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Abstract

In this paper we propose an approach for estimating the
confidence of stereo matches for superpixel-based disparity
estimation. To our knowledge, this is the first such method
reported in the literature. Starting from a simple superpixel
stereo algorithm, we present a representative set of features
that can be extracted from the disparity map and the su-
perpixel fitting process. A random forest classifier is then
trained on these features to predict whether the disparity
assigned to each pixel of a test disparity map is correct or
not. We perform experiments on the KITTI stereo bench-
mark and show that our confidence estimator is very accu-
rate in predicting which disparities are correct and which
are not. We also present a post-processing algorithm for im-
proving the accuracy of the disparity maps that exploits the
confidence estimates to reject wrong disparity values and
achieves significant error reduction.

1. Introduction

Stereo matching methods based on global optimization
typically outperform local alternatives in terms of accuracy.
This is evident on popular benchmarks such as those hosted
by Middlebury College (version 2) [33] and the Karlsruhe
Institute of Technology [12]. There is still a need for lo-
cal stereo algorithms, however, in applications that require
real-time processing or operate on high resolution images.
Superpixels are an attractive representation between the two
extremes because they provide a good trade-off between
processing speed and accuracy. Superpixels can serve as
domains for regularization and are not heavily biased to-
wards fronto-parallel surfaces of constant disparity. In this
paper, we focus on confidence estimation for superpixel-
based stereo. Our method is suitable for a fast implementa-
tion, but we do not attempt to realize such an implementa-
tion here.

While local stereo methods are in general more prone
to errors compared to global methods, these errors may be
easier to detect. Due to the tight coupling of data-fidelity
and smoothness terms in global methods, wrong disparity
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assignments may be hard to diagnose. On the other hand,
matching uncertainty can be assessed more easily in sim-
ple matching algorithms. Confidence estimation for stereo
matching aims to assign to each pixel a value that reflects
the reliability of the disparity that has been assigned to the
pixel. If confidence is estimated accurately, incorrect dis-
parities can be identified, discarded and possibly replaced
by more accurate ones. These capabilities can be of critical
importance in applications that require real-time depth esti-
mation but can tolerate some holes in the depth maps, such
as occupancy grid estimation for autonomous navigation or
3D scene modeling using mobile monocular or stereo cam-
eras.

Recent research on confidence estimation [14, 34, 29]
integrates multiple sources of information within a discrim-
inative learning framework, instead of relying on a single
feature for each pixel [11, 16]. As expected, taking into
account multiple features leads to improved performance
since different failure modes can be detected, while indi-
vidual features typically respond to one failure mode. For
example, errors in stereo matching due to occlusion or due
to repeated structures have different characteristics. What
is missing from the literature, however, is confidence esti-
mation for superpixel-based algorithms. This is the objec-
tive of the current paper. It should be noted that we view
the work of Pfeiffer et al. [30] on stixels as an approach
for improving stixel fitting relying on per-pixel confidence,
while the work presented here relies on superpixel fitting
to improve confidence estimation. We show that signifi-
cant improvement in confidence estimation accuracy can be
achieved via the use of superpixel-specific features.

Processing begins by fitting superpixels to a disparity
map estimated using local winner-take-all (WTA) stereo
(Section 4). We, then, compute features on pixels and su-
perpixels to form a feature vector for each pixel (Section
5). A random forest (RF) classifier is trained on feature
vectors of a training set of stereo pairs to predict the confi-
dence of pixels of the test set (Section 6). We show results
on the KITTI stereo benchmark in ranking disparity assign-
ments according to confidence in Section 7 and in improv-
ing the input disparity maps using confidence estimates to



guide post-processing in Section 8. Due to the very high ac-
curacy of the classifier, post-processing leads to substantial
reduction in the disparity error rate.

Our main contribution is a general and extensible ap-
proach to confidence estimation for superpixel-based stereo
matching, as well as the superpixel-specific features. The
algorithms for initial disparity estimation, superpixel fitting
and post-processing are generic and can be replaced by any
reasonable technique for performing these computations.
We have chosen random forests for classification because
they are well suited for learning in inhomogeneous feature
spaces due to not requiring a metric in feature space.

2. Related Work

The literature on stereo matching is too voluminous to be
reviewed here. In this section, we focus on approaches that
estimate the confidence of stereo matches and refer readers
to surveys [33, 8] for broader coverage of the stereo liter-
ature. The first part of this section covers related work on
estimating the confidence of given disparity assignments.
To the best of our knowledge, no prior work estimates the
confidence of disparities computed using superpixel-based
stereo.

Egnal et al. [1 1] published the first comprehensive study
of stereo confidence comparing five measures in predicting
matching errors on three “single-view” stereo pairs. Early
confidence measures include the curvature of the cost curve
[11], the ratio of the highest to the second highest match-
ing score for a given pixel [23, 11, 15], interpretations of
the cost or matching curve as a probability mass function
[24, 32, 25], the number of inflection points of the cost
curve [20] and left-right consistency. More sophisticated
measures include the Distinctive Similarity Measure (DSM)
[39] and the Self-Aware Matching Measure (SAMM) [27]
that take into account neighbors of each pixel on its epipo-
lar line. Hu and Mordohai [16] compared 17 confidence
measures including most of the above and some that were
newly introduced in that paper. A clear conclusion from
these studies is that different confidence measures have dif-
ferent strengths and weaknesses. No single measure can
diagnose all potential failure modes. Approaches that com-
bine multiple confidence measures have also been reported
in the literature [10, 15, 20], but the combination was based
on hand-crafted rules. We expect that a formal learning pro-
cess will lead to better results.

Machine learning techniques have been used to learn
characteristics associated with high and low confidence
matches. Lew et al. [21] presented an approach for a priori
selecting a set of landmarks that are likely to be matched
correctly. Kong and Tao [18] used non-parametric tech-
niques to learn the probability of a potential match to be-
long in three categories: correct, wrong due to foreground
over-extension or wrong for other reasons. Later, the same

authors present an approach for selecting among a number
of stereo matching algorithms [19]. Haeusler and Klette
[13] considered several confidence measures, as well as the
product of all measures, demonstrating good performance
in sparsification, that is the removal of incorrect matches
from the disparity map. Sabater et al. [31] introduced an a
contrario approach for validating the correctness of stereo
matches based on a robust similarity measure. A user-
specified acceptable number of false matches determines
the density of the final disparity map. Pfeiffer et al. [30]
integrated three confidence measures into a mid-level rep-
resentation (stixels) for 3D reconstruction and showed that
Bayesian reasoning outperforms thresholding for sparsifica-
tion.

Recent work has employed multiple confidence mea-
sures as features for discriminative learning. Motten et al.
[28] presented a classifier using decision trees implemented
on FPGA for selecting among multiple disparity hypothe-
ses generated by trinocular stereo. Haeusler et al. [14]
trained a random forest classifier using a number of con-
fidence measures as features to make predictions about the
correctness of the outputs of the semi-global matching al-
gorithm. Spyropoulos et al. [34] used a similar classifica-
tion approach, but also demonstrated that such a classifier
can be used to select ground control points, which in turn
can help improve the accuracy of the input disparity maps.
Park and Yoon [29] also use a number of confidence mea-
sures as features in a random forest classifier that predicts
the correctness of WTA disparities. Then, classifier predic-
tions are used to modulate the data term of each pixel in
SGM-based optimization leading to improvements in accu-
racy. Our approach is similar to the latter three publica-
tions. We are able to show, however, that superpixel-based
features lead to much higher accuracy than those based on
individual pixels.

In addition to the confidence estimation literature, su-
perpixel or segmentation-based approaches to stereo match-
ing are also relevant to our research. The paper of Birch-
field and Tomasi [2] is a milestone for a number of rea-
sons. The most relevant to our work is that it relaxed
the fronto-parallel assumption which is typically made in
stereo and proposed a practical algorithm for global op-
timization with plane memberships as labels. This work
was extended to non-planar segments by Lin and Tomasi
[22]. Segmentation-based approaches [3, 17, 37, 5] have
also been very successful on the Middlebury benchmark
[33]. Recently, Yamaguchi et al. [38] presented an approach
that jointly segments the reference image into superpixels,
estimates the disparity and occlusion label of each pixel,
and also estimates optical flow if more than two images are
available. Multi-view stereo is out of the scope of this pa-
per, but it is worth pointing out recent algorithms [26, 6, 36]
that have shown very competitive results.



3. Overview of the Approach

The problem addressed in this paper is confidence esti-
mation for superpixel-based disparity estimation. Given this
problem statement, we consider pixel-wise initial disparity
estimation as an input to our algorithm. Section 4 briefly
describes how this is accomplished using Zero-mean Nor-
malized Cross-Correlation (NCC), but any other matching
function could have been used.

Our approach requires a training set of stereo pairs with
ground truth, such as those provided by the KITTI Vision
Benchmark Suite [12]. The steps during the training phase

are:
e Estimate initial disparity maps using a Winner-Take-

All (WTA) local stereo algorithm.

e Fitting planes to the superpixels in the initial disparity
maps.

e Compute a set of features for each pixel and superpixel
based on information from the disparity maps and the
superpixel fitting process.

e Train a classifier to predict whether the disparity as-
signed to a pixel is correct based on the feature vector
and the ground truth disparity maps.

During testing, each stereo pair is processed separately.
We again fit planes to the superpixels in the test disparity
map and estimate the feature vector for each pixel and use
the classifier to estimate the confidence of each disparity
value. Optionally, we can sparsify the disparity map by re-
jecting disparities that are likely to be wrong and then re-
place the rejected disparities with new values that are con-
sistent with the neighborhood of each pixel.

It is worth pointing out that this approach is applicable
to any superpixel-based disparity estimation algorithm and
that more sophisticated post-processing could have resulted
in even larger increases in accuracy.

4. Superpixel Fitting

Processing for a stereo pair begins by computing a
matching score for all possible disparities for each pixel.
The steps described in this section are performed on all
stereo pairs regardless of whether they are in the training or
test set. We use Zero-mean Normalized Cross-Correlation
(NCC) as the similarity function, but our results are appli-
cable to any reasonable choice for such a function. The out-
puts of the NCC computations can be thought of as external
inputs to our algorithm. We define the NCC for assigning a
disparity d to a pixel (i, j) of the reference (left) image as
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where I, and I are the two images of the stereo pair, W
is the matching window centered on (7, j), i, and p, are
the means and o, and o, are the standard deviations of all
intensities in the square window in the left and right image,
respectively. We assign to each pixel the disparity with the
maximum NCC value to produce a disparity map Dycc.
We also reverse the role of the reference and target image
and compute the right-to-left disparity map, which is used
for consistency tests in the remainder.

Separately, we segment the images into superpixels fol-
lowing the SLIC algorithm of Achanta et al. [1]. SLIC is
a fast adaptation of k-means for image oversegmentation in
which the pixel dissimilarity metric depends on color and
image coordinate distances. The relative weights of the two
distances can be adjusted to obtain more or less compact
superpixels. In our experiments, we used superpixels com-
prising approximately 400 pixels each. Sensitivity to this
parameter, however, is low.

Given Dycc, we fit a 3D plane (in disparity space) to
each superpixel using RANSAC. We follow the standard
RANSAC procedure and generate hypotheses by picking
minimal samples of three points, computing the plane equa-
tion and counting the number of inliers to the hypothesized
plane. Unlike general RANSAC-based plane fitting, we as-
sume that a single plane exists for each superpixel and that
this plane should have the majority of the underlying pix-
els as inliers. We experimented with adapting the threshold
for each superpixel according to the noise level in the un-
derlying disparities, but a fixed threshold leads to indistin-
guishable accuracy and we opted for the simpler implemen-
tation. The final plane for a superpixel is estimated using
least squares on all inliers of the best hypothesis. We obtain
a new disparity map Dgp by replacing all disparities with
those generated by intersecting the ray of each pixel with
the estimated plane for its superpixel.

5. The Feature Vector

In this section, we present the features that are computed
for each pixel in order to determine the correctness of the
disparity. These features are aggregated in a feature vector
per pixel and the resulting feature vectors are used to train
a random forest classifier. During testing, feature vectors
of pixels from the test dataset are presented to the classifier
that predicts whether their disparity is correct or not. We
follow the KITTI benchmark protocol throughout and con-
sider a disparity correct if it is within three levels from the
ground truth.

Our classifier relies on eight features, the first four of
which are computed strictly at the pixel level and four more
that leverage superpixel information. Superpixel level fea-
tures are copied to the feature vectors of all pixels in a su-
perpixel.



Matching Score (Cyvcc) We use the NCC value of the
selected disparity as the first feature based on the WTA as-
sumption that high NCC values correspond to high likeli-
hood of correct matching.

Left-Right Difference (C,grp) This confidence measure
[16] favors a large margin between the two largest NCC
maxima for pixel (¢,7) in the left image and also consis-
tency of the maximum NCC scores between the left-to-right
and right-to-left disparity maps.

o ca(i, j) — (i, 4)
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where ¢ (i, 7) is the maximum NCC value for pixel (i, ),
ca(i,7) is the second largest NCC value, cpy, is the right-
to-left correlation volume, D(4, j) is the disparity assigned
to pixel (7, 7) in the NCC disparity map D ycc¢ for the left
image and D’ sweeps over the set of competing disparities
for the correspond pixel (i — D(4, j), j) in the right-to-left
correlation volume. The intuition is that truly correspond-
ing pixels should result in similar NCC values and thus a
small denominator. LRD can be small for two reasons: if
the margin is small, or if the margin ce — ¢; is large, but the
pixel has been mismatched causing the denominator to be
large.

Naive Peak Ratio (Cpxpry) This captures low confi-
dence due to ambiguity by comparing the largest and second
largest NCC values. c; and ¢ are defined as above. Note
that co is not required to be a local maximum [16].

CPKRN (’i, ]) = 3

Distance from the Image Border (Cpp) Cpp measures
the distance in pixels from the nearest image border [34]. It
is based on the assumption that pixels near the borders are
likely to be outside the field of view of the other camera and
that causes mismatches. We use a single feature for all four
image borders following [34].

Left Right Consistency (Crrc) A common technique
for verifying a disparity assignment is to test whether the
left-to-right and the right-to-left disparity map contain con-
sistent disparities for the pixel in question. Instead of defin-
ing LRC as a binary feature, we set it equal to the absolute
value of the difference between the left and right dispar-
ity maps. By not converting C' rc to a binary feature, we
allow the classifier to separate the pixels internally into sub-
classes of pixels that are very likely to have correct dispari-
ties, somewhat likely to have correct disparities, etc.

CLRC(imj):|DSP(iﬂj)_DSP7RL(i_D(i’j)7j)| (4)

where Dgp is the left-to-right superpixel-based disparity
map and Dgp ry, is the right-to-left superpixel disparity
map. The latter is computed by segmenting the right-to-left
image and fitting planes to its disparity map. The intuition is
that if disparities in an image region are reliable, the planes
fitted on the left and right disparity map should assign simi-
lar disparities to corresponding pixels despite differences in
the segmentation of the two images. Note that consistency
between the segmentations of the left and right image is not
required since C'ppc is computed per pixel.

Inlier Ratio (C7y) This feature measures the fraction of
inliers among the pixels of a superpixel during plane fitting.
The intuition behind Cy is that, if the best fitting plane to a
superpixel is supported by a small fraction of the disparities
generated by NCC, disparity estimation is likely noisy for
that superpixel. Therefore many of its constituent pixels
may have wrong disparity assignments.

Slant (Cs;,) Binocular stereo is biased towards estimat-
ing fronto-parallel planes more precisely due to reduced
perspective distortion compared to slanted planes. We cap-
ture this using the cosine of the angle between the normal
of the fitted plane and the optical axis of the camera.

Neighborhood Consistency (Cn¢) Cn¢ measures how
consistent the plane of a superpixel is with those of neigh-
boring superpixels. We first define a measure of similarity
between two neighboring superpixels S; and S; with nor-
mals 77; and 77; and mean disparities y; and 15, respectively.
We define the similarity between S; and S; as

cos(|7; - 7i5])
Sij = )
T max{|p — pyl 1}

The max() operation in the denominator is a safeguard
against division by zero or by a small number. It effec-
tively treats all differences of mean disparity between 0 and
1 equally, since they indicate smooth continuation between
the two superpixels.

Having defined a similarity measure for two superpixels,
we need to combine the similarities between the current su-
perpixel and all its neighboring superpixels to generate the
neighbor consistency feature Cy¢. This is accomplished
by taking the weighted average of the pairwise similarities
between the current superpixel and its neighbors. The simi-
larities are weighted by the length of the boundary between
each pair of superpixels

> sijhij
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where N; is the neighborhood of S;, b;; is the length of the

boundary between S; and S; in pixels and B; is the total

length of .S;’s boundary in pixels. We use four-connected
neighborhoods throughout these computations.

(6)

Cnc =



6. Confidence Estimation

We have selected a random forest [7, 9] as our classi-
fier. Random forest classifiers are ensembles of classifi-
cation trees that have gained popularity due to their high
accuracy and ability to generalize. They are well suited for
inhomogeneous feature spaces, such as ours because, unlike
a Support Vector Machine (SVM) for example, they do not
require a distance metric in feature space. During training
we generate decisions trees that partition the feature space
separating the training data according to their labels, which
are correct and incorrect disparities, in our case.

We begin by splitting the data into a training and a test
set. The latter is never observed by the classifier during
training. Occluded pixels are not used for training. After
the feature vectors have been computed, image neighbor-
hoods and superpixel membership information is no longer
necessary. The training set can be viewed as a collection
of pixels with assigned disparities, feature vectors and cor-
rect/incorrect labels coming from all stereo pairs. The la-
bel of a pixel is correct if its estimated disparity in Dgp
is within the specified tolerance from the ground truth, oth-
erwise the pixel is labeled as incorrect. During training, a
new training set is created for each tree by bootstrapping
from the original training set. Each node performs ran-
domly generated tests on random subsets of the full attribute
set. The attribute and threshold value that best separate the
input samples are selected and the data are divided to the
node’s children, which are subdivided recursively.

Once the forest has been trained, the pixels of the test set
with their assigned disparities and feature vectors are pre-
sented to each trained tree in the forest. The current pixel
is run down each tree and decisions are made at every node
based on the optimal splits computed during training. This
process continues until a terminal node is reached and a de-
cision is made about the current pixel’s class label. The pre-
dictions of all trees for a pixel are averaged and the average
is the confidence (prediction score) for that pixel.

7. Experimental Results

In this section, we present quantitative and qualitative
results using the publicly available stereo dataset from the
KITTI Vision Benchmark Suite [12]. This dataset contains
stereo pairs taken by a binocular camera rig mounted on
a vehicle driving in an urban environment. The resolution
of the images is approximately 1241 x 376, and valid dis-
parities range from O to 256. We use only the training set
as it allows us to freely experiment and measure the accu-
racy of different algorithms and variations. In accordance
with the protocol of the dataset, disparity assignments are
considered correct if they are within three levels from the
ground truth, which has been acquired by a LIDAR sensor.
Approximately a third of the pixels have ground truth dis-

parity values associated with them. We report results on
non-occluded pixels throughout.

We divide the training set of the KITTI stereo benchmark
so that we use the first 97 stereo pairs as training data and
the following 97 stereo pairs as test data. We use the terms
“training set”” and “test set” to refer to this split of the bench-
mark throughout the paper. The other parameters of the al-
gorithm were set to the following values for all experiments
reported in this section: the window size for the initial NCC
matching was 9 x 9; the S parameter that controls the size
of the SLIC superpixels was set to 20, resulting in super-
pixels comprising approximately 400 pixels each; the SLIC
regularization parameter was set to 1000 favoring compact
superpixels; and 80 iterations of RANSAC are performed to
fit a plane to each superpixel. The NCC window size is a
reasonable choice, but it has not been optimized to achieve
high accuracy. We used the implementation of the SLIC
algorithm provided by VLFEAT [35].

After superpixel fitting, approximately 27% of the pixels
are assigned disparities that differ by more than three lev-
els from their initial values. 16.5% of pixels with available
ground truth disparity change status: 10.6% that were pre-
viously wrong are assigned correct disparities, while 5.9%
that were correct are assigned incorrect disparities.

We train two random forest classifiers: one using all fea-
tures that will be referred to as RF-8 throughout and one
using the first five features of Section 5. The latter will be
referred to as RF-5 and serves as a baseline for evaluating
the contribution of the paper over [14, 34, 29]. The param-
eters of the two random forests were chosen on a separate
validation set. Both converged to the same settings: 100
trees with a minimum leaf size of 500 pixels. Both operate
on the superpixel-based disparity maps for fairness, since
the WTA disparity maps are noisier. We estimate feature
importance by measuring the increase in prediction error on
a validation set if the values of that feature were permuted
[7]. For RF-8, the most important feature is LRC, followed
by slant and neighborhood consistency, while the rest of the
features form a third cluster in terms of importance.

Table 1 shows the confusion matrices of the two classi-
fiers. A disparity is considered correct if the classifier’s pre-
diction for it is above 0.5. Leveraging superpixel-based fea-
tures, RF-8 reaches 94.9% in classification accuracy, 97.5%
in classifying pixels with correct disparity and 85% in clas-
sifying pixels with incorrect disparity. The same statistics
for RF-5 are 91.9%, 93.8% and 84.7% respectively.

We also evaluate confidence methods according to their
ability to rank disparity assignments from most confident
to least confident using receiver operating characteristic
(ROC) curves of error rate as a function of disparity map
density as in [16]. We rank disparities in decreasing order
of confidence to produce quasi-dense disparity maps of in-
creasing density by selecting pixels according to rank. That



is, we produce a disparity map of 5% density and measure
its error rate, then a disparity map of 10% density, etc. (The
error rates are computed using only pixels that have been
selected, not the total number of image pixels.) The area
under the curve (AUC) quantifies the ability of a confidence
measure to rank correct disparities ahead of wrong ones.
Better confidence measures result in lower AUC values.

Figure 1 shows ROC curves for the three confidence
measures on four stereo pairs of the test set. The three mea-
sures are: Left Right Consistency (LRC), Inlier Ratio (IN)
and the output of RF-8. We use the superpixel-based dis-
parity maps as inputs for this experiment. LRC and IN can
be directly used as confidence methods by sorting pixels in
decreasing order of LRC or increasing order of IN, respec-
tively. In the case of the latter, all pixels of a superpixel
are simultaneously selected for inclusion in the quasi-dense
disparity maps since their confidences are equal.

Table 2 summarizes the performance of individual fea-
tures and the two classifiers according to AUC on the
superpixel-based disparity maps Dgp. The AUC values are
averaged over the 97 stereo pairs of the test set. The last row
of Table 2 shows the optimal AUC which can be achieved
by selecting all correct disparities before starting to fill the
quasi-dense disparity maps with the remaining wrong ones.
As shown in [16], the optimal AUC is given by

1 —_ j—
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where ¢ is the error rate and d,,, is the density of the dispar-
ity map over which we integrate. The confidence measure
generated by RF-8 is clearly superior to the best performing
individual features that are used as inputs to the classifier,
as well as to that generated by RF-5. Individual features or
a classifier without the use of superpixel-based features fall
short in discriminating correct from wrong disparities. Fig-
ure 2 shows the individual AUC values for all stereo pairs
obtained by individual features and the classifiers.

RF-5 RF-8
GT Correct | Incorrect || Correct | Incorrect
Correct 74.30% 4.93% || 77.23% 2.00%
Incorrect 3.17% 17.59% 3.12% 17.64%

Table 1. Confusion matrices for the two random forests on pre-
dicting correct and incorrect disparity assignments on all non-
occluded pixels with ground truth over the 97 stereo pairs. Super-
pixel disparity maps were used and RF predictions were thresh-
olded at 0.5 to make decisions. The error rate averaged over all
pixels is 20.76%. Rows correspond to the ground truth labels,
columns 2-3 to the predicted labels by RF-5 and columns 4-5 to
the predicted labels by RF-8. Statistics here are computed at the
pixel level ignoring the disparity map each pixel belongs to. The
overall accuracy of the RF-8 classifier is 94.9%.
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Figure 1. ROC curves for LRC (blue), IN (green) and the RF-8
classifier (red) for frames 110, 113, 134 and 136 (from top to bot-
tom) of the test set. The z-axis is disparity map density and the
y-axis is the error rate. In all cases, the RF-8 classifier achieves
the minimum area under the curve (AUC). All curves reach the
same point at full density since they all select all pixels, and all
errors, to achieve full density.

8. Post-processing

As an application of the proposed confidence measure,
we present a post-processing technique that significantly
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Figure 2. AUC values for all stereo pairs in the test set obtained according to LRC, IN, RF-5 and RF-8. The disparity maps have been
sorted according to optimal AUC (dotted curve) to aid visualization. The RF-8 predictions (solid red curve) are more accurate than all

other methods on every single input.

Confidence | Average AUC
LRC 0.0583
IN 0.0554
RF-5 0.0474
RF-8 0.0370
Optimal 0.0277

Table 2. Average AUC according to the most effective individual
features (LRC, IN) and the two RFs. The optimal AUC is also
shown.

reduces the errors in the disparity maps. Post-processing
entails sparsification that removes wrong disparities from
the input disparity map and densification that fills in the re-
moved disparities, followed by filtering to remove any re-
maining noise.

In the sparsification step, we learn a threshold on confi-
dence that is used to reject unreliable disparity values. As
before, the test set remains sequestered during this step. The
threshold is learned so that it results in the highest accuracy
after densification. In other words, it is the threshold that
achieves the best trade-off between error suppression and
preserving enough disparity values to guide the next step.
The challenge lies in that the disparity maps have different
error rates and therefore each of them requires more or less
aggressive post-processing. Disparity maps that are already
accurate, for example, may suffer a loss in accuracy if too
many of the correct disparities are rejected and replaced by
different values. In this section we compare two techniques
for sparsification:

e Fixed sparsification in which we reject a constant frac-

tion of the disparities in each disparity map. For the
results below we reject 20% of the input disparities.

e Adaptive sparsification in which we learn a threshold
on the RF prediction and reject all disparity values with
confidence below that threshold. This results in dif-
ferent degrees of sparsification for each disparity map.
For the results below, we use 0.67 as the threshold.

Both threshold values are learned on parts of the training set
keeping the test set completely isolated.

After sparsification, we obtain a new dense disparity
map by propagating disparity values as in [4]. For each
pixel without a final disparity value, we look for the nearest
matched pixel to its left, since occluding surfaces are to the
right in the left image, and copy its disparity. If there is no
such pixel to the left, as is the case for pixels near the left
border of the image, we search to the right. Finally, all dis-
parities, existing and filled in, are iteratively filtered with a
3 x 13 median filter. We have found that 50 iterations result
in lower error rates according to the KITTI evaluation proto-
col, at the expense of rather smooth-looking disparity maps.
Table 3 shows the average error rate of the WTA disparity
maps using NCC, the superpixel-based disparity maps, as
well as those generated by post-processing. Following the
specification of [12], a disparity is considered wrong if it is
off by more than three pixels from the ground truth.

The conclusions from Table 3 are:

e The improvement due to post-processing of the
superpixel-based disparity maps is significantly larger
than the improvement due to fitting superpixels. We
attribute this to the effectiveness of our confidence es-




(b) Input image and disparity maps for frame 172
Figure 3. From top to bottom for each example: left input image,
WTA disparity map, superpixel disparity map, post-processed dis-
parity map using the adaptive threshold technique.

timator to reject most of the wrong disparities, which
are then replaced by more accurate ones.

e Adaptive sparsification reduces the error rate by 11.7%
compared to 5.9% achieved by fixed sparsification.
This is a remarkable difference.

Qualitative results are shown in Fig. 3 for two stereo
pairs of the test set. The error rates for the three dispar-
ity maps for stereo pair 126 are: 21.6% for the WTA dis-
parity map, 16.9% for the superpixel-based one and 8.4%
after post-processing. The same rates for frame 172 are:
25.3%, 18.1% and 9%, respectively. The loss of sharpness
at surface boundaries reduces the visual quality of the post-
processed disparity maps, but also reduces their error rates.

Algorithm Average Error Rate
WTA (NCC) 0.259
Superpixel 0.212
Post-proc. fixed 0.153
Post-proc. adaptive 0.095

Table 3. Error rates for WTA, superpixel-based and post-processed
disparity maps. The second column shows the average error rate
per disparity map on the non-occluded pixels of the 97 test stereo
pairs.

9. Conclusions

We have presented a general approach for estimating
the confidence of disparity assignments in superpixel-based
stereo matching. It relies on a classifier that combines fea-
tures derived from individual pixels, as well as superpix-
els, to predict the confidence of each pixel in a disparity
map. In addition, the superpixel-based features are novel
and should be considered as contributions of the paper. On a
large benchmark with ground truth, we have shown that our
new confidence measure is superior to baseline techniques
according to the AUC criterion (Table 2).

We have also shown an application that benefits from ac-
curate confidence estimation. By being able to identify and
reject the least reliable disparities, we can post-process the
disparity maps to significantly improve their accuracy.

This work, which is the first that addresses confidence
estimation for stereo matching using superpixels, opens
many directions for future research. We plan to investigate
the use of multiple overlapping segmentations as in [5] and
will attempt to fit superpixels considering both intensity and
disparity as in [38].
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