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Abstract

We present an extensive evaluation of 13 confidence met-
rics for stereo matching that compares the most widely used
metrics as well as four novel techniques proposed here.
We begin by categorizing the methods according to which
aspects of stereo computation they take into account and,
then, assess their strengths and weaknesses. The evaluation
is conducted on indoor and outdoor datasets with ground
truth and measures the capability of each confidence met-
ric to rank depth estimates according to their likelihood
for being correct, to detect occluded pixels and to gener-
ate low-error depth maps by selecting among multiple hy-
potheses for each pixel. We believe that such an evaluation
is missing from the rapidly maturing stereo literature and
that our findings will be helpful to researchers in binocular
and multi-view stereo.

1. Introduction
While several confidence metrics for stereo matching

have been proposed in the literature and benchmarks with
ground truth have been available for years, the criteria for
selecting a confidence metric and the relative merits of dif-
ferent metrics have not been investigated thoroughly. We
study these issues using indoor and outdoor stereo imagery
with ground truth [18, 20]. Our goal is to categorize the
different methods and to shed light on their performance
according to specific criteria described below.

We focus on methods that estimate the confidence of
disparity assignments in a winner-take-all (WTA) setting,
without considering neighboring pixels or global informa-
tion. Cost or similarity values for each disparity hypothesis
are computed and a disparity map is generated by selecting
the hypothesis with the minimum cost, or maximum sim-
ilarity, for each pixel. The cost values for all hypotheses
are used as input to 13 confidence methods that assign con-
fidence values to the selected disparities. We require that
these confidence values have the following properties:
• Be high for correct disparities and low for errors. If

matched pixels were ranked in order of decreasing con-
fidence, all errors should be ranked last. The rank-
ing should also be correct for pixels of special interest,
such as those near discontinuities.
• Be able to detect occluded pixels.
• Be useful for selecting the true disparity among hy-

potheses generated by different matching strategies.

We have evaluated the degree that each method satisfies the
above criteria using a set of experiments on matching vol-
umes computed using both cost and similarity functions ag-
gregated in square windows of various sizes. We have per-
formed these tests on binocular stereo images in the rectified
canonical configuration [18] and on multi-baseline imagery
collected outdoors [20].

Since stereo matching is known to be prone to errors,
the capability to predict where these errors occur is desir-
able. A WTA framework is appropriate for our evaluation
because, in general, confidence for a particular match can-
not be estimated using global optimization methods, such
as Markov Random Fields. This is due to the impracticality
of estimating the minimum energy labeling that assigns a
particular disparity to a given pixel and repeating the com-
putation over all disparity values for all pixels. Confidence
estimation, on the other hand, is possible when dynamic
programming is used for optimization. Gong and Yang [10]
defined the reliability of a disparity assignment (match) for
a pixel as the cost difference between the best path that does
not pass through the match and the best path that passes
through it. This method can be viewed as a generalization
of the Peak Ratio metric described in Section 3.

In summary, the contributions of this paper are:

• A classification of several confidence measures.
• A set of criteria for evaluating them.
• New confidence metrics (NLM , PKRN , WMNN

and LRD) that often perform better than conventional
methods.
• Quantitative and qualitative comparisons of 13 confi-

dence methods on indoor and outdoor imagery.



2. Related Work
Our work complements surveys on binocular [18, 3] and

multi-view [19] stereo, as well as on specific aspects of
stereo, such as cost functions [12], cost aggregation [9, 21]
and color spaces [1]. These efforts, aided by standard-
ized benchmarks [18, 19], have led to significant progress
and more principled design of stereo algorithms. The re-
newed interest in confidence estimates for multi-view stereo
[15, 2, 4] and the lack of recent, comprehensive surveys
on confidence estimation are the motivations for our work.
For clarity, we present the confidence metrics in Section 3.
Here, we only discuss methods that combine multiple con-
fidence estimation techniques.

Approaches that combine multiple confidence metrics
[5, 11, 13] aim at rejecting erroneous matches to obtain
error-free quasi-dense depth maps. Different indicators of
matching errors, such as left-right consistency, flatness of
the cost curve and the matching cost itself are combined us-
ing heuristic rules to detect mismatches. Results show that
these methods work reasonably well, but provide little in-
formation on the contribution of each element and the suit-
ability of different techniques to specific types of imagery.

Arguably, the most significant and most recent compari-
son of stereo confidence metrics was carried out by Egnal et
al. [6]. Five metrics, four of which are included here, were
evaluated against single-view stereo on predicting matching
errors on three stereo pairs with ground truth.

A relevant problem to the detection of mismatches is the
detection of occluded pixels. An evaluation of four meth-
ods for occlusion detection was performed earlier by Egnal
and Wildes [7]. Ideally, occlusion detection should not be
performed locally since occlusion is a result of long range
interaction between remote surfaces. We are more inter-
ested in the fundamental question whether occlusion can be
detected locally based on confidence. Following the com-
mon assumption that occluded pixels can be identified due
to high matching cost, we evaluate matching cost as an indi-
cator of occlusion and compare it with the other confidence
metrics.

3. Confidence Metrics
Before describing the confidence metrics, let us intro-

duce the notation used throughout. The experiments were
carried out using the sum of absolute color differences in
RGB (SAD), which is a cost metric, and zero-mean nor-
malized cross-correlation (NCC), which measures similar-
ity. For NCC, the mean is computed separately per RGB
channel, but a single variance is estimated for the 3×N×N
vector obtained by stacking all the elements in the window
after the mean RGB values have been removed. This re-
duces sensitivity to image regions with small variance in
any one channel. Square N × N windows are used in all

cost computations. For uniformity, NCC is converted to a
cost function by replacing it with 1-NCC. SAD values are
normalized by the number of pixels in the window.

The cost value (SAD or 1-NCC) assigned to a disparity
hypothesis d for a pixel (x, y) is denoted by c(x, y, d) or
c(d), if pixel coordinates are unambiguous. The minimum
cost for a pixel is denoted by c

1
and the corresponding dis-

parity value by d1; c
1
= c(d

1
) = min c(d). We also define

c
2

to denote the second smallest value of the cost that occurs
at disparity d2 , as well as c2m at disparity d2m to denote the
second smallest local minimum. The default reference im-
age for a binocular pair is the left one. If the right image is
used as reference, c

R
(x

R
, y, d

R
) denotes the cost function,

with d
R
= −d.

The disparity map for the reference image is denoted by
D(x, y) and is obtained by simply selecting the disparity
with the minimum cost for each pixel. A confidence map is
denoted by CMETH(x, y), where METH corresponds to
the confidence method being used.

3.1. Categorization of Confidence Metrics

We can now introduce the confidence metrics grouped
according to the aspects of cost they consider.

1. Matching Cost The matching cost is used as a confi-
dence measure.
The Matching Score Metric (MSM): is the simplest confi-
dence metric [6] and serves as a baseline in our experiments.

CMSM = −c
1

(1)

2. Local properties of the cost curve The shape of the
cost curve around the minimum (the sharpness or flatness
of the valley) is an indication of certainty in the match.
Curvature (CUR): has been evaluated in [6] and is widely
used in the literature. It is defined as:

CCUR = −2c(d
1
) + c(d

1
− 1) + c(d

1
+ 1) (2)

If d
1
− 1 or d

1
+1 are outside the disparity range, the avail-

able neighbor of the minimum is used twice.

3. Local minima of the cost curve The presence of other
strong candidates is an indication of uncertainty, while their
absence of certainty.
Peak Ratio (PKR): Among several equivalent formulations
[6, 11], we have implemented PKR as:

CPKR =
c
2m

c
1

(3)

We have also implemented a naive version PKRN, which
does not require the numerator to be a local minimum.



PKRN can be viewed as a combination of PKR and
CUR that assigns low confidence to matches with flat min-
ima or strong competitors.

CPKR =
c2
c
1

(4)

The margin between c
1

and c
2

is also an indication of con-
fidence. After a nonlinear transformation for visualization
purposes, we define the Nonlinear Margin (NLM) as:

CNLM = e

c
2
−c

1
2σ2
NLM (5)

4. The entire cost curve These methods convert the cost
curve to a probability distribution function over disparity.
The Probabilistic Metric (PRB) operates on a similarity
function, normalizing the values to sum to unity. It is only
used on NCC here.

CPRB =
NCC(d

1
)∑

dNCC(d)
(6)

The Maximum Likelihood Metric (MLM) is based on
[14], in which SSD was used as the cost function. We
generalize the approach to other cost functions and obtain
a probability density function for disparity given cost by as-
suming that the cost follows a normal distribution and that
the disparity prior is uniform. After normalization, CMLM

is defined as follows.

CMLM =
e
− c1

2σ2
MLM∑

d e
− c(d)

2σ2
MLM

(7)

MLM assumes that the matching cost can attain the ideal
value of 0. Merrell et al. [15] proposed a variant, termed
here Attainable Maximum Likelihood (AML), that mod-
els the cost for a particular pixel using a Gaussian distri-
bution centered at the minimum cost value that is actually
achieved for that pixel (c1 in our notation).

CAML =
e
− (c

1
−c

1
)2

2σ2
AML∑

d e
− (c(d)−c1 )2

2σ2
AML

(8)

(The numerator is always 1, but is shown here for clarity.)
The Negative Entropy Metric (NEM) was proposed by
Scharstein and Szeliski [17]. Cost values are converted to a
pdf , the negative entropy of which is used as a measure of
confidence.

p(d) =
e−c1∑
d e

−c(d)

CNEM = −
∑
d

p(d) log p(d) (9)

The Winner Margin (WMN) was also proposed in [17]. It
is a hybrid method that normalizes the difference between
the two smallest local minima by the sum of the cost curve.
The intuition is that we would like the global minimum to
be clearly preferable to the second best alternative and also
the total cost to be large indicating that not many disparities
are acceptable.

CWMN =
c2m − c1∑

d c(d)
(10)

As for PKR, we define a naive alternative (WMNN) that
does not require the second candidate to be a local mini-
mum.

CWMNN =
c
2
− c

1∑
d c(d)

(11)

5. Consistency between the left and right disparity
maps These methods examine whether the disparity map
for the right image is consistent with that of the left im-
age. Note that while both disparity maps can be produced
by traversing the left cost volume c(x, y, d), we will use
c
R
(x

R
, y, d

R
) for clarity.

Left Right Consistency (LRC) has been widely used as
a binary test for the correctness of matches. Egnal et
al. [6] defined LRC as the absolute difference between
the selected disparity for a pixel in the left image (d

1
=

argmind{c(x, y, d)}) and the disparity DR(x − d
1
, y) =

argmind
R
{c

R
(x− d1 , y, dR)} assigned to the correspond-

ing pixel in the right image.

CLRC(x, y) = −|d1
−DR(x− d1

, y)| (12)

We negate the absolute difference so that larger values of
CLRC correspond to higher confidence. LRC produces
quantized integer values for the confidence and sub-pixel
implementations are of dubious value.
Left Right Difference (LRD) is a new metric proposed here
that favors large margin between the two smallest minima of
the cost and also consistency of the minimum costs across
the two images.

CLRD(x, y) =
c2 − c1

|c
1
−min{c

R
(x− d

1
, y, d

R
)}|

(13)

The intuition is that truly corresponding windows should re-
sult in similar cost values and small values of the denomina-
tor. This formulation provides safeguards against two fail-
ure modes. If the margin c

2
− c

1
is large, but the pixel has

been mismatched the denominator will be large and confi-
dence will be low. If the margin is small, the match is likely
to be ambiguous. In this case, a small denominator indi-
cates that a correspondence between two similar pixels has
been established.



(a) MSM , LRC and PKRN (b)AML, CUR and LRD

(c) PKR confidence map (d) LRD confidence map

Figure 1. Top: ROCs of error rate over disparity map density for
Teddy using SAD in 9 × 9 windows. Bottom: confidence maps
using PKR and LRD. Bright pixels indicate high confidence.
(Confidence maps are scaled nonlinearly for visualization.)

4. Experiments on Indoor Images
In this section, we present our evaluation methodology

and results on the Middlebury benchmark data [18]. We
evaluate the ability of the methods of Section 3.1: to pre-
dict the correctness of matches for non-occluded pixels and
pixels at discontinuities; to detect occluded pixels; and to
select the correct disparities among multiple options for the
same pixel. All experiments were performed on cost vol-
umes computed in square windows ranging from 1 × 1 to
15×15 for SAD and 3×3 to 15×15 for NCC (converted to
cost by taking 1-NCC). Confidence values were computed
using all methods described in Section 3.1. The value of σ,
which is used to model noise, is set to 0.5 for all methods
that require it.

Additional results can be found at
http://personal.stevens.edu/˜xhu2/Papers/CVPR2010/
CVPR2010.html.

4.1. Detection of Correct Matches

To assess the capability of a confidence metric to predict
whether a disparity is correct, we rank all disparity assign-
ments in decreasing order of confidence and compute the
error rate in disparity maps with increasing density. Specif-
ically, for each cost volume and each confidence metric, we
select the top 5% of the matches according to confidence
and measure the error rate, defined as the percentage of pix-
els with disparity errors large than one [18], then repeat for
the top 10% and so on. Ties are resolved by including all
matches with equal confidence. (For example, the first sam-
ple using LRC includes all matches with CLRC = 0 which
could be more than 70% of the total.) This produces ROC

Method SAD AUC NCC AUC
MSM 15 0.097 9 0.162
CUR 9 0.126 11 0.129
PKR 9 0.113 7 0.120

PKRN 11 0.086 11 0.097
NLM 9 0.108 11 0.095
PRB 9 0.131
MLM 15 0.098 9 0.106
AML 9 0.102 9 0.105
NEM 11 0.188 9 0.157
WMN 9 0.124 7 0.127

WMNN 11 0.097 11 0.096
LRC 15 0.112 9 0.115
LRD 9 0.089 11 0.075

Table 1. Minimum AUC for each confidence metric on Teddy. The
second and fourth column show the window size used to obtain the
minimum AUC. The error rates at 100% density are approximately
0.21 for SAD and 0.18-0.22 for NCC depending on the window
size. All methods perform better than random.

SAD NCC All
Method Av Min Av Min Av Min
MSM 12 5 8 7 11 7
CUR 10 11 13 11 10 11
PKR 8 8 5 8 6 8

PKRN 3 1 1 2 2 2
NLM 6 9 7 4 7 5
PRB 12 12 12
MLM 2 2 4 6 3 3
AML 4 7 3 5 4 6
NEM 11 12 11 13 12 13
WMN 7 10 9 10 8 10

WMNN 5 3 6 3 5 4
LRC 9 6 10 9 9 9
LRD 1 4 2 1 1 1

Table 2. Confidence metrics ranked according to average and min-
imum AUC over all window sizes for SAD and NCC separately
and best overall performance.

curves of error rate as a function of disparity map density
[10, 16]. The area under the curve (AUC) measures the
ability of a confidence metric to predict correct matches.

Ideally, all correct matches should be selected before all
errors, resulting in the smallest possible AUC for a given
disparity map. Random selection of matches produces a flat
ROC with an AUC equal to the error rate of the disparity
map at full density. The last point of all ROCs for the same
disparity map has a y-coordinate equal to the error rate
at full density. Some of the metrics perform worse than
random chance in some of the experiments. Figure 1 shows
some examples of ROCs and confidence maps for Teddy.
We have computed the AUC for all combinations of window
size, cost function (SAD and NCC) and confidence metric.
The lowest AUC and the window size with which it was



obtained for each metric for Teddy is shown in Table 1.
These experiments are summarized in Table 2, which

contains the rank of each method on the Middlebury dataset
according to: the minimum AUC achieved for each cost
function and the average AUC over all window sizes for
a given cost function. The AUCs for each cost function
and window size, are averaged over the four stereo pairs
before the minimum is selected. That is, the minimum
AUC reported has been obtained by applying the confidence
method on all images with fixed parameters. The purpose of
using the average AUC as a criterion is to evaluate the sensi-
tivity of the confidence metrics to the selection of the under-
lying cost function and window size. Performance should
be stable even for suboptimal choices, since this is often the
case when one encounters unfamiliar scenes.

4.2. Evaluation at Discontinuities

We have also performed similar experiments on non-
occluded pixels near discontinuities using the provided
ground truth [18]. In this case, only pixels labeled as dis-
continuities are taken into account in the computation of the
ROCs. There are a few differences with the evaluation on
all non-occluded pixels that should be pointed out: NCC
results in lower AUC for all methods; several methods per-
form worse than random chance for some of the cost func-
tions; the improvement over random chance is smaller than
for all non-occluded pixels. The best performing methods
over all non-occluded pixels cover approximately 44% of
the AUC obtained by random chance. The same figure rises
to 60% near discontinuities. Tsukuba is the hardest dataset:
the overall best result covers 89.5% of the AUC obtained by
random chance near discontinuities. Details can be found
on the web page listed above.

4.3. Occlusion Detection

One of our requirements for a confidence metric is to
assign low confidence to occluded pixels. We evaluated oc-
clusion detection by counting the number of occluded pixels
included in each disparity map as more matches are added
in order of decreasing confidence. Better performance is in-
dicated by smaller area under this curve. Most methods fail
compared to random chance on Tsukuba. Only MSM and
CUR succeed for more than 30% of the other input dispar-
ity maps. Even then, the AUC is at best 80% of random
chance. Performance is also not good on Venus. One can
speculate that this could be due to the very small fraction
of occluded pixels in the older images, but more analysis is
required to confirm this hypothesis.

Our results confirm the conventional wisdom thatMSM
and LRC/LRD are well suited for this task. They also
show that performance here is more unstable than in the
previous experiments. Details can be found on the web page
listed above.

Method Data Cost Optimal Input Actual
LRD Cones SAD 4.1 15.8 10.2
LRD Cones NCC 4.6 12.0 9.6
LRD Teddy SAD 8.1 20.9 15.8
LRD Venus SAD 3.6 11.2 8.6
AML Cones NCC 4.6 12.0 11.1
AML Teddy SAD 8.1 20.9 16.7
AML Venus SAD 3.6 11.2 8.9
NLM Cones SAD 4.1 15.8 11.8
NLM Teddy SAD 8.1 20.9 17.1
NLM Venus SAD 3.6 11.2 9.2
CUR Cones SAD 4.1 15.8 12.4
CUR Teddy SAD 8.1 20.9 17.3
CUR Venus SAD 3.6 11.2 8.9
WMN Cones NCC 4.6 12.0 10.8
WMN Cones SAD 4.1 15.8 12.8
WMN Teddy SAD 8.1 20.9 17.6
WMN Teddy NCC 8.0 17.7 17.4
WMN Venus SAD 3.6 11.2 9.0
LRC Cones NCC 4.6 12.0 10.6
LRC Teddy NCC 8.0 17.7 15.5
PKR Cones NCC 4.6 12.0 9.8

PKRN Cones NCC 4.6 12.0 9.8
MSM Cones NCC 4.6 12.0 10.9

WMNN Cones NCC 4.6 12.0 11.7
Table 3. Results of disparity selection using confidence. Only
methods that make improvements are listed. The three rightmost
columns report the error rates: after optimal selection, of the best
input disparity map and the one obtained by selection. See text for
details.

4.4. Disparity Selection

The final experiment on the Middlebury data aims at se-
lecting disparities from multiple disparity maps according
to confidence. The intuition is that different window sizes
are more effective for different types of pixels. If WTA
stereo algorithms were able to select the right window for
each pixel, they would perform significantly better than they
currently do. To test whether the confidence metrics are
useful in the selection process, we compute disparity maps
using window sizes ranging from 1× 1-15× 15 using SAD
and 3× 3-15× 15 using NCC.

These computations provide 8 datasets: one each for
SAD and NCC, for each stereo pair. Each dataset comprises
8 (7 for NCC) disparity maps. A confidence method is ap-
plied on a dataset, e.g. Cones-SAD, to estimate the confi-
dence of all 8 disparity estimates for each pixel. Then, the
disparity estimate with the highest confidence value is se-
lected for that pixel without considering any neighborhood
information. (More sophisticated strategies are likely to be
more effective, but our goal is to evaluate confidence in iso-
lation.) We have also tried the same experiment using ranks
instead of raw confidence values with similar results.



(a) Teddy NCC11 (b) After selection using LRC

(c) Tsukuba NCC15 (d) After selection using PKRN

Figure 2. Disparity selection. Left column: the input disparity
map with minimum error rate. Right column: results of selection
according to confidence. The error rate increases for Tsukuba, but
the appearance is significantly improved.

There are two landmarks with which we compare the er-
ror rate of the obtained disparity maps: the error rate of the
optimal selection and the minimum error rate of the input
disparity maps. The former is the error rate obtained if we
could somehow make the optimal choice among all the dis-
parity estimates for each pixel – an error occurs only if none
of the input disparity maps is correct for that pixel. The
minimum error rate of the inputs is an indicator of whether
the combination is beneficial, or whether standard stereo us-
ing a single window size would have been more effective.
No method was able to make an improvement for Tsukuba,
while many of the methods fail for all datasets. In Table 3,
we report only the methods that resulted in an improvement
over the best input disparity map, along with the error rate
of the optimal selection, the minimum input error rate and
the error rate measured after the selection process. In some
cases, selection is able to reduce the error rate by about a
third. See Fig. 2 for examples of disparity selection.

5. Experiments on Outdoor Images
In this section, we present results on the fountain-P11

dataset, courtesy of Strecha et al. [20]. The dataset consists
of 11 images and is one of the few publicly available out-
door datasets with ground truth. We compute depth maps
for the central image using all ten other images as matching
targets. We implemented the plane sweeping algorithm [8]
and performed multi-baseline matching using one sweeping
direction (fronto-parallel). We downsampled the images to
615×410 and swept a plane in 1000 steps along the optical
axis of the reference camera. SAD and NCC are computed
using the same window sizes as in Section 4.

The result of the plane sweeping algorithm is a volume
that contains the cost value for each of the 1000 depth can-

(a) Reference view (b) Depth map

(c) MSM , MLM and PKR (d) AML, NEM and WMN

(e) MLM confidence map (f) PKR confidence map

Figure 3. The fountain-P11 dataset. (a): one of the input images.
(b): the depth map using SAD in 11 × 11 windows. (c) and (d):
ROCs for fountain-P11 for SAD in 11 × 11 windows. (e) and
(f): confidence maps using MLM and PKR. Bright pixels cor-
respond to higher confidence.

didates for each pixel. Therefore, it is a cost volume of the
same form as those of the previous section. Depths are as-
signed to pixels as the candidates with minimum cost. All
confidence methods can be computed in a straightforward
manner, except for LRC and LRD that require the compu-
tation of at least one more depth map and rendering of depth
estimated from this depth map to the reference view.

5.1. Detection of Correct Matches

Since we are interested in more than just the error at full
density, we do not use the online evaluation tool of [20]. In-
stead, we generated ground truth depth maps by rendering
the provided 3D model for the fountain-P11 dataset. The
variances of the lidar measurements are also not available,
so we use the average distance from the ground truth as the
error metric, as well as the percentage of bad pixels, defined
as the percentage of pixels with error above a certain thresh-
old, set here to 1% of the depth range of the scene. Tables 4
and 5 show the minimum AUC for each method under SAD
and NCC according to the two error metrics.

Depth selection, along the lines of Section 4.4, can be
implemented in a straightforward way for the multi-view
data, but the results are uninformative. This is because the
vast majority of the pixels are on smooth surfaces and the
overall error rate decreases with increasing window size.



SAD NCC
Method AUC Rank AUC Rank
MSM 0.091 7 0.043 5
CUR 0.117 10 0.070 10
PKR 0.059 1 0.035 1

PKRN 0.083 6 0.045 6
NLM 0.101 8 0.070 9
PRB 0.062 7
MLM 0.061 2 0.038 3
AML 0.079 4 0.038 4
NEM 0.082 5 0.094 11
WMN 0.070 3 0.035 2

WMNN 0.108 9 0.069 8
Table 4. AUC and rank for all confidence methods applied to SAD
and NCC cost volumes for the fountain-P11 dataset using average
distance from ground truth as the error metric. The best result
has been selected for each method. In general, the best results are
obtained using large windows due to the smoothness of the scene.

SAD NCC
Method AUC Rank AUC Rank
MSM 0.032 6 0.010 5
CUR 0.056 10 0.021 9
PKR 0.018 1 0.008 1

PKRN 0.033 7 0.011 6
NLM 0.041 8 0.022 10
PRB 0.018 7
MLM 0.021 2 0.008 2
AML 0.028 5 0.008 4
NEM 0.025 4 0.033 11
WMN 0.022 3 0.008 3

WMNN 0.046 9 0.021 8
Table 5. AUC and rank for all confidence methods on fountain-P11
using fraction of bad pixels as the error metric.

Therefore, selecting depth estimates computed using small
windows usually leads to an increase in error.

6. Conclusions
The most significant conclusions from our experiments

are the following:

• Most confidence metrics meet the requirements of Sec-
tion 1 and they are often able to outperform the base-
line method (MSM ), except on occlusion detection.
According to our results, LRD, PKRN and MLM
are better on the Middlebury data, while PKR,MLM
and WMN work well for fountain-P11.
• Often the minimum AUC is not achieved for the win-

dow size with minimum total error. Small variations
in window size can trade off between lower error rate
or higher predictability of correctness. The differences
are small, but the choice depends on the application re-
quirements. For multi-view stereo predictability may

be preferable to lower error at full density.
• Methods that consider the entire cost curve assign ab-

normally high confidence to pixels with very small
numbers of valid disparity choices. This is not an issue
for the outdoor data, but affects binocular results.
• PKRN and WMNN outperform PRK and WMN

on the Middlebury data because, in some sense, they
combine the criteria on the local neighborhood and on
the presence of competing hypotheses. This relation-
ship is reversed in the multi-baseline setting in which
the steps in depth do not correspond to single dispar-
ity steps on the images. Uniform sampling in depth at
large distances results in small motions of the match-
ing window on the target images and, thus, flat cost
curves. Generating depth hypotheses that correspond
to equal steps in all target images simultaneously is far
from straightforward.
• Five of the methods are generally successful in the dis-

parity selection task. A common failure mode for the
others is bias for small or large window sizes. The for-
mer results in salt and pepper noise and the latter in
“foreground fattening”.

There are also several informative findings on the perfor-
mance of individual methods.
The Matching Score Metric (MSM) performs much better
on SAD than NCC. It is less stable than most other methods
and fluctuates as the window size varies. MSM does not
perform well for small windows or near discontinuities, but
it is the best method for occlusion detection.

Curvature (CUR) tends to rank some errors very highly
because it assigns high confidence to pixels near disconti-
nuities due to the accompanying discontinuity in the cost
curve. As a result, it also performs poorly near discontinu-
ities. CUR performs worse than expected given its popu-
larity, but it is one of the few methods that are successful in
disparity selection. It is a bad choice for the outdoor data,
due to the uneven spacing of the depth candidates in terms
of disparity on the target images.
The Peak Ratio (PKR) is the best method on the outdoor
data. It does not do particularly well on the indoor experi-
ments, in which it is worse than PKRN .
The Naive Peak Ratio (PKRN) is one of the top methods
on the Middlebury data, especially near discontinuities. It
is not effective in disparity selection, however, due to bias
for small windows that leads to salt and pepper noise.
The Nonlinear Margin (NLM) is reliable, but not outstand-
ing. It is effective, however, for disparity selection.
The Probabilistic Metric (PRB) shows that some form
of nonlinearity is apparently necessary, as it fares worse
than the other methods that consider the entire cost curve
(MLM and AML).



The Maximum Likelihood Metric (MLM) is the best
method near discontinuities; second best outdoors and third
best for non-occluded pixels on the Middlebury data. It gen-
erates confidence maps with the sharpest boundaries, but it
is biased towards small windows during selection.
The Attainable Maximum Likelihood (AML) performs
worse, in general, than MLM on all experiments. Unlike
MLM , AML is successful in disparity selection. This is
due to the removal of the bias towards smaller windows by
subtracting the minimum attained cost during the conver-
sion from cost to pdf .
The Negative Entropy Metric (NEM): does not perform
well, as noted also in [17]. It consistently ranks last with
the exception of the outdoor dataset using SAD.
The Winner Margin (WMN) is usually worse than PKR,
but still top-3 outdoors. It is worse than WMNN indoors,
but better outdoors (see PKR and PKRN ). It is effective
for disparity selection.
The Naive Winner Margin (WMNN) is worse than
PKRN . It is better indoors and worse outdoors than
WMN , but fails at disparity selection due to bias for small
windows.
LRC and LRD were only evaluated indoors because out-
door extensions would require the computation of at least
one additional depth map, which would favor these meth-
ods. (In a binocular configuration, the left and right cost
volume can be generated from each other by re-arranging
their contents.)
The Left Right Consistency (LRC) achieves average per-
formance due to quantization. More than 50% of the
matches in almost all experiments are consistent, resulting
in a very large set of matches that appear to have equal con-
fidence. It is effective in occlusion detection.
The Left Right Difference (LRD) is the best overall
method indoors. It also performs very well near disconti-
nuities and in occlusion detection and is the best method in
disparity selection.

Disparity selection and extension to a true depth map fu-
sion approach are the most interesting directions of future
work. It appears that combinations of some of the met-
rics within a learning approach should lead to significant
progress, but the design of appropriate training and testing
conditions is far from trivial.
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