

CMSM ¼ �c1
: ð1Þ

2. Local properties of the cost curve. The shape of the
cost curve around the minimum (the sharpness or flatness
of the valley) is an indication of certainty in the match.

Curvature (CUR) has been evaluated in [20] and is
widely used in the literature. It is defined as

CCUR ¼ �2cðd
1
Þ þ cðd

1
� 1Þ þ cðd

1
þ 1Þ: ð2Þ

If d
1
� 1 or d

1
þ 1 are outside the disparity range, the

available neighbor of the minimum is used twice.
3. Local minima of the cost curve. The presence of other

strong candidates is an indication of uncertainty, while their
absence indicates certainty. A similar idea has also been
applied on invariant feature descriptors [41]. Peak Ratio
(PKR): Among several equivalent formulations [17], [20],
we have implemented PKR as

CPKR ¼
c

2m

c
1

: ð3Þ

We have also implemented a naive version, PKRN, which
does not require the numerator to be a local minimum (see
Fig. 2). PKRN can be viewed as a combination of PKR and
CUR that assigns low confidence to matches with flat
minima or strong competitors:

CPKRN ¼
c

2

c
1

: ð4Þ

The margin between c
1

and c
2

is also an indication of
confidence. We define the Maximum Margin (MMN) as

CMMN ¼ c2
� c

1
: ð5Þ

4. The entire cost curve. These methods convert the cost
curve to a probability mass function over disparity.

The Probabilistic Measure (PRB) [16] operates on a
similarity function by treating the value assigned to each
potential disparity as a probability for the disparity. This
can easily be achieved by normalizing the values to sum to
unity. PRB is only used on NCC in this paper, as we do not
attempt to convert cost to likelihood via some linear or
nonlinear mapping:

CPRB ¼
NCCðd

1
ÞP

d NCCðdÞ : ð6Þ

The Maximum Likelihood Measure (MLM) is inspired by
[14], in which SSD was used as the cost function. We
generalize the approach to other cost functions and obtain a
probability density function for disparity given cost by
assuming that the cost follows a normal distribution and that
the disparity prior is uniform. After normalization, CMLM is
defined as follows:

CMLM ¼
e
� c1

2�2
MLM

P
d e
� cðdÞ

2�2
MLM

: ð7Þ
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MLM assumes that the matching cost can attain the ideal
value of 0. Merrell et al. [18] proposed a variant, termed here
Attainable Maximum Likelihood (AML), that models the
cost for a particular pixel using a Gaussian distribution
centered at the minimum cost value that is actually achieved
for that pixel (c

1
in our notation):

CAML ¼
e
�ðc1�c1 Þ

2

2�2
AML

P
d e
�ðcðdÞ�c1 Þ

2

2�2
AML

: ð8Þ

(The numerator is always 1, but is shown here for clarity.)
The Negative Entropy Measure (NEM) was proposed

by Scharstein and Szeliski [15]. Cost values are converted to
a pdf , the negative entropy of which is used as a measure
of confidence:

pðdÞ ¼ e�c1P
d e
�cðdÞ ;

CNEM ¼ �
X
d

pðdÞ log pðdÞ:
ð9Þ

The Number of Inflection Points (NOI) measures the
number of minimum valleys in cost curves. In the original
implementation [34], the second order derivative was used
to localize the minima. Since this approach is susceptible to
image noise, in our implementation each cost curve is
preprocessed with a low-pass filter before the number of
local minima is counted:

CNOI ¼ �jMj;
M ¼ fdi : csðdi � 1Þ > csðdiÞ ^ csðdiÞ < csðdi þ 1Þg;

ð10Þ

where jMj is cardinality of the set of local minima of the

smoothed cost curve cs.
The Winner Margin (WMN) was also proposed in [15].

It is a hybrid method that normalizes the difference
between the two smallest local minima by the sum of the
cost curve. The intuition is that we would like the global
minimum to be clearly preferable to the second best
alternative and also the total cost to be large, indicating
that not many disparities are acceptable:

CWMN ¼
c

2m
� c

1P
d cðdÞ

: ð11Þ

As for PKR, we define a naive alternative (WMNN) that does
not require the second candidate to be a local minimum:

CWMNN ¼
c

2
� c

1P
d cðdÞ

: ð12Þ

5. Consistency between the left and right disparity

maps. These methods examine whether the disparity of the

right image is consistent with that of the left image. Note that

while both disparity maps can be produced by traversing the

left cost volume cðx; y; dÞ, we use c
R
ðx

R
; y; d

R
Þ here for clarity.

Left Right Consistency has been widely used as a binary

test for the correctness of matches. Egnal et al. [20] defined

LRC as the absolute difference between the selected disparity

for a pixel in the left image (d
1
¼ argmindfcðx; y; dÞg) and

the disparity DRðx� d1
; yÞ ¼ argmind

R
fc

R
ðx� d

1
; y; d

R
Þg

assigned to the corresponding pixel in the right image:

CLRCðx; yÞ ¼ �jd1
�DRðx� d1

; yÞj: ð13Þ

We negate the absolute difference so that larger values of
CLRC correspond to higher confidence. LRC produces
quantized integer values for the confidence and subpixel
implementations are of dubious value.

Left Right Difference (LRD) is a new measure proposed
here that favors a large margin between the two smallest
minima of the cost and also consistency of the minimum
costs across the two images:

CLRDðx; yÞ ¼
c

2
� c

1

jc
1
�minfc

R
ðx� d

1
; y; d

R
Þgj : ð14Þ

The intuition is that truly corresponding windows should
result in similar cost values and thus small values of the
denominator. This formulation provides safeguards against
two failure modes. If the margin c

2
� c

1
is large but the pixel

has been mismatched, the denominator will be large and
confidence will be low. If the margin is small, the match is
likely to be ambiguous. In this case, a small denominator
indicates that a correspondence between two similar pixels
has been established.

6. Distinctiveness (DTS)-based confidence measures.
The essence of distinctiveness-based measures is to handle
point ambiguity, since even very salient image points (e.g.,
edges and corners) may be hard to match because of
repetitive patterns. These methods incur higher computa-
tional cost because matching costs for pixels of the same
image also have to be computed.

The notion of distinctiveness for stereo matching was
introduced by Manduchi and Tomasi in [42]. Distinctive
points are less likely to be falsely matched between reference
and target images; therefore, point distinctiveness can be
used to represent matching confidence. The distinctiveness
of an image point is defined as the perceptual distance to the
most similar other point in the search window in the
reference image. We adopt the search window definition
from [19]:

dmin � dmax � ds � dmax � dmin;

in which ds is the search window in disparity, dmin and
dmax represent minimum and maximum disparity values,
respectively.

Then, the distinctiveness of a pixel is

CDTSðx; yÞ ¼ min
d2ds;d6¼0

c
LL
ðx; y; dÞ; ð15Þ

in which cLL is the cost volume for matching left image pixels
within the same scan line in the same image. It should be
noted that DTS is a single-image property since the target
image does not enter the computation.

The Distinctive Similarity Measure (DSM) [19] utilizes
the definition of distinctiveness maps of DTS, but makes
use of information from both the left and right image and
also considers the similarity between two potentially
corresponding points. DSM is defined as follows:

CDSMðx; yÞ ¼
CL DTSðx; yÞ � CR DTSðx� d1; yÞ

c2
1

: ð16Þ

CL DTS and CR DTS are the distinctiveness maps of the left
and right image, respectively. This definition is different
from the original paper where the denominator was just c1
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[19]. The squared denominator renders CDSM a dimension-
less quantity, which is more suitable for a confidence
measure, and our experiments show that this modification
results in better performance.

The observation that the behavior of the cost curve around
the true disparity is similar to the behavior of the self-
matching cost curve2 around zero disparity motivated the
Self-Aware Matching Measure [8]. In this approach, the
correlation coefficient of the two cost curves is used as
the similarity measure between them. Unlike DTS and DSM,
point distinctiveness is not required to match pixels reliably.
The definition of SAMM is

CSAMMðx; yÞ ¼
P

dðcðx; y; d� d1Þ � �LR
Þðc

LL
ðx; y; dÞ � �

LL
Þ

�
LR
�
LL

;

ð17Þ

in which �
LR

and �
LR

are mean and standard deviation of the
cross-matching function over the valid disparity range and
�
LL

and �
LL

are defined likewise for the self-matching cost
curve. Note that this is the nonsymmetric version of SAMM,
as defined in [8]. In the original paper, self-matching takes
place over a disparity range which is twice as large as the
disparity range used for cross-matching centered at d ¼ 0.
However, we found in our experiments that this setting does
not give the best predictions, so a smaller value which
generates better results is used in the following experiments.

In summary, we have presented 17 methods, divided into
six categories, that will be evaluated in the following
sections. We consider PKRN, WMNN, MMN, and LRD as
novel contributions of this paper. Moreover, AML and
SAMM have been proposed in our previous work [8], [18],
with additional coauthors. PRB is only applicable on cost
curves computed using NCC, while all other methods can be
applied to either SAD or NCC cost volumes.

4 EXPERIMENTS ON BINOCULAR DATA

In this section, we present our evaluation methodology and
results on the extended Middlebury benchmark data [1], [2]
that includes 31 stereo pairs published between 2002 and 2007.
We evaluate the ability of the methods of Section 3.1: to
predict the correctness of matches for nonoccluded pixels
and pixels at discontinuities, to detect occluded pixels, and to
select the correct disparities among multiple options for the
same pixel. All experiments were performed on cost volumes
computed in square windows ranging from 1� 1 to 15� 15
for SAD and 3� 3 to 15� 15 for NCC (converted to cost by
taking 1�NCC). Confidence values were computed using
all methods described in Section 3.1. To compare all methods
fairly, we tested them on a subset of the Middlebury dataset
and selected the parameters that gave the best result for each
confidence measure. The parameter values for our experi-
ments are as follows: �

MLM
¼ 0:3, �

AML
¼ 0:2 for NCC, �

AML
¼

0:1 for SAD, the self-matching disparity range for SAMM is
28, and the width of the low-pass filter for NOI is 5.

4.1 Detection of Correct Matches

To assess the capability of a confidence measure to predict
whether a disparity is correct, we rank all disparity assign-
ments in decreasing order of confidence and compute the

error rate in disparity maps with increasing density.
Specifically, for each cost volume and each confidence
measure, we select the top 5 percent of the matches according
to confidence and record the error rate, defined as the
percentage of pixels with disparity errors larger than one [1],
then repeat for the top 10 percent and so on. Ties are resolved
by including all matches with equal confidence. (For
example, the first sample using LRC includes all matches
with CLRC ¼ 0, which could be more than 70 percent of all
pixels.) This produces receiver operating characteristic
(ROC) curves of error rate as a function of disparity map
density [5], [8], which can also be thought of as cumulative
error distributions. (A similar criterion has also been used for
evaluating confidence of optical flow [43].) The area under
the curve (AUC) measures the ability of a confidence
measure to predict correct matches. We opted for the simple
ROC criterion of Gong and Yang [5], instead of a similar
criterion proposed by Kostliva et al. [44]. Our concern about
the latter is that errors can be forgiven if they are caused by
other errors, which makes correct disparity assignment
impossible when one considers the uniqueness constraint.
Since we are mostly dealing with noisy disparity maps, using
[44] could neglect certain types of errors.

Ideally, all correct matches should be selected before all
errors, resulting in the smallest possible AUC for a given
disparity map. Random selection of matches produces a flat
ROC with an AUC equal to the error rate of the disparity map
at full density, after averaging a large number of trials:
AUCrand ¼ ". The last point of all ROCs for the same disparity
map has a y-coordinate equal to the error rate at full density. Fig. 3
shows an illustration of the optimal AUC and the AUC
obtained by random chance. If dm denotes the density of a
quasidense disparity map that includes the matches with the
highest confidence and " the error rate at full density, the
analytic form of the optimal ROC curve is

RoptðdmÞ ¼
0 dm � 1� "
dm � ð1� "Þ
dm

dm > 1� ":

8<
: ð18Þ

The disparity map can reach density 1� " before any wrong
matches are included. Then, the fraction of wrong matches
grows until it reaches ". The area under this curve as a
function of " is

Aopt ¼
Z 1

1�"

dm � ð1� "Þ
dm

ddm ¼ "þ ð1� "Þlnð1� "Þ: ð19Þ

Fig. 4 shows some examples of ROCs and confidence
maps for Teddy. We have computed the AUC for all
combinations of window size, cost function (SAD and NCC),
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Fig. 3. Optimal AUC and AUC for random chance. The solid red curve is
optimal (all correct matches selected first) while the dashed green curve
represents random chance.

2. The self-matching curve results from matching the reference image
with a duplicate of itself.



and confidence measure. The lowest AUC and the window
size with which it was obtained for each measure for Teddy
is shown in Table 1. The lowest AUC achieved by any
method on Teddy is 0.075 by LRD and it is significantly
lower than that of MSM (0.162) and random chance (0.177),
but far from ideal (0.0167).

These experiments are summarized in Table 2, which
contains the rank of each method on the 31 stereo pairs of
the Middlebury dataset according to: the average AUC
achieved for each cost function and the minimum AUC over
all window sizes for a given cost function. The AUCs for a
given cost function and window size are averaged over all
stereo pairs before the minimum is selected. That is, the
minimum AUC reported has been obtained by applying the
confidence method on all images with fixed parameters.

Table 3 shows the average ratio of optimal AUC (obtained

with perfect knowledge of which matches are correct) to the

AUC obtained by each measure and Table 4 shows the

improvement made by each method over random chance

(ðAUCrand �AUCÞ=AUCrand). We consider the former a

measure of the performance of each method, with 1 being

the maximum possible score. Most methods easily outper-

form the baseline (MSM), with LRD being the best, followed

by DSM and PKRN. Table 4 reveals that several methods are

not better than random chance.

4.2 Evaluation at Discontinuities

We have also performed similar experiments on nonoc-
cluded pixels near discontinuities using the provided
ground truth for the four original stereo pairs [1], see Fig. 5
for examples. In this case, only pixels labeled as disconti-
nuities are taken into account in the computation of the
ROCs. These experiments are restricted to the four original
stereo pairs (Tsukuba, Venus, Cones, and Teddy) which have
ground truth discontinuity maps. We decided not to
generate our own ground truth discontinuity maps due to
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Fig. 4. Top: Reference image and ground truth disparity map for the
Teddy dataset. Middle: Confidence maps using PKR and LRD. Bright
pixels indicate high confidence. (Confidence maps are scaled non-
linearly for visualization.) Bottom: ROCs of error rate over disparity map
density for Teddy using SAD in 9� 9 windows. The minimum AUC
among these curves is obtained by LRD. Note that values on the y-axis
do not start from 0 and that all curves terminate at ð1:0; "Þ.

TABLE 1
Minimum AUC for Each Confidence Measure on Teddy

The second and fourth columns show the window size used to obtain the
minimum AUC. The last two rows show the performance of random
selection, which is expected to be equal to the error rate at 100 percent
density and the optimal AUC value obtained if selection was perfect. All
methods except NOI using NCC perform better than random, but are far
from being optimal.

TABLE 2
Confidence Measures Ranked According to Average and Best

(Minimum) AUC over All Window Sizes for SAD and NCC
Separately and Best Overall Performance

Best AUC corresponds to the minimum AUC that was obtained by each
method run with fixed window size, averaged over all 31 stereo pairs.
NCC always outperforms SAD according to this criterion, and would
always be selected as the overall best. Hence, we omit the “best” overall
column since it is identical to the one for NCC.



the ambiguity in the definition of what a nonoccluded
discontinuity is. There are a few differences with the
evaluation on all nonoccluded pixels that should be pointed
out: NCC results in lower AUC for all methods; several
methods perform worse than random chance for some of the
cost functions; the improvement over random chance is
smaller than for all nonoccluded pixels. The methods that
perform worse than random chance and the fraction of
experiments in which this happens are: MSM 22 percent,
CUR 10 percent, PKR 18 percent, MMN 10 percent, PRB 13
percent, NEM 60 percent, WMN 8 percent, NOI 28 percent,
and DTS 48 percent. The best performing methods over all
nonoccluded pixels cover approximately 25 percent of the
AUC obtained by random chance. The same figure rises to
51 percent near discontinuities. Tsukuba is the hardest

dataset: The overall best result covers 86.9 percent of the
AUC obtained by random chance near discontinuities. The
rank of each method can be seen in Table 5.

4.3 Occlusion Detection

One of our requirements for a confidence measure is to
assign low confidence to occluded pixels. We evaluated
occlusion detection by counting the number of occluded
pixels included in each disparity map as more matches are
added in order of decreasing confidence. Better performance
is indicated by smaller area under this curve. See Fig. 6 for
examples of ROCs for occlusion detection. Quantitative
results can be seen in Table 6.

Our results confirm the conventional wisdom that MSM
and LRC/LRD are well suited for this task, but DSM and
SAMM are also very competitive. They also show that
performance on occlusion detection is more unstable than
in the previous experiments.

4.4 Disparity Selection

The final experiment on binocular data aims at selecting

disparities from multiple disparity maps according to

confidence. The intuition is that different window sizes

are more effective for different pixels. If WTA stereo
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TABLE 4
Quantitative Results of Overall Improvement

Improvement is defined as ðAUCrand � AUCÞ=ðAUCrandÞ. Larger values
indicate larger improvement, while negative values mean that the
measure performs worse than random chance.

TABLE 5
Similar Rankings as in Table 2

Considering Only Matches Near Discontinuities

Only the four original stereo pairs (Tsukuba, Venus, Cones, and Teddy)
have ground truth discontinuity maps.

Fig. 5. Evaluation of Cones near discontinuities. (a) White marks the
pixels under consideration here. Occluded pixels are colored black and
regular pixels are colored gray. (b) ROCs for Cones using NCC in 5� 5
windows.

TABLE 3
Quantitative Results on Performance,

Defined as the Average Ratio of the Optimal AUC over the
AUC Obtained by Each Method over

All Image-Cost Function-Window Size Combinations

Larger values indicate better performance, with 1 being the best
possible.



algorithms were able to select the right window size for
each pixel, they would perform significantly better than
they currently do. To test whether the confidence measures
are useful in the selection process, we compute disparity
maps using window sizes ranging from 1� 1 to 15� 15
using SAD and 3� 3 to 15� 15 using NCC and also
compute confidence maps for each disparity map using all
methods. LRC has been excluded from this experiment
since it results in ties that cannot be broken using this
simple selection mechanism.

These computations provide 62 datasets: one each for
SAD and NCC, for each stereo pair. Each dataset comprises
eight (seven for NCC) disparity maps. A confidence method
is applied on a dataset, e.g., Cones-SAD, to estimate the
confidence of all eight disparity estimates for each pixel.
Then, the disparity estimate with the highest confidence
value is selected for that pixel without considering any
neighborhood information. (More sophisticated strategies
are likely to be more effective, but our goal is to evaluate
confidence in isolation.) We have also tried the same
experiment using ranks instead of raw confidence values
with similar results.

There are two benchmarks with which we compare the
error rate of the obtained disparity maps: the error rate of

the optimal selection and the minimum error rate among the

input disparity maps. The former is the error rate obtained if

we could somehow make the optimal choice among all the

disparity estimates for each pixel—an error occurs only if

none of the input disparity maps is correct for that pixel. The

minimum error rate of the inputs is an indicator of whether

the combination is beneficial or whether standard stereo

using a single window size would have been more effective.

No method was able to make an improvement for

Lampshade1, Lampshade2, Midd1, Midd2, Monopoly,

Plastic, Tsukuba, and Venus, while many of the methods

fail for all datasets. In Table 7, we report results for DSM,

LRD, MMN, MSM, PKRN, and SAMM, along with the error

rate of the optimal selection, the minimum input error rate

and the error rate measured after the selection process. In

some cases, selection is able to reduce the error rate by about

three quarters. See Fig. 7 for examples of disparity selection.

Table 8 reports the success rate of all methods, where

success is defined as surpassing the quality of the best input

disparity map. Note that the success rate is much higher for

NCC than SAD and it often exceeds 60 percent for the

former. We attribute this to the fact that NCC values can be

transferred more easily across window sizes.
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Fig. 6. Evaluation of occlusion detection. (a) ROCs for LRD, MSM,
and PKR using SAD in 15� 15 windows on Teddy. (b) ROCs for DSM,
LRC and SAMM using NCC in 5� 5 windows on Baby2.

TABLE 6
Rank and Performance for Each Confidence Measure for

Occlusion Detection on All 31 Stereo Pairs

Performance is defined in Table 3.

TABLE 7
Some Results on Disparity Selection Using Confidence

Only results for DSM, LRD, MMN, MSM, PKRN, and SAMM are listed.
The last three columns report the error rates: after optimal selection, of
the best input disparity map and the one obtained by selection. See text
for details.



5 EXPERIMENTS ON MULTIVIEW DATA

Here, we present results on the multibaseline version of the
binocular Middlebury benchmark [2] as well as the fountain-
P11 dataset, courtesy of Strecha et al. [3].

It should be noted here that not all confidence methods
can be computed in a straightforward manner in a multiview
setting. LRC and LRD require the computation of at least one
more depth map and rendering of depths estimated from this
depth map to the reference view. We decided to exclude
them from the comparison due to the unfair advantage they
derive from multiple depth maps. (The left and right cost
volumes in the canonical binocular configuration contain
identical sets of values, providing no additional informa-
tion.) Distinctiveness-based methods (DTM, DSM, and
SAMM) compute self-matching costs along the epipolar
lines, requiring the selection of a target view to define an
epipolar geometry and were also excluded.

We implemented the plane sweeping algorithm accord-
ing to [45] and performed multibaseline matching using

one sweeping direction (fronto-parallel). SAD and NCC
are computed using the same window sizes as in Section 4,
while the parameter settings for all confidence measures
are also the same. Plane sweeping generates a cost value
for each depth candidate and the depth value associated
with lowest cost is selected as the final depth. In other
words, the cost volume and WTA selection are the same
as in the binocular case.

5.1 Detection of Correct Matches on Controlled
Data

The multibaseline Middlebury dataset comprises seven
images for each of the 27 scenes released in 2005 and 2006.
Since ground truth disparity maps are only provided for
views 1 and 5, the ground truth for the central view (view 3)
is calculated by computing the 3D coordinates of every pixel
on both views using their disparity maps and then
projecting those points onto the central view. These
projections are possible using the information provided by
the authors of the data: The views are equally spaced, the
baseline is 160 mm, the focal length of the camera is
3,740 pixels, all images planes are coplanar, and their axes
are aligned. A per pixel depth test is performed if more than
one 3D point is projected to the same pixel of the central
view and the smaller depth value is kept. If a pixel on the
central view is not covered by either views 1 or 5, its depth is
considered missing and it is excluded from the evaluation.
All experiments here were performed using images at one
third of the full resolution. To calculate the cost volume for
the central view, we place the near and far plane at depth
2.3467 and 14.96, respectively, and generate 1,000 depth
candidates evenly spaced between the near and far plane.

We evaluate all methods on the detection of correct
matches, but neither on performance near discontinuities,
due to the unavailability of ground truth, nor on occlusion
detection, since all pixels of the central view are visible in at
least one other view. The results are summarized in Table 9
using performance, defined as in the binocular case, as the
criterion. See also Fig. 8 for ROCs and confidence map
examples. AML, MLM, and PKRN are the best performing
methods in this experiment, while most methods again
surpass MSM.

5.2 Detection of Correct Matches on Outdoor Data

The fountain-P11 dataset consists of 11 images and is one of
the few publicly available outdoor datasets with ground
truth. Strecha et al. [3] provide an online evaluation tool
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Fig. 7. Disparity selection. Left column: The input disparity map with
minimum error rate. Right column: Results of selection according to
confidence.

TABLE 8
Disparity Selection Success Rate

TABLE 9
Performance on the Multibaseline Middlebury Data Set



which does not serve our need to evaluate depth maps at less
than full density. Therefore, we generated ground truth
depth maps by rendering the provided 3D model of fountain-
P11. In the following experiments, we estimate depth maps
for the central image using all 10 other images as matching
targets. All images were downsampled to 615� 410 and a
plane was swept in 1,000 steps along the optical axis of the
reference camera.

We used two error metrics in this experiment: the average
distance from the ground truth, as well as the percentage of
bad pixels, defined as those with error above a certain
threshold, set here to 1 percent of the depth range of the
scene. Occlusion and discontinuity maps are not available
for this dataset, making evaluations similar to Sections 4.2
and 4.3 impossible. Fig. 9 shows the reference view, a depth
map, confidence maps, and ROCs for fountain-P11. Tables 10
and 11 show the performance of each method under SAD
and NCC according to the two error metrics. AML, MLM,
PKR, and WMN are the best performing methods.

6 CONCLUSIONS

The most significant conclusions from our experiments are
the following:

. Most confidence measures meet the requirements of
Section 1 and they typically outperform the baseline
method (MSM), except on occlusion detection.

According to our results, LRD, DSM, PKRN, SAMM,
AML, MLM, WMNN, and MMN perform better than
MSM on binocular data, while MLM, AML, PKR,
PKRN, and WMN work well for multibaseline inputs.
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Fig. 9. The fountain-P11 dataset. (a) One of the input images. (b) The
depth map using SAD in 11� 11 windows. (c) and (d) ROCs for fountain-
P11 for SAD in 11� 11 windows. (e)-(h) Confidence maps.

Fig. 8. The Middlebury dataset. (a) Central view of the Flowerpots
image set. (b) Rendered depth map using ground truth disparity maps
of views 1 and 5. (c) and (d) ROCs for Flowerpots for SAD in 7� 7
windows. (e)-(f) Confidence maps using PKRN and AML. Bright pixels
correspond to higher confidence.

TABLE 10
Overall Performance of SAD and NCC Cost Volumes

for the fountain-P11 Data Set Using
Average Distance from Ground Truth as the Error Metric



. Methods that consider the entire cost curve (PRB,
MLM, AML, NEM, NOI) assign abnormally high
confidence to pixels with very small numbers of valid
disparity choices. This is usually not an issue for
multibaseline data, but affects binocular results.

. PKRN and WMNN, which do no require the second
cost in the ratio to be a local minimum, outperform
PRK and WMN on the binocular data because, in
some sense, they combine the criteria on the flat local
neighborhood around the minimum cost and on the
presence of competing hypotheses. This relationship
is reversed in the multibaseline setting in which the
steps in depth do not correspond to single disparity
steps on the images. Uniform sampling in depth at
large distances results in small motions of the
matching window on the target images and, thus, flat
cost curves. Generating depth hypotheses that corre-
spond to equal steps in all target images simulta-
neously is infeasible in general.

. Eight of the methods (LRD, PKR, WMN, SAMM,
DSM, PKRN, AML, and NOI) are successful in more
than 50 percent of the disparity selection experiments
using NCC as the cost, while two more (MSM and
WMNN) succeed more than 48 percent of the time.
This does not hold when SAD is used and only LRD
succeeds at a 58 percent rate, while SAMM is second
at 45 percent. We believe that this is due to NCC
being a normalized metric that can be transferred
among cost curves computed using different window
sizes. On the other hand, SAD, even if it is normalized
by the total number of pixels in the window, is bound
to produce smaller costs for small window sizes. A
common failure mode, regardless of underlying cost,
is bias for small or large window sizes. The former
results in salt and pepper noise and the latter in
“foreground fattening.” The nature of each stereo
image also affects the performance of disparity
selection, as no confidence measure works for
Lampshade1, Lampshade2, Midd1, Midd2, Mono-
poly, Plastic, Tsukuba, and Venus. On the other
hand, all measures produce good disparity maps for
Cloth1, Cloth2, Cloth3, and Cloth4 using NCC.

. Our results confirm that MSM and LRC/LRD are
well suited for occlusion detection. DSM and SAMM
also perform well.

. In all experiments, NCC shows better performance
than SAD as a matching function. Of course, this
comes at increased computational cost.

. Often, the minimum AUC is not achieved for the
window size with minimum total error. Small
variations in window size can trade off between
lower error rate or higher predictability of correct-
ness. The differences are small, but the choice
depends on the application requirements. For multi-
view, stereo predictability may be preferable to lower
error at full density.

There are also several informative findings on the
performance of individual methods.

The Matching Score Measure is less stable than most
other methods and fluctuates as the window size varies.
MSM does not perform well for small windows or near
discontinuities, but it is the best method for occlusion detection.

Curvature tends to rank some errors very highly because
it assigns high confidence to pixels near discontinuities due
to the accompanying large discontinuity in the cost curve. As
a result, it performs especially poorly near discontinuities.
CUR performs worse than expected given its popularity and
it is a poor choice for the multibaseline data due to the
uneven spacing of the depth candidates on the target images.

The Peak Ratio is one of the top methods on the multibaseline
data, but performs poorly on the binocular experiments, in
which it is much worse than PKRN, especially using SAD as
the cost function.

The Naive Peak Ratio (PKRN) is one of the top methods
on the binocular data, especially near discontinuities. It is not
very effective in disparity selection, however, due to bias for
small windows that leads to salt and pepper noise. On
multibaseline inputs, it suffers from an inherent weakness
similar to CUR.

The Maximum Margin is reliable, but not outstanding in
any particular task.

The Probabilistic Measure shows that some form of
nonlinearity is apparently necessary, as it fares worse than
the other methods that consider the entire cost curve (MLM
and AML).

The Maximum Likelihood Measure is the second best
method near discontinuities and arguably the best method on
multiview data. It generates confidence maps with the
sharpest boundaries, but it performs surprisingly poorly
in disparity selection.

The Attainable Maximum Likelihood performs slightly
better, in general, than MLM on all experiments. Unlike
MLM, AML is successful in disparity selection. This is due to
the removal of the bias toward smaller windows by
subtracting the minimum attained cost during the conversion
from cost to pdf .

The Negative Entropy Measure does not perform well on
binocular data, as noted also in [15]. It is significantly better
in multiview experiments, particularly on the fountain�
P11 dataset using SAD. We have not been able to explain this
inconsistency.

The Number of Inflection Points does not work well
because it merely considers the number of local minima, not
all of which are viable disparity candidates.
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TABLE 11
Overall Performance of SAD and NCC Cost Volumes

for the fountain-P11 Data Set Using
Fraction of Bad Pixels as the Error Metric

The expected performance by random choice is also shown.



The Winner Margin is usually worse than PKR, but still
among the top methods in the multibaseline setting. It is
worse than WMNN on binocular data, but better on
multiview (see PKR and PKRN). It is effective for disparity
selection.

The Naive Winner Margin (WMNN) is worse than
PKRN. It is better on binocular data and worse on
multiview data than WMN. It is worse than WMN at
disparity selection due to bias for small windows.

The following methods were only evaluated on binocular
data, as explained in Section 5.

The Left Right Consistency achieves average perfor-
mance due to quantization. More than 50 percent of the
matches in almost all experiments are left-right consistent,
resulting in a very large set of matches that appear to have
equal confidence. LRC cannot discriminate further to select a
more reliable subset. LRC is effective in occlusion detection.

The Left Right Difference is one of the best overall
method for binocular inputs. It also performs very well near
discontinuities and in occlusion detection and is the best
method in disparity selection.

The Distinctiveness Maps method does not perform
well because it utilizes information from only one input
image. Pixels with high confidence may not even be visible
in the other image. It is average in disparity selection.

The performance of Distinctive Similarity Measure is
much better than DTS since it makes use of both input
images and considers the similarity between the corre-
sponding pixels, but it is not particularly successful at
disparity selection. In almost every experiment, the results
on NCC cost volumes are much better than SAD.

The Self-Aware Matching Measure is the fourth best
method for binocular inputs on average. It typically trails
DSM, with which it is relatively similar theoretically, except
for disparity selection, where it is one of the top methods.

More effective disparity selection and extension to a true
depth map fusion approach are the most interesting
directions of future work. It appears that combinations of
some of the measures within a learning approach should
lead to significant progress, but the design of appropriate
training and testing conditions that will allow the algo-
rithm to generalize to different types of scenes is far from
trivial. Training a classifier for selecting the most appro-
priate confidence measure for a particular stereo pair or
multiple-view set, as in the work of Aodha et al. [46] and
Reynolds et al. [47] for optical flow and time-of-flight
sensors, respectively, may be a less ambitious but more
promising path for future research.
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