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Abstract We propose an approach for estimating non-rigid
correspondences between two shapes that can handle artic-
ulation and deformation of the surfaces to be matched. It
operates on open or closed surfaces represented by point
clouds, and, therefore, it can be applied on other represen-
tations that can be converted into point clouds. Our method
is capable of automatically discovering the articulated parts
of the surface without requiring knowledge of the topology
or the number of rigid parts. Processing begins by estimat-
ing potential sparse correspondences between the source and
the target surface. These are used to align the largest corre-
sponding parts of the two surfaces. Fragments of the surface
that are not consistent with this alignment generate part hy-
potheses on which the algorithm is applied recursively. We
present qualitative and quantitative results on four datasets
comprising open and closed surfaces.

Keywords Non-rigid correspondence · point clouds · shape
matching

1 Introduction

Rigid shape correspondence estimation is a well-understood
problem with several mature algorithms, mostly variants of
the Iterative Closest Point algorithm [3,9,25], that are effec-
tive in many practical scenarios. Non-rigid shape correspon-
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dence, on the other hand, is intrinsically a much harder prob-
lem and has only received the attention of the research com-
munity in the past few years. A diverse set of approaches that
make different assumptions about the inputs and the desired
transformations between two or more shapes have achieved
encouraging results. We briefly review some of the most rel-
evant methods in the next section. One way to categorize
them is based on the assumptions they make on the input
shapes. These assumptions range from noise-free manifold
meshes with genus zero to entirely unorganized point clouds
under severe occlusions.

Our approach falls towards the latter end of the above
spectrum. It aims at computing dense point-wise correspon-
dences between point clouds that are assumed to come from
the same non-rigid shape. We explicitly model articulation
as the dominant source of non-rigidity, while deformation
is handled by allowing correspondences to vary smoothly
locally during the final densification stage. Due to this as-
sumption, our method cannot handle shapes that deform with-
out discernable rigid parts, such as a piece of cloth or dough
being manipulated. The proposed algorithm has been de-
signed to work on unorganized point clouds and thus does
not rely on topology information. The inputs may be de-
graded due to occlusion or self-occlusion and as result may
correspond only partially. We do not assume a part in whole
relationship between the source and target point clouds. That
is, both shapes can have parts that are not observed in the
other shape.

According to the classification of [36], our method is ex-
trinsic, in the sense that it aims at estimating transforma-
tions in Euclidean space without embedding the inputs into
canonical forms. On the other hand, we use (approximate)
geodesic distance to measure distances between points in
the same point cloud, under the assumption that the shapes
are locally isometric.
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Addressing non-rigid shape correspondence as a com-
binatorial matching problem between two sets of vertices
leads to a prohibitively large number of solutions that have
to be evaluated. To reduce the search space researchers have
taken different approaches. Many of these approaches, in-
cluding ours, rely on detecting reliable sparse features and
matching them across the two input shapes. These sparse
correspondences are used to hypothesize potential correspon-
dences between the two shapes. In the initial alignment stage,
we use the sparse correspondences to detect the largest sub-
sets of points in the input point clouds that are approxi-
mately consistent with a single rigid transformation. The
main novelty of our method is that points that are not con-
sistent with this transformation, due to deformation, articu-
lation or occlusion, are clustered and the clusters are passed
as inputs to the initial alignment stage recursively to dis-
cover alignments between parts. Special care is taken to en-
sure that connectivity at the joints is preserved. Each of these
clusters is considered a part by our algorithm. Clearly, if an
articulation is not observed in either instance of the shape
to be matched, the relevant parts and joints are not detected.
Joints can only be detected by our algorithm if articulation is
observed in the input shapes. Finally, starting from the most
reliable correspondences, a propagation technique generates
dense correspondences for all points.

In Section 8, we present results on four diverse datasets.
The SCAPE data [2] are in the form of complete, water-
tight meshes, which are trivially converted to point clouds by
keeping only the vertices before using them as inputs to our
method. The SHREC 2011 data [4] test correspondence be-
tween complete shapes undergoing isometric deformations
as well as complete to partial shape correspondence. One
of the reasons for using these data is that they enable com-
parisons to recently published methods. On the other hand,
we also use the shoulder scans of the University of Washing-
ton [1] and a set of Kinect range scans we collected. The two
latter datasets comprise open surfaces with boundaries that
are inconsistent across views. The current implementation
of our approach is able to successfully estimate correspon-
dences in all tested scenarios, despite large deformations in
all datasets and large occlusions in most of them.

2 Related Work

In this section, we review approaches that are closely related
to ours. For a broader perspective we refer readers to re-
cent, comprehensive surveys on 3D shape correspondence,
including non-rigid registration, [36, 38]. Our method oper-
ates on point clouds without requiring topology information,
but we include relevant methods that require meshes as in-
puts in this brief survey.

We begin with approaches that are capable of processing
point cloud data. Brown and Rusinkiewicz [6] address multi-

view, non-rigid registration of point clouds in the presence
of small deformations and distortions, but their approach
cannot handle large motions such as those due to articula-
tion.

Mitra et al. [21] address symmetry detection with an ap-
proach that can also be used for non-rigid shape correspon-
dence. Corresponding rigid parts in two deformed instances
of the same shape can be detected by finding significant
clusters in transformation space based on a Hough trans-
form proposed earlier by the same authors [20]. Each cluster
corresponds to a rigid part that has undergone a geometric
transformation. The method of Huang et al. [11] is similar
to ours, since we also initially seek sparse correspondences
and detect rigid clusters. (Our approach, however, does not
model large deformation within the clusters. Instead, in our
approach clusters would have to be decomposed in parts to
be matched.) Processing in [11] starts by detecting feature
correspondences on the input point clouds and progressively
merging them to form rigid parts, allowing the method to
handle large articulation. The key differences include the
use of feature descriptors based on the principal curvatures
of fitted patches, the use of spectral matching to find the
largest set of consistent feature correspondences and the way
clusters are merged as long as the registration error for each
merged cluster remains below a threshold. We experimented
with spectral matching for finding large sets of consistent
correspondences, but RANSAC (RAndom SAmple Consen-
sus) proved to be a superior alternative. Finally, we propose
a novel way of detecting new clusters (parts) while explic-
itly preserving part connectivity at the joints. This technique
removes almost entirely the symmetric flip problem, which
is discussed in detail in [28].

Li et al. [17] address non-rigid registration of range scans
as a non-linear optimization problem that jointly consid-
ers point correspondences, correspondence reliability esti-
mation and detection of non-overlapping areas. The input
range scans are converted to meshes and a piece-wise affine
model is used to represent non-rigid deformations after the
two shapes have been rigidly aligned. Unlike [11] and our
approach, a single rigid transformation is computed to align
the shapes.

Chang and Zwicker [8] address range scan registration
using a linear skinning model. They convert the point cloud
into a grid-based representation and use Expectation Maxi-
mization (EM) to optimize registration error and the assign-
ment of points to parts, which is solved as a discrete labeling
problem initially and then refined to produce soft member-
ships of grid cells to parts. An additional term penalizes in-
consistencies at the estimated joints. Spin images [13] are
used to detect initial point correspondences and clustering is
used to initialize the parts. Quantitative results are not pre-
sented, however.
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Tevs et al. [37] present a method that is similar to ours in
that it operates on point clouds and uses the k-nearest neigh-
bor graph to approximate local connectivity and geodesic
distances. A novel RANSAC algorithm with importance sam-
pling is used to detect the most likely isometric deforma-
tion between the two shapes despite potential topological
noise. The emphasis is on augmenting the set of feature cor-
respondences by analyzing the consistency of geodesic dis-
tances of each potential correspondence to a large number
of previously detected correspondences. Qualitative results
are shown on multiple datasets, but with limited amounts of
motion between the point clouds to be matched.

A somewhat different approach was presented by Ma et
al. [19] who cast correspondence estimation between two
sets of points as the estimation of a vector field representing
the motion from the source to the target shape. EM is used
to distinguish between inlying and outlying vectors among a
large set of putative correspondences. Fitting of parametric
and non-parametric models on 2D and 3D data is shown.
Our algorithm is also faced with a large fraction of outliers in
the set of putative correspondences and tackles the problem
by establishing consensus for locally rigid motions without
higher-order models, such as those imposed by the epipolar
geometry.

We now turn our attention to methods that require topol-
ogy information (meshes) focusing on those that can han-
dle large articulations. This form of the non-rigid correspon-
dence problem was addressed by SHREC (SHape REtrieval
Contest), in particular by the 2010 [5] and 2011 [4] instances
of the contest. We use data from SHREC 2011 for some of
our experiments. Starck and Hilton [34] address non-rigid
shape correspondence by introducing local feature descrip-
tors that are invariant to isometric deformations. Dense cor-
respondences are obtained using a Markov random field de-
fined on the edges and nodes of the mesh and guided by
the feature correspondences. Zhang et al. [40] define a cost
function based on the distortion of the deformed meshes and
use shape extremities as features to generate correspondence
hypotheses. An efficient mechanism for selecting the most
likely solutions is also proposed. Lipman and Funkhouser
[18] introduce the Möbius Voting algorithm for discovering
point correspondences between approximately or partially
approximately isometric surfaces. It uses the Möbius trans-
formations defined by triplets of potential point correspon-
dences to compute mappings between the input surfaces.
Each mapping casts a vote for point correspondences that
are consistent with it and the probability of a given corre-
spondence can be estimated from the number of votes it re-
ceives. Sharma et al. [32] initially determine seed matches
between two meshes using local heat-kernel based descrip-
tors. The seeds are grown to progressively densify the cor-
respondences and an EM algorithm is used to generate the
final dense correspondences. The approach is designed to be

robust against changes in topology. Zeng et al. [39] address
3D surface tracking using triplets of correspondences using
a Markov Random Field for regularization. Unlike previous
work on conformal matching [18], this approach can handle
manifolds with boundaries, even if the boundaries are in-
consistent, due to occlusion for example. Rodola et al. [24]
pose shape correspondence estimation as a quadratic assign-
ment problem and solve it by combining spectral relaxation,
which produces dense matches, with game-theoretic match-
ing, which produces accurate but sparse matches.

Kim et al. [16] propose the Blended Intrinsic Maps (BIM)
algorithm which operates on two closed meshes and esti-
mates a mapping between them by blending multiple confor-
mal maps. Each conformal map models a part of the surface
but fails when the transformation is not globally conformal.
Conformal map hypotheses are generated by exhaustively
searching all triplets of a small set of feature points, which
are detected as the maxima of the average geodesic distance
function. Sahillioglu and Yemez [30] present the rank-and-
vote-and-combine (RAVAC) algorithm for estimating partial
correspondences between meshes that have common, but
potentially also dissimilar, parts. RAVAC begins by detect-
ing shape extremities which are used as features to hypoth-
esize partial isometric mappings between the shapes. Un-
like BIM, RAVAC poses no restrictions on topology. Sipi-
ran and Bustos [33] propose a hierarchical representation of
meshes via the decomposition tree as well as a hierarchical
matching algorithm. The main assumption is that, when two
near-isometric shapes are decomposed hierarchically, their
constituent regions can be matched. This is similar to our
method, but we do not a priori decompose the input shapes
independently of each other.

Several authors have investigated the case where there
are more than two shapes to be matched. Recent methods
that operate on collections of 3D shapes from the same class
include that of Huang and Guibas [12]. It solves a semi-
definite programming problem to enforce the cycle-consistency
constraint, which states that shape primitives must be mapped
to themselves after a cycle of pairwise transformations has
been traversed. Budd et al. [7] introduce the shape similarity
tree which is the minimum spanning tree is shape similar-
ity space. Sahillioglu and Yelmez [29] use shape extremities
as matching primitives and dynamic programming to infer
correspondences that minimize the isometric distortion over
all pairwise shape maps without requiring initial pairwise
correspondences. Rodola et al. [23] address class-specific,
non-rigid shape correspondence by training a random forest
on a set of exemplars from each class. A different approach
based on classification was recently proposed by Kanezaki
et al. [14]. Classifiers are trained, similarly to metric learn-
ing, to predict whether a reference shape and an unknown
shape are from the same class or not. Kim et al. [15] address
a similar problem in large collections of shapes based on the
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notion of fuzzy correspondences to capture important simi-
larity relations within each class of shapes, despite its poten-
tial heterogeneity. By examining an entire collection instead
of model pairs, salient point-wise correspondences can be
discovered and used for shape retrieval. Our method in its
current form focuses on the pairwise shape correspondence
problem.

A key difference between methods that operate on point
clouds and those that operate on meshes is that the latter of-
ten use shape extremities as features. While shape extrem-
ities, such as fingertips, are very useful features and allow
these methods to only consider small numbers of features,
they typically cannot be reliably detected on partial 3D scans.
In the presence of occlusion, occluding and occluded bound-
aries can appear as extremities, while true extremities may
be hard to detect. Due to the self-imposed requirement that
our method work on partial point clouds, we use feature
descriptors from the point cloud processing literature. We
compute these descriptors uniformly on the input point clouds,
bypassing the detection stage. We use the Fast Point Fea-
ture Histogram descriptor of Rusu et al. [26] for all results
shown in this paper, but it is possible that other descrip-
tors [10, 13, 31] could have been effective.

3 Overview of the Approach

In this paper, we address the problem of estimating a dense
point-wise correspondence between a source point cloud So
and a target point cloud To. We begin by downsampling the
input point clouds using an octree with leaf size dr. At most
one point per leaf is retained and all subsequent steps are ap-
plied on the donwsampled point clouds denoted by Sd = {si}
and Td = {ti}. Typically, 5r is used as the leaf size, where r
is the resolution of the point cloud defined as the average
distance between neighboring points.

Starting from the downsampled point clouds, normals
are estimated [22] and local descriptors are computed [26].
The local descriptors are used to establish potential sparse
correspondences, which may contain several errors initially.
Errors are reduced by requiring that the sparse correspon-
dences be reciprocal, i.e. if the most similar point to si is t j,
we require that the most similar point to t j is si. Otherwise,
the correspondence is rejected.

We, then, use RANSAC to estimate a rigid alignment
that is supported by the largest number of points. The over-
lapping area is designated as the largest rigid part (LRP).
Points that are not consistent with the LRP are clustered
separately in each point cloud. The result is a set of clus-
ters in the source and target point clouds that have not been
matched yet. We seek correspondences for these clusters
taking into account the way they are attached to previously
registered parts. This procedure is recursively applied to all
clusters, which can be subdivided into multiple rigid parts,

Fig. 1 Raw data: two point clouds from SCAPE

until the remaining unregistered points form very small clus-
ters. Finally, correspondences are propagated to all unmatched
points from their neighbors.

Sections 4 through 7 provide more details on each step
illustrated on an alignment example from SCAPE [2]. Re-
sults on four datasets, namely SCAPE, SHREC 2011, the
shoulder scans of the University of Washington [1] and a
Kinect dataset collected for this paper, are shown in Section
8.

4 Sparse Correspondences

The input to this stage is two point clouds and the desired
output is a set of sparse correspondences which will be used
to guide subsequent steps. We expect that some of the cor-
respondences generated at this stage will be wrong. These
errors are rejected by the RANSAC-based alignments that
are estimated in Sections 5 and 6. Figure 1 shows the source
and target point cloud for two scans from SCAPE [2].

After downsampling, un-oriented normals are estimated
for the point clouds using the technique of Mitra et al. [22].
Then, Fast Point Feature Histogram (FPFH) descriptors are
computed according to Rusu et al. [26]. The FPFH is a lo-
cal weighted average of the Simplified Point Feature His-
tograms (SPFH) computed at each point p of the point cloud.
Specifically, for each neighbor pi of p in a sphere of radius
equal to 10r, a Darboux frame uvn is defined as follows. Let
n and ni be the estimated normals at p and pi and let nm be
the normal that forms the smallest angle with the line con-
necting p and pi, that is nm = n, if n · (pi− p)> ni · (p− pi)

or nm = ni, otherwise. Without loss of generality, we will as-
sume that nm = n here. Then, u = ni, v = (pi− p)× u and
w = u× v and the following angles are computed and his-
togrammed:
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α = u ·n
φ = u · (pi− p)/||pi− p||
θ = arctan(w ·ni,u ·ni)

Each of these angles is histogrammed independently in
11-bins resulting in a 33-D histogram, which is the SPFH.
The FPFH descriptor for a point p in point cloud P is defined
as:

f (p) = SPFH(p)+
1
k

k

∑
i=1

1
wk
·SPFH(pk), (1)

where pk ∈Nk(p,P) are the k-nearest neighbors of p, SPFH
is the Simplified Point Feature Histogram (SPFH) at p and
wk is the Euclidean distance between p and pk. The SPFH
is a local descriptor that aggregates pairwise geometric rela-
tionships between the reference point and its nearest neigh-
bors.

Given these descriptors, we find the most similar point
in the target point cloud for every source point using the
Euclidean distance in the 33-D descriptor space d f (si, t j) =

|| f (si)− f (t j)||. The resulting initial set of correspondences
is denoted by K = {(si, ti)}with si ∈ Sd ⊂ So and ti ∈ Td ⊂ To.

Correspondences are sought between source and target
points in both directions, source to target and target to source.
Reciprocal correspondences that have been selected in both
directions are retained, while all other correspondences are
discarded. The set of reciprocal correspondences is denoted
by K f = {(sk, tk)}. Figure 2 shows a visualization of the re-
ciprocal sparse correspondences that are passed to the next
stages of processing.

Fig. 2 Reciprocal sparse correspondences for the data of Fig. 1

5 Initial Alignment

Based on the reciprocal correspondences from the previous
stage, we compute an initial rigid alignment between the
two point clouds using RANSAC. Each minimal hypothesis
gives rise to a rigid transformation, which is evaluated ac-
cording to the number of inliers. Inliers here are reciprocal
correspondences that are within ε after the transformation is
applied. Typical values for the parameters of RANSAC are:
10,000 iterations and ε = 10r, where r is the resolution (av-
erage distance between neighboring points) of the original
point cloud before downsampling. The transformation sup-
ported by the highest number of inliers is chosen and it is
refined using least squares fitting on all inliers. See Fig. 3
for an example.

X0 = argmin
R,t

|Kr |

∑
i=1
||(Rsi + c)− ti||2 (2)

where X0 is the rigid transformation of the largest rigid part
(LRP) and Kr is the set of all inliers after RANSAC and
(si, ti) ∈ Kr. Note that in order to avoid switching between
homogeneous and inhomogeneous coordinates when apply-
ing rigid transformations, we will treat X0 as a function that
operates on points and applies a rotation R0 followed a trans-
lation c0 to them.

In order to identify all points in the LRP, we first trans-
form the source point cloud Sd onto the coordinate system
of the target using X0. Thus, we obtain Sl = X0(Sd). We then
cluster points of the transformed source that are within 3r
of points of the target point cloud using region growing to
obtain a set of clusters in regions where the two point clouds
overlap.

Gs = {CRGS1,CRGS2, · · · ,CRGSN}. (3)

Each of these clusters is grown from a seed si, an unclustered
point, in Sl . A new point sk is added to the cluster under two

Fig. 3 Left: correspondences consistent with the alignment of the
LRPs. Right: initial alignment of LRP.
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Fig. 4 Left to right: segmentation of source and target according to the corresponding LRPs; segmentation of the source; segmentation of the
target; segmentation of the target after extension of the unmatched parts. Note that the rightmost figure shows the extension of the clusters that is
used during part discovery. The extension of the LRP is in the opposite direction.

conditions: if it is the single nearest neighbor of a point sm
which is already in the cluster; and if it is sufficiently close
to a point t j in Td . The latter condition is implemented by
testing whether de(sk− t j) ≤ 3r, where de is the Euclidean
distance. We use very tight neighborhoods in this step to ob-
tain compact clusters. Then, the largest overlapping cluster
in the transformed source point cloud Sl , in terms of number
of points, is denoted by Csl .

The same procedure is applied on the target point cloud
to obtain a set of clusters Gt and the largest overlapping clus-
ter Ctl . We verify that Csl and Ctl correspond to each other, or
we pick the two corresponding clusters with the maximum
total number of points if that is not the case. The selected
corresponding overlapping clusters define the LRP in both
point clouds.

Ctl in the target point cloud is extended by adding the
neighbors of the already included points. Since we seek neigh-
bors in the same point cloud, we use geodesic distances
in this search, approximated by graph distances in the 20-
nearest neighbor graph. The geodesic radius used for all ex-
tension steps, here and in the following section, is 50r. The
goal is to ensure that the correspondences for all points in the
source point cloud are included in Ctl . Using the extended
LRP in the target, we recompute the correspondences with
the LRP of the source by finding the nearest point in the tar-
get for each point in the source. We further require that the
FPFH descriptors of corresponding points are within a dis-
tance threshold θ f . Points that fail the descriptor similarity
test are removed from the set of correspondences. This gives
us a set of reliable correspondences that we refer to as kernel
correspondences following Huang et al. [11]. These corre-
spondences can be seen at the left part of Fig. 3, while the

right part shows the estimated alignment of the LRPs of the
point clouds. The LRP can now be segmented in both point
clouds, as shown in the three leftmost parts of Fig. 4.

6 Part Discovery

In this section, we attempt to discover parts, if they exist, in
the point clouds. A part is a connected component, above a
minimum size, that has not been matched to the other point
cloud yet. Parts are formed by growing connected compo-
nents starting from unmatched points. We seek correspon-
dences for unmatched parts that are connected to matched
parts and the process is repeated recursively. After the initial
alignment, parts that are connected to the LRP are matched
first, e.g. the thighs, while in the next step, the focus shifts
to parts connected to the parts which were just matched, e.g.
the lower legs.

We begin by forming clusters using region growing, con-
necting points not in the largest rigid part with their k-nearest
neighbors (k = 20). We use Sl and Tl to denote the inputs at
level l. These are the entire downsampled point clouds at
level 0, but they can also be other corresponding clusters as
the initial alignment and part discovery steps are applied re-
cursively. Csl and Ctl are the LRPs of the input point clouds
at level l. Points in the LRPs are excluded from this clus-
tering step. Let {Cs(l+1)1,Cs(l+1)2, . . . ,Cs(l+1)K} denote the
clusters in Sl −Csl and {Ct(l+1)1,Ct(l+1)2, . . . , Ct(l+1)K} de-
note the clusters in Tl−Ctl , at level l+1 after dropping clus-
ters with less than a minimum number of points.

Clusters in the target are extended as described in Sec-
tion 5 to ensure that all source points can be matched. The
rightmost subfigure of Fig. 4 shows the extension of the clus-
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Fig. 5 First and third subfigures: correspondences found by propagation from the LRP and used for estimating the transformation of the first and
third clusters. Second and fourth subfigures: new correspondences detected for these clusters after aligning the corresponding clusters. The second
cluster is the left leg (not shown here).

ters (compare with the third subfigure). The extension is now
done from the clusters towards the LRP. The same geodesic
radius (50r) is also used here.

ECt(l+1)k = {Gr(ti,Td)|ti ∈Ct(l+1)k}, (4)

where Gr(ti,Td) is the geodesic neighborhood of radius r in
the downsampled target point cloud Td .

For every cluster Cs(l+1)k in the source point cloud we
find the region As(l+1)k in the cluster which is connected with
the largest rigid part Csl :

As(l+1)k = {si|si ∈Cs(l+1)k, Gr(si,Sd)∩Csl 6=∅}, (5)

where Gr(si,Sd) is the geodesic neighborhood of radius si in
the downsampled source point cloud. We also find a similar
region Bs(l+1)k in the largest rigid part Csl .

Bs(l+1)k = {si|si ∈Csl ,Gr(si,Sd)∩Cs(l+1)k 6=∅}. (6)

The same process is repeated in the target point cloud. Given
two overlapping regions Bs(l+1)k and Bt(l+1)m, in the source
and target point clouds respectively, we can identify which
clusters correspond and avoid the symmetry problem. Sym-
metry leads to errors when, for example, the left arm of the
source is matched to the right arm of the target. We can eas-
ily find As(l+1)k and At(l+1)m that correspond in the two point
clouds and then estimate an alignment for the entire clusters
Cs(l+1)k and ECt(l+1)m.

Correspondences are propagated to unmatched points in
the A regions. Specifically, given a cluster Cs(l+1)k, its cor-
responding cluster ECt(l+1)m, and a sample si ∈ As(l+1)k that
does not have a corresponding point in the target yet, we can
find its corresponding point by propagating existing corre-
spondences.

Ks(l+1)k = {(si, ti)|ti = argmin
t∈ECt(l+1)m

eKl (si, t), si ∈As(l+1)k}, (7)

where the consistency error eK is defined as:

eKl (s, t) = ∑
(sk,tk)∈Kl ,sk∈Csl

[dg(s,sk)−dg(t, tk)]
2 . (8)

Kl indicates the kernel correspondences form level l. Note
that correspondence propagation is done in geodesic neigh-
borhoods and dg() denotes the geodesic distance between
two points. Finally, we use all correspondences in Ks(l+1)k
to estimate the transformation T(l+1)k between Cs(l+1)k and
ECt(l+1)m. This is done as in Section 5 for the LRP. After the
source cluster has been transformed, we find new correspon-
dences based on the same criteria used for the LRP. Specif-
ically, we require that these correspondences are within a
certain Euclidean distance θc after the transformation and
the FPFH descriptors of corresponding points are within a
certain Euclidean distance θ f . We further require that the
correspondences be reciprocal. The output is a set of kernel
correspondences for the part. Figure 5 shows two examples
of matching clusters and the new correspondences found in
this stage.

The procedure described in this section is recursive. Af-
ter a cluster has been discovered in the source point cloud,
we find the potentially corresponding part in the target point
cloud and pass them as inputs to the initial alignment al-
gorithm of Section 5. Recursion terminates when an entire
cluster can be matched between the two point clouds by
a single rigid transformation, or when the remaining un-
matched clusters contain less than a minimum number of
points. This scheme for discovering and matching parts that
are close to previously matched parts allows us to enforce
joint consistency across the two shapes. The limitation is
that parts that appear disconnected from the LRP due to oc-
clusion or self-occlusion cannot be matched.
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7 Dense Correspondences

After rigid transformations for all parts have been estimated
as above, we perform a final propagation step to compute
dense correspondences for all points. The input to this stage
is the kernel for all clusters in the source point cloud

Kk = {(si, ti)|(s, t) ∈ Kl , l = 0,1, · · · ,L}. (9)

Based on this, propagation is done as follows: for a sam-
ple si in the source that does not have a correspondence yet,
we seek the nearest point s j with a correspondence (s j, t j).
We then assign to si a target point that is most consistent with
the kernel correspondences according to minimum geodesic
distance

Ka = {(si, ti)|ti = argmin
t∈Gr(t j ,Td)

eKk(si, t), si ∈ Sd} (10)

where the consistency error eK is defined as:

eKk(s, t) = ∑
(sk,tk)∈Kk

[dg(s,sk)−dg(t, tk)]
2 . (11)

(a) All kernel correspondences

(b) 10% of final dense correspondences

Fig. 6 Final results on aligning two SCAPE models

We thus obtain the final set of correspondences compris-
ing the kernel Kk and the correspondences from the propa-
gation Ka. See Fig. 6 for a visualization of all kernel corre-
spondences and a sampling of the dense correspondences.

8 Experimental Results

We present qualitative and quantitative results on four di-
verse datasets, namely SCAPE [2], SHREC 2011 [4], the
shoulder scans [1] and a Kinect dataset introduced here. All
datasets are processed with constant parameter values. Specif-
ically, the octree leaf size for downsampling dr is set equal
to 5r, where r is the resolution of the point cloud, the radius
of the neighborhood for SPFH computation is 10r, k in (1) is
set to 30, the minimum number of points for a cluster to be
processed further is 20, while the thresholds on Euclidean
and FPFH distance are set to θc = r and θ f = 400.

In accordance with the literature, we use the average of
normalized geodesic distances when presenting quantitative
results. For each shape, we find the largest geodesic distance
between any two points and use it to normalize all other dis-
tances. In the following tables we report the averages of such
distances over the relevant number of points for each exper-
iment.

Results on SCAPE.The first dataset we validate our method
on is SCAPE [2]. Specifically, we use the 12 pairs of shapes
used by Sahillioglu and Yemez to validate their RAVAC al-
gorithm [30] and compare against their results, as well as
those obtained by the Möbius Voting (MV) method [18] and
the blended intrinsic maps (BIM) method [16] as reported
in [30]. Figures 3-6 show results on estimating correspon-
dences between meshes 0 and 2 of the SCAPE dataset, while
Fig. 7 shows results on meshes 1 and 53.

Ave. Nr. Corresp. Dgrd
MV [18] ∼250 0.203
RAVAC [30] ∼250 0.043
Our method 260 0.015

Table 1 Average normalized geodesic distance from ground truth for
sparse correspondences on the 12 pairs from SCAPE used in [30]. Re-
sults from [18,30] are copied from the latter. The results of our method
are on all kernel correspondences before the propagation of Section 7
is applied. All methods generate approximately the same number of
correspondences.

We present quantitative results in Tables 1 and 2. Due
to the availability of meshes for these data, we use the soft-
ware of Surazshky et al. [35] to compute geodesic distances.
(It should be noted that due to the normalization, the differ-
ence between these exact geodesic distances and approxima-
tions computed using graph distances is negligible.) Table 1
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(a) FPFH correspondences (b) Correspondences after ini-
tial alignment

(c) LRP in source (d) Extended LRP in target

(e) First cluster (f) Third cluster (g) All kernel correspondences (h) 10% of final dense corre-
spondences

Fig. 7 Visualization of entire pipeline on models 1 and 53 from SCAPE. Only the vertices of the meshes are used as inputs to our algorithm.

contains the average distance from ground truth for sparse
correspondences, the kernel for our algorithm, and Table 2
shows results on all vertices. Our method is superior to all
other methods, except the dense results of BIM. BIM has
several advantages over our approach on these data since it
exploits topology information from the mesh and assumes
that the shape has genus zero. It also requires a very small
number of repeatable features to be detected, which is not
always possible on point clouds or open surfaces. BIM is
not applicable on the following experiments, except those
on matching SHREC 2011 shapes under isometric deforma-
tions.

Dgrd
BIM [16] 0.042
RAVAC [30] 0.051
Our method 0.045

Table 2 Average normalized geodesic distance from ground truth for
dense correspondences on the 12 pairs from SCAPE used in [30]. Re-
sults from [16,30] are copied from the latter. The results of our method
are after the propagation of Section 7.

Results on SHREC 2011.We performed two types of exper-
iments on the SHREC 2011 dataset [4]. In the first set of

experiments we used the five instances of the human model
that have undergone isometric deformations to form ten pairs,
for which we estimate correspondences. We call these exper-
iments iso-iso matching. In the second set of experiments we
form pairs of shapes by taking an instance that has under-
gone an isometric deformation and one that has undergone
an isometric deformation, but has also been cropped. We re-
fer to these experiments as iso-part matching. As above, we
only keep the vertices of the models and discard all topology
information. Figure 8 shows representative results for both
cases.

Test Ave. Nr. Corresp. Dgrd
Our method: kernel iso-iso 346 0.015
Our method: dense iso-iso 4345 0.047
Our method: kernel iso-part 276 0.014
Our method: dense iso-part 1581 0.023

Table 3 Average normalized approximate geodesic distance from
ground truth for kernel and dense correspondences on SHREC 2011

Table 3 summarizes the geodesic distance errors between
manually clicked ground truth and the estimated correspon-
dences. It includes errors for both kernel and dense matches
in the two types of experiments. Errors on kernel matches
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(a) All kernel correspondences and 30% of the dense correspondences
for SHREC iso-iso models 2 and 3

(b) As above for SHREC iso-iso models 4 and 5

(c) As above for SHREC isometric model 2 and partial model 2

(d) As above for SHREC isometric model 3 and partial model 5

Fig. 8 Estimated correspondences on iso-iso and iso-part pairs of mod-
els from SHREC 2011

are similar, while errors on dense matches are lower in iso-
part matching tighter alignment is possible for the un-occluded
parts. Sahillioglu and Yemez [30] published results on the
same matching scenarios for their method, as well as for
Möbius Voting (MV) [18]. The results are not directly com-
parable, since [30] reports error at the extremities and for
the top-5 matches while our method relies on consensus and
requires larger numbers of correspondences. In the iso-iso
experiments, MV had an error of 0.053 on extremities and

0.002 on the top-5 matches, while RAVAC had errors of
0.003 and 0.044 on extremities and top-5 matches, respec-
tively. Each method is outstanding according to its own cri-
terion. Our method results in lower errors than both RAVAC
and MV if the secondary criterion is considered in each case
despite the fact that we consider hundreds of correspondences.
The only error reported for the iso-part scenario is 0.049 for
RAVAC on extremities. Our method achieves much lower
error even on dense matches.

Results on the shoulder data.Here we present results on the
shoulder scans from the University of Washington [1]. Fig-
ure 9 shows alignment results on these data while Table 4
contains quantitative results. For these data we approximate
the geodesic distances to the ground truth by graph distances
in 20-nearest neighbor graphs.

Ave. Nr. Corresp. Dgrd
Our method: kernel 92 0.014
Our method: dense 494 0.030

Table 4 Average normalized approximate geodesic distance from
ground truth for kernel and dense correspondences on 17 random pairs
of shoulder scans

Results on Kinect data.The final dataset contains Kinect range
maps collected for this paper. There are three subsets with
the dominant motion concentrated on the upper or lower
body or both. Ground truth on these data was manually la-
belled. Figure 10 shows alignment results on these data while
Table 5 contains quantitative results. As with the previous
dataset, we approximate the geodesic distances to the ground
truth by graph distances in 20-nearest neighbor graphs. We
report the average accuracy over kernel and dense corre-
spondences for the entire dataset since the statistics of the
three subsets are very similar. It is worth pointing out that
large deformations pose no insurmountable difficulties to
our algorithm, which is also not affected by the fact that the
shapes are partial with irregular boundaries.

Ave. Nr. Corresp. Dgrd
Our method: kernel 387 0.012
Our method: dense 1133 0.017

Table 5 Average normalized approximate geodesic distance from
ground truth for kernel and dense correspondences on 26 random pairs
of Kinect scans.

Timing Results.Running times vary depending on the num-
ber of points in the input data, the local point density and
also on the number of parts that are discovered. Each part
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(a) All kernel correspondences and 30% of the dense correspondences
for scans 0 and 1

(b) As above for scans 210 and 201

(c) As above for scans 200 and 1

Fig. 9 Estimated correspondences on pairs of shoulder scans

requires the estimation of an alignment with a potentially
corresponding part followed by clustering to discover which
points are consistent with the alignment. Timing results are
reported on an Intel Core i7-2670QM CPU at 2.20 GHZ.
The Point Cloud Library (PCL) [27] is used for many of
the supporting tasks, like FPFH descriptor computation, but
other parts of the code are not optimized.

Execution times per task and per dataset are shown in
Table 6. The computation of surface normals and FPFH de-
scriptors depends on the local density of the point cloud
since they are done in r-neighborhoods. Geodesic distance
computation and correspondence densification primarily de-
pend on the number of input points, while establishing part
correspondences and kernel matches depend on the num-
ber of parts and the number of points. BIM, according to
results in [16], takes approximately 80 seconds to register
two SCAPE meshes and between 358 and 1945 seconds for
SHREC 2011 (TOSCA) shapes depending on the number
of points. A processor with the same clock speed as ours
was used. RAVAC [30] takes 22 seconds on SCAPE and 557
seconds on an iso-iso pair from SHREC 2011 on a slightly
faster processor than ours.

(a) All kernel correspondences and 30% of the dense correspondences
for scans E 9 and E 17

(b) As above for scans A 66 and A 68

(c) As above for scans C 17 and C 26

(d) As above for scans C 24 and C 65

Fig. 10 Results on Kinect data

9 Conclusions

We have presented a novel approach for non-rigid registra-
tion of point clouds that is fully automatic, does not require
topology information and is able to discover the number of
moving parts observed in the two input point clouds. Our
approach can handle large articulated motions and does not
suffer from ambiguities due to symmetry because it ensures
that corresponding parts in the two shapes are attached con-
sistently at the joints of previously matched parts. We have
shown results on open and closed surfaces including com-
parisons with state of the art methods that demonstrate that
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Dataset FPFH/Init. Geod. Kernel Dense Total
SCAPE 1.12 13 71 348 433
SHREC 26.4 18 273 484 802
Shoulder 9.00 0.82 1.27 4.00 15.09

Table 6 Timing results per dataset in seconds.The four main stages
of processing are: FPFH computation and initial alignment; geodesic
distance computation; kernel match estimation for all parts; and dense
correspondence estimation.

our method is competitive even though it makes less restric-
tive assumptions about the data.

There are three limitations of our method. The first is
that if the correspondence of the first rigid part is wrong,
our method cannot recover. This can be addressed by keep-
ing track the top few alignment hypotheses generated by
RANSAC, as in [28]. In practice, we did not observe any
failures due to this, since real point clouds are unlikely to be
perfectly symmetric and incorrect hypotheses do not com-
pete evenly with the correct one. The second limitation is
that our current implementation cannot handle parts that ap-
pear disconnected due to occlusion or self occlusion, such as
a forearm that is visible but is attached to an occluded upper
arm for example. Disconnected parts do not allow the algo-
rithm to detect joints between them and the rest of the shape.
The implementation will be augmented to handle this case in
our future work by continuing the search for part correspon-
dences in the presence of a joint in only one of the shapes.
The occluded joint would have to be inferred based on part
proximity. The third limitation is that large free-form defor-
mations which cannot be approximated as piece-wise rigid
cannot be handled.
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30. Sahillioğlu, Y., Yemez, Y.: Partial 3-d correspondence from shape
extremities. Computer Graphics Forum (2014)

31. Salti, S., Tombari, F., Di Stefano, L.: SHOT: Unique signatures of
histograms for surface and texture description. CVIU 125, 251–
264 (2014)

32. Sharma, A., Horaud, R., Cech, J., Boyer, E.: Topologically-robust
3d shape matching based on diffusion geometry and seed growing.
In: CVPR, pp. 2481–2488 (2011)

33. Sipiran, I., Bustos, B.: A fully hierarchical approach for find-
ing correspondences in non-rigid shapes. In: ICCV, pp. 817–824
(2013)

34. Starck, J., Hilton, A.: Correspondence labelling for wide-
timeframe free-form surface matching. In: ICCV (2007)

35. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe,
H.: Fast exact and approximate geodesics on meshes. ACM Trans.
on Graphics 24(3), 553–560 (2005)

36. Tam, G.K., Cheng, Z.Q., Lai, Y.K., Langbein, F.C., Liu, Y.,
Marshall, D., Martin, R.R., Sun, X.F., Rosin, P.L.: Registration
of 3d point clouds and meshes: A survey from rigid to non-
rigid. IEEE Transactions on Visualization and Computer Graphics
19(7), 1199–1217 (2013)

37. Tevs, A., Bokeloh, M., Wand, M., Schilling, A., Seidel, H.P.: Iso-
metric registration of ambiguous and partial data. In: CVPR, pp.
1185–1192 (2009)

38. Van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A sur-
vey on shape correspondence. Computer Graphics Forum 30(6),
1681–1707 (2011)

39. Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., Paragios, N.:
Intrinsic dense 3d surface tracking. In: CVPR, pp. 1225–1232
(2011)

40. Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., Van Kaick,
O., Tagliasacchi, A.: Deformation-driven shape correspondence.
Computer Graphics Forum 27(5), 1431–1439 (2008)


