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Recent research has focused on systems for obtaining

automatic 3 D reconstructions of urban env ironments from

v ideo acq uired at street lev el. T hese systems record enor-

mous amounts of v ideo; therefore a k ey comp onent is a

stereo matcher w hich can p rocess this data at sp eeds com-

p arable to the recording frame rate. F urthermore, urban

env ironments are uniq ue in that they ex hibit mostly p lanar

surfaces. T hese surfaces, w hich are often imaged at obliq ue

angles, p ose a challenge for many w indow -based stereo

matchers w hich suffer in the p resence of slanted surfaces.

W e p resent a multi- v iew p lane-sw eep -based stereo algo-

rithm w hich correctly handles slanted surfaces and runs in

real-time using the grap hics p rocessing unit ( G P U ) . O ur

algorithm consists of ( 1 ) identifying the scene’s p rincip le

p lane orientations, ( 2 ) estimating dep th by p erforming a

p lane-sw eep for each direction, ( 3 ) combining the results

of each sw eep . T he latter can op tionally be p erformed us-

ing grap h cuts. A dditionally, by incorp orating p riors on the

locations of p lanes in the scene, w e can increase the q uality

of the reconstruction and reduce comp utation time, esp e-

cially for uniform tex tureless surfaces. W e demonstrate our

algorithm on a v ariety of scenes and show the imp rov ed ac-

curacy obtained by accounting for slanted surfaces.

1 . I ntrod uction

R e c o n s truc tio n s o f b uildin g s in 3 D fro m ae rial o r s ate l-

lite im ag e r y h as lo n g b e e n a to pic o f r e s e ar c h in c o m pute r

vis io n an d ph o to g ram m e tr y . T h e s uc c e s s o f s uc h r e s e ar c h

c an b e s e e n in applic atio n s s uc h as Go o g le E ar th an d M i-

c r o s o f t V ir tual E arth , w h ic h n o w o ff e r 3 D vis ualiz atio n s o f

s e ve ral c itie s . H o w e ve r, s uc h vis ualiz atio n s lac k g r o un d-

le ve l r e alis m , due m o s tly to th e po in t o f vie w o f th e im -

ag e r y . A diff e r e n t appro ac h is to g e n e rate vis ualiz atio n s in

th e f o r m o f pan o ram as [ 1 7 , 1 3 ] w h ic h r e q uir e le s s data to

b e c o n s truc te d b ut als o lim it th e us e r ’s ab ility to f r e e ly n av-

ig ate th e e n vir o n m e n t. R e c e n t r e s e ar c h h as f o c us e d o n s y s -

te m s f o r o b tain in g auto m atic 3 D re c o n s truc tio n s o f urb an

e n vir o n m e n ts f r o m vide o ac q uir e d at s tr e e t le ve l [ 1 6 , 1 4 , 7 ] .

U r b an e n vir o n m e n ts ar e un iq ue in th at th e y e x h ib it

m o s tly plan ar s urfac e s . A ty pic al im ag e , f o r e x am ple , m ay

c o n tain a g r o un d plan e , an d m ultiple fac ade plan e s in te r-

s e c tin g at r ig h t an g le s . M an y s y s te m s aim to r e c o n s truc t

s uc h im ag e r y us in g s pars e te c h n iq ue s , w h ic h e x am in e po in t

o r lin e c o r r e s po n de n c e s to de duc e th e lo c atio n o f th e plan e s

in th e s c e n e [ 1 8 , 7 ] . S pe c ial m e as ure s ar e th e n tak e n to ac -

c o un t f o r tr e e s , c ar s , o r o th e r urb an c lutte r w h ic h do e s n o t fi t

th e plan ar m o de l. A lte r n ative ly , appro ac h e s s uc h as [ 1 , 1 2 ]

e m plo y g e n e ral 3 D fro m vide o te c h n iq ue s , us in g s te r e o to

pro vide a de n s e de pth e s tim atio n , o r de pth m ap, f o r e ve r y

f ram e o f th e vide o . I n th is pape r, w e favo r a h y b r id ap-

pro ac h w h e r e w e s pe c ializ e o ur alg o r ith m to b e partic ularly

e ffi c ie n t o n ty pic al urb an s c e n e s , w h ile pre s e rvin g th e ab il-

ity to pe r f o r m r e c o n s truc tio n s o f g e n e ral 3 D s h ape .

Due to th e e n o r m o us am o un t o f vide o data re q uir e d to

r e c o n s truc t e n tir e c itie s , th e s te r e o m atc h e r n e e ds to o pe rate

at s pe e ds c o m parab le to th e r e c o rdin g rate . F urth e r m o r e ,

th e g r o un d an d fac ade s in urb an e n vir o n m e n ts ar e o f te n im -

ag e d at o b liq ue an g le s . T h is po s e s a pro b le m f o r m an y

w in do w - b as e d s te r e o alg o r ith m s , w h ic h ty pic ally as s um e

s urfac e s ar e paralle l to th e im ag e plan e ( f r o n to -paralle l) .

W e pre s e n t a m ulti-vie w plan e - s w e e p-b as e d s te r e o alg o -

r ith m w h ic h c o r r e c tly h an dle s s lan te d s urfac e s an d run s in

r e al- tim e us in g th e g raph ic s pro c e s s in g un it (GP U ) . P lan e -

s w e e pin g is ide al f o r e ffi c ie n t im ple m e n tatio n due to its

s im plic ity an d paralle liz ab ility [ 6 , 1 9 ] . T h e prim ary o pe r-

atio n o f th e alg o r ith m , r e n de rin g im ag e s o n to plan e s , is an

o pe ratio n at w h ic h th e GP U is partic ularly ade pt.

L ik e o th e r w in do w - b as e d s te r e o alg o r ith m s , plan e -

s w e e pin g ty pic ally as s um e s s urfac e s ar e f r o n to -paralle l.

H o w e ve r, s lan te d s urfac e s c an b e c o r r e c tly h an dle d b y

s w e e pin g a plan e w h ic h h as a m atc h in g s urfac e n o r m al

th r o ug h s pac e . I n o ur appro ac h , w e pe r f o r m m ultiple plan e -

s w e e ps , w h e r e e ac h plan e - s w e e p is in te n de d to r e c o n s truc t

plan ar s urfac e s h avin g a partic ular n o r m al. O ur alg o r ith m

c o n s is ts o f th r e e s te ps . F ir s t, w e ide n tif y th e s urfac e n o r-

m als o f th e g r o un d an d fac ade plan e s b y an aly s is o f 3 D

po in ts o b tain e d th r o ug h s pars e s truc ture f r o m m o tio n . S e c -

o n d, w e pe r f o r m a plan e - s w e e p fo r e ac h s urfac e n o r m al, r e -



sulting in multiple depth candidates for each pixel in the fi-

nal depthmap. Third, we select the best depth/normal com-

bination for each pixel using a simple best-cost approach

or, optionally, a more advanced three-label graph cut which

takes smoothness and integrability into account.

Additionally, we incorporate priors obtained from sparse

point correspondences into our depth estimation. This aids

in areas with little texture and produces a smoother re-

sult. We can also significantly reduce computation time by

sweeping planes only in those regions with high prior prob-

ability according to the sparse data. Finally, we evaluate our

algorithm on several scenes, and demonstrate the accuracy

gained over the basic plane-sweeping algorithm.

2. Previous Work

The plane-sweeping algorithm was introduced by

Collins [6] as a way to perform matching across multiple

images simultaneously without the need for rectification.

The approach was originally targeted at the reconstruction

of sparse features. Yang and Pollefeys [19] implemented

the plane-sweeping stereo algorithm on the GPU, achieving

real-time dense depth estimation. Although plane-sweeping

is a simple approach, it produces good results for suffi-

ciently textured, unoccluded surfaces. More sophisticated

algorithms based on graph cuts [10 ] and belief propaga-

tion [15 ] offer improved results for textureless areas and

occlusion handling, but at a heavy performance penalty.

An approach for reconstructing buildings was described

by Werner and Z isserman [18] who use sparse point and line

correspondences to discover the ground and facade planes.

When there is insufficient information to locate a plane,

they sweep a hypothesized plane through space to deter-

mine the position which best matches the images. We also

use sparse features to obtain information about the scene’s

planar structure. However, rather than estimating the loca-

tion of a sparse set of planes, we seek to compute a depth

estimate for every pixel in the reference view. Our algo-

rithm is therefore able to reconstruct objects such as trees

and cars that do not fit the planar model.

Several stereo algorithms explicitly handle slanted sur-

faces. B urt et al. [5 ] advocates pre-warping the images

to a reference plane, such as the ground, before perform-

ing binocular stereo. In this way, they achieve greater ac-

curacy as well faster computation due to the reduced dis-

parity range. Our approach essentially achieves this pre-

warping by adjusting our sweeping plane to be parallel to

the expected planar surfaces in the scene. B irchfield and

Tomasi [2] cast the problem of stereo as image segmenta-

tion followed by the estimation of affine transformations be-

tween corresponding segments. Processing iterates between

segmentation and affine parameter estimation for each seg-

ment using graph cuts [4]. The energy function does not fa-

vor constant disparity surfaces, but accounts for affine warp-

ing and thus slanted surfaces. Ogale and Aloimonos [11]

point out that if scene surfaces exhibit horizontal slant, then

M pixels on an epipolar line necessarily correspond to N

pixels in the other image. Therefore, requiring a one-to-

one correspondence per pixel results in labeling |M − N |
pixels as occluded. These pixels that are interleaved with

matched pixels, however, are visible in both images, just not

at integer coordinate positions. An algorithm based on dy-

namic programming is proposed to obtain correspondences

between segments of scanlines rather than pixels.

Z abulis and Daniilidis [20 ] explicitly addressed non-

fronto-parallel surfaces by performing correlation on 3D

planes instead of the image plane. Thus, correlation kernels

can be aligned with the scene surfaces but the dimension-

ality of the search space is increased from 1D (disparity)

to 3D (disparity and two rotation angles). In this paper we

present methods for aligning the correlation windows with

the surfaces without exhaustive search for urban scenes.

Z abulis et al. [21] replaced the planes in space sweeping

stereo with spheres. They argue that correlation on spher-

ical sectors along the direction of camera rays is geomet-

rically more accurate since the surfaces where correlation

takes place are always orthogonal to the viewing ray.

Recently, Cornelis et al. [7] presented a system for real-

time city modeling that employs a very simple model for the

geometry of the world. Specifically, they assume that the

scenes consist of three ruled surfaces: the ground and two

facades orthogonal to it. A stereo algorithm that matches

vertical lines across two calibrated cameras is used to re-

construct the facades, while objects that are not consistent

with the facades or the ground are suppressed. Our algo-

rithm on the other hand is able to handle arbitrary 3D shape.

We take advantage of urban scenes, yielding higher quality

and speed, but will perform no worse on general scenes.

3 . Plane-sweeping Stereo

In this section we outline the basic plane-sweeping algo-

rithm. For more details we refer readers to [19]. Plane-

sweeping stereo tests a family of plane hypotheses and

records for each pixel in a reference view the best plane as

scored by some dissimilarity measure. The algorithm works

with any number of cameras, and images need not be recti-

fied. The inputs to the algorithm are M 3D-planes for the

depth tests, N + 1 images at different camera positions (we

assume images have been corrected for radial distortion),

and their respective camera projection matrices Pk:

Pk = Kk[RT
k − RT

k Ck] with k = 1, . . . ,N, (1)

where Kk is the camera calibration matrix, and Rk, Ck are

the rotation and translation of camera Pk with respect to the

reference camera Pr e f . The reference camera is assumed

to be the origin of the coordinate system. Accordingly its



projection matrix is Pref = Kref

[

I3×3 0
]

. The family

of depth planes Πm with m = 1, . . . , M is defined in the

coordinate frame of the reference view by:

Πm =
[

nT
m −dm

]

for m = 1, . . . , M (2)

where nm is the unit length normal of the plane and dm

is the distance of the plane to the origin namely the cen-

ter of the reference camera. (For a fronto-parallel sweep,

nT
m = [ 0 0 1 ].) The depths dm of the planes Πm

fall within the interval [dn ea r, dfa r]. It is best to space the

planes to account for the sampling (pixels) in the images.

This is discussed in detail in Section 4.2.

In order to test the plane hypothesis Πm for a given pixel

(x, y) in the reference view Iref , the pixel is projected into

the other images k = 1, . . . , N . The mapping from the

image plane of the reference camera Pref to the image plane

of the camera Pk is a planar mapping, and can therefore be

described by the homography HΠm,P k
induced by the plane

Πm. This homography HΠm,P k
is:

HΠm,P k
= Kk

(

RT
k +

RT
k Cknm

T

dm

)

K−1
ref . (3)

The location (xk, yk) in image Ik of the mapped pixel (x, y)
of the reference view is computed by:

[

x̃ ỹ w̃
]T

= HΠm,P k

[

x y 1
]T

xk = x̃/ w̃, yk = ỹ/ w̃. (4)

If the plane intersects the surface projected to pixel (x, y) in

the reference view, the colors of Ik(xk, yk) and Iref (x, y)
should be similar assuming Lambertian surfaces.

We use the absolute difference of intensities as the dis-

similarity measure. The measurement at one pixel is in gen-

eral very sensitive to noise. To reduce the sensitivity several

measurements in the neighborhood of the pixel are com-

bined. Typically this is done by summing the measurements

in a rectangular window W centered at the pixel (x, y). A

cost metric can then be defined as a function of the pixel

location (x, y) in the reference view, and the plane Πm by

C(x, y, Πk) =
N−1
∑

k= 0

∑

(i,j )∈W

|Iref (x − i, y − j)

− βref
k I?

k(x − i, y − j)|, (5)

where I?
k is the image Ik warped by the homography

HΠm,P k
and βref

k corresponds to the gain ratio between

image k and the reference. The ability to compensate for

gain changes is essential to handle outdoor scenes where the

brightness range often far exceeds the dynamic range of the

camera. In our GPU implementation the gain compensation

does not have a measurable effect on speed.

Figure 1. Implications of cost aggregation over a window. Left:

Slanted surfaces with fronto-parallel plane-sweeping. Not all

points over the window are in correspondence. Right: Surface-

aligned sweeping plane to handle slanted surfaces correctly.

3.1. Extracting the Depthmap from the Cost

Once the cost function for all pixels has been computed

the depth map may be extracted. The first step is to select

the best plane at each pixel in the reference view. This may

simply be the plane of minimum cost, also called best-cost

or winner-takes-all, defined as follows

Π̃(x, y) = a rg m in
Πm

C(x, y, Πm). (6)

For a given plane Πm at pixel (x, y), the depth can be com-

puted by finding the intersection of Πm and the ray through

the pixel’s center. This is given by

Zm(x, y) =
−dm

[

x y 1
]

K−T
ref nm

. (7)

More sophisticated approaches based on global opti-

mization select Π̃ that minimizes C but also enforces

smoothness between neighboring pixels. Such methods

give improved results but are computationally expensive.

We adopt a computationally less expensive solution pro-

posed by Kang et al. [9]. For each pixel we compute the

cost for each plane using the left and right subset of the

cameras and select the minimum. This scheme is very ef-

fective against occlusions, since typically the visibility of a

pixel changes at most once in a sequence of images.

3.2. Implications of Cost Aggregation

To minimize C at a given pixel (x, y), the plane Πm =
[nT

m dm] should intersect not only the surface imaged at

(x, y), but at all the pixels in the neighborhood window W
centered at (x, y) as well. Assuming a locally planar sur-

face, this is accomplished when nm aligns with the surface

normal. Misalignment of nm and the surface normal poten-

tially leads to errors in the computed depth map, depending

on the size of the window, the degree of misalignment, and

the surface texture (see Figure 1).

Plane-sweeping stereo, as well as many other stereo

algorithms, traditionally approximate the surfaces in the

world by assuming that they are piece-wise fronto-parallel.

However, many environments, such as cities, contain sur-

faces which can appear at highly oblique angles. For these



surfaces the neighboring pixels cannot be mapped with the

same fronto-parallel plane. Accordingly, the cost aggrega-

tion within a window around the pixel of interest is per-

turbed by artifacts due to perspective distortion. To over-

come this limitation our approach samples not only the

depth of the plane hypothesis it also samples their orien-

tation. This is explained in more detail in the Section 4.

4. Multiple Sweeping Directions

We extend plane-sweeping stereo to account for non-

fronto-parallel surfaces in the scene. A trivial extension

would be to sample the hemisphere of all visible surface

normals and sweep planes in each direction. This would

lead to a large number of plane hypotheses that need to be

tested, as in [20]. We propose a more efficient approach to

keep the algorithm in real-time that performs multiple plane

sweeps where the sweeping directions are aligned to the ex-

pected surface normals of the scene. This results in multiple

depthmaps which we then combine using best-cost or, op-

tionally, a graph cut method.

4.1. Identify ing Sweeping Directions

Instead of exhaustively sampling the set of potential sur-

face orientations, we can identify a much smaller set of

likely surface normals either by application-specific heuris-

tics or by examining the scene’s sparse structure.

In many applications, images are captured by video or

still cameras which are either hand-held or mounted on a

land-based vehicle. Camera motion can be recovered either

by structure from motion or from GPS/INS sensors. The

motion of such cameras is generally constrained to be par-

allel to the ground plane, especially for vehicle-mounted,

but typically also for hand-held cameras.

Additionally, a scene’s planar structure can be deter-

mined by sparse features such as lines and points. This is

especially true in urban environments where by examining

lines in a single image, vanishing points can be recovered

which in turn can be combined to give estimates of plane

normals. In applications that use structure from motion, 3D

point or line features are recovered as well as the camera

poses. These features are available, but many algorithms do

not utilize them. Many techniques have been explored to re-

cover planar surfaces from point and line correspondences

and vanishing points [18, 3, 14, 8].

We present an effective technique for recovering planar

structure in urban environments using 3D point features ob-

tained from structure from motion. We first find the vertical

direction or gravity vector. This is either given by an INS

system or can be computed from vanishing points. Since

most facades are vertical, the vanishing point correspond-

ing to the gravity vector is quite prominent in urban scenes.

By assuming the ground plane has zero slope in the direc-

tion perpendicular to the computed camera motion, we can

obtain a good estimate for the ground plane normal as

G =
(V × M) × M

‖(V × M) × M‖
(8)

where V is the gravity vector, and M is the camera motion

direction. Note that obtaining the ground normal is particu-

larly important, since the ground is imaged at a small angle.

To compute the facade normals, we assume that they are

perpendicular to the gravity vector, and are therefore deter-

mined by a rotation about the gravity vector. By assuming

the facades are orthogonal to each other, only one rotation

determines the facade normals. We recover the remaining

rotation of the facades as follows. We first compute the

orthogonal projection of each 3D point in the direction of

gravity to obtain a set of 2D points. Note that 3D points

on a common vertical facade will project to a line. We then

evenly sample the space of in plane rotations between 0 and

90 degrees, and then test each rotation. For each rotation

R =
[

u v
]T

, we rotate the set of 2D points, and con-

struct two histograms Hu and Hv . Each bin in Hu (resp.

Hv) counts the number of points with a similar u (resp.

v) component. We then compute the entropy of each his-

togram, and finally select the rotation which has the lowest

sum of entropies. As shown in Figure 2, entropy will be

minimized when points are aligned in directions u and v.

4.2. Plane Selection

Once the sweeping directions have been computed, we

generate a family of planes for each. Referring to equa-

tion (2), each family is parameterized by the distance of the

plane to the origin dm. The range [dnear, dfar] can be deter-

mined either by examining the points obtained from struc-

ture from motion or by applying useful heuristics. For ex-

ample, in outdoor environments, it is usually not useful for

the ground plane family to extend above the camera center.

The spacing of the planes in the range can be uniform, as

in [20]. However, it is best to place the planes to account

(a) Arbitrary rotation (b) Minimum entropy
Figure 2. Minimum entropy direction optimization. The points on

the facades are obtained from structure from motion and projected

in the direction of gravity. The points are then rotated into the basis

formed by u and v and histograms are generated. The histograms

of (a) have more entropy than those of (b). (b) corresponds to the

correct surface normals.



for image sampling (pixels). Ideally, when comparing the

respective image warpings induced by consecutive planes,

the amount of pixel motion should be less than or equal to

one. This is particularly important when matching surfaces

that exhibit high-frequency texture.

We define the disparity change between two planes Πm

and Πm+1 to be the maximum displacement over all pixels

in all images.

∆D(Πm, Πm+1) =

max
k=1,...,N

max
(x ,y )∈Ik

√

(xm
k − xm+1

k )2 + (ym
k − ym+1

k )2 (9)

where (xm
k , ym

k ) (resp. (xm+1
k , ym+1

k )) are obtained by ap-

plying the homography HΠm,Pk
(resp. HΠm+1,Pk

) as in

equation (4). To avoid orientation inversions we avoid using

planes that intersect the convex hull of the camera centers.

In general it is then sufficient to measure the displacements

only in the cameras most distant from the reference view.

Furthermore it is not necessary to compute the displacement

for every pixel. The greatest displacement will occur at the

boundaries of the image. Thus, to compute the disparity,

we warp the polygon defined by the boundaries of image Ik

into the reference view by applying the planar homography

HΠm,Pk
. We then clip the polygon in the reference view,

and compute the displacement of the vertices of the clipped

polygon. As only planes that do not intersect the convex

hull of the camera center are used, the polygon warped with

HΠm+1,Pk
H−1

Πm,Pk
is guaranteed to remain convex, and thus

the maximal disparity is bound by the maximum displace-

ment of its vertices. The family of planes is then constructed

so that the disparity change of consecutive planes is less

than or equal to one.

4.3. Incorporating Plane Priors

The minimum-entropy histograms computed in Sec-

tion 4.1 also indicate the location of the facades. They can

be used as a prior in a Bayesian formulation when selecting

Π̃. The posterior probability of a plane Πm at pixel (x, y) is

P (Πm|C(x, y)) =
P (C(x, y)|Πm)P (Πm)

P (C(x, y))
(10)

where P (Πm) is the prior probability of the surface being

located at plane Πm, and P (C(x, y)|Πm) indicates the like-

lihood of the correct plane having matching cost C(x, y).
P (C(x, y)) is the marginal likelihood of the cost. The prior

is obtained by sampling the normalized histogram at the lo-

cation of the plane. For a plane Πm chosen from sweeping

direction u, the location in the histogram Hu is given by the

depth component of the plane dm. The prior is

P (Πm) =
Hu(dm)
∑

i Hu(i)
. (11)

The cost likelihood depends on image noise, camera pose

error, alignment of the plane normal nm and the surface

normal, as well as on the surface texture. This is extremely

difficult to model correctly. Instead we choose an exponen-

tial distribution:

P (C(x, y)|Πm) = e
−C(x , y )

σ (12)

where σ is determined empirically. The exponential is self-

similar, and so it makes no assumptions about the minimum

matching cost, which is often difficult to predetermine.

Since we are only interested in the maximum likelihood

solution we ignore P (C(x, y)) and modify the plane selec-

tion equation (6) as follows:

Π̃(x, y) = argmax
Πm

e
−C(x , y )

σ P (Πm). (13)

Maximizing this likelihood is equivalent to minimizing the

negative logarithm of the likelihood. Therefore

Π̃(x, y) = argmin
Πm

− lo g e
−C(x , y )

σ P (Πm)

= argmin
Πm

{C(x, y) − σ lo g P (Πm)}. (14)

Surfaces with little or no texture will exhibit a low

matching cost over a range of planes, the minimum of which

may be determined more by noise than by true correspon-

dence. The prior distribution for the depth P (Πm) helps

to eliminate such ambiguities and produce a smoother sur-

face. The implementation of equation (14) comes at little

additional cost and contributes significantly to the results.

We can also use the prior to significantly reduce our com-

putation time by not testing plane hypotheses with a low

prior probability. Typically a scene requires hundreds of

planes for each sweeping direction to adequately sample the

disparity range. While our algorithm is able to compute this

many plane hypotheses at several Hz, we have found that we

can obtain quality reconstructions almost an order of mag-

nitude faster by testing only a few dozen of planes. The

selected planes are those with the highest prior probability.

This is only effective by sweeping in multiple directions.

For example, if the sweeping direction were not aligned to

the ground and were instead fronto-parallel, it would require

many plane hypotheses to reconstruct the ground. How-

ever, having determined the ground’s surface normal and

predicted its location from the prior, we can reconstruct it

with only a few plane hypotheses.

4.4. Selecting Depths from Multiple Sweeps

Once the plane sweeps have been performed and the

best-cost solutions are selected for each sweep, the remain-

ing task is to determine which sweeping direction at each

pixel is correct. Selecting the best-cost solution already



Figure 3. Best-cost direction selection. The labeling on the right

indicates the selected sweeping direction. Ground points are la-

beled green, and facade points are labeled red or blue. The changes

in surface normal (blue amidst a sea of red and vice versa) are

clearly errors and suggest further optimization is possible.

produces very good results, and most pixels are assigned

the correct surface normal. However, it is evident from Fig-

ure 3 that due to noise some pixels are assigned incorrect

normals. The immediate observation is that many of the

errors are small regions of erroneous pixels embedded in

a sea of correctly assigned pixels. This suggests minimiz-

ing an energy function which penalizes for abrupt changes

of the surface normal within a small neighborhood. Also,

the correct depths should minimizes the distance between

the depths of neighboring pixels. We formulate an energy

which encodes the matching cost, surface normal smooth-

ness, and depth smoothness, and minimize it using graph

cuts [4].

Typically, graph cut stereo algorithms compute the solu-

tion over a range of depth values. For the scenes in which

we are interested, this would require hundreds of labels to

account for the disparity range. Our energy function can

be minimized efficiently since the solution is chosen from

typically only a handful of sweeping directions.

Although our algorithm can be generalized to any num-

ber of sweeping directions, for simplicity the graph cut

is defined in terms of three labels but can be simply ex-

tended to multiple labels. We define the set of labels

L = {lg, lf1 , lf2}, with one label for each sweeping direc-

tion. Each direction also has an associated surface normal

nl and best cost image

C̃l(x, y) = C
(

x, y, Π̃l(x, y)
)

− σ log P (Π̃l(x, y)). (15)

We define the energy function:

E =
∑

(x,y)∈I

Ed ata + λ1

∑

(x,y),(x′,y′)∈N

Es mo o th + λ2

∑

(x,y)∈I

Eint

(16)

where λ1 and λ2 adjust the relative magnitude for each

penalty and (x, y), (x′, y′) ∈ N indicates that (x, y) and

(x′, y′) are 4-neighbors. The term Ed ata simply refers to

the matching cost of a particular label.

Ed ata(x, y) = C̃l(x, y) (17)

The term Es mo o th penalizes neighboring pixels for having

different surface normals according to the Potts model [4].

Es mo o th (x, y) = δ(l 6= l′) (18)

Figure 4. Integrability penalty for horizontal neighbors. Using the

surface normals given by the labeling, the surfaces are extended to

the midpoint (x + 0 .5). The penalty is then defined as a function

of the distance between the surfaces along the line x + 0 .5.

where δ(·) is 1 when its argument is true and 0 otherwise.

The integrability penalty Eint penalizes for depth dis-

continuities in the surface. In other stereo algorithms, this

is typically defined as the absolute or squared distance be-

tween the depths of neighboring pixels. In our algorithm

not only do we have the depth at each pixel, but we have the

surface normal as well. We can therefore approximate the

surface at each pixel as a planar patch. For neighboring pix-

els, rather than compare the depths at the pixel centers, we

extrapolate each surface to the midpoint between the two

pixels and compare the depths of the surfaces at this point.

Without loss of generality we define the integrability

penalty for horizontal neighbors (x, y) and (x + 1, y) with

labels l and l′. Let the plane at each pixel be Π̃l and Π̃l′ . We

find the intersection point of each plane and the ray passing

through the pixel (x + 0.5, y) as in equation (7). The inte-

grability penalty is then defined as

Eint (x, y) = min(|Zl(x+0.5, y)−Zl′(x
′−0.5, y′)|, Emax

int )
(19)

where Zl(x+0.5, y) is the intersection of the ray defined by

pixel (x+0.5, y) and Π̃l, and similarly Zl′(x+0.5, y) is the

intersection with Π̃l′ . This assumes the pixel with label l is

to the left of the pixel with label l′. The penalty saturates

at value Emax
int so as not to overly penalize true discontinu-

ities in the surface. The integrability penalty can be defined

similarly for vertical neighbors. Figure 4 illustrates the in-

tegrability penalty. This penalty has the important property

that it incurs no penalty for slanted surfaces, which do not

have constant depth, as long as the depth gradient coincides

with the estimated surface normal.

5. Results

We first demonstrate our algorithm on several video se-

quences which were captured by a camera mounted on a ve-

hicle moving through streets in an urban environment. The

vehicle is equipped with a GPS/INS system. We compute

the three sweeping directions as described in Section 4.1,

and then compute depthmaps from 11 grayscale images

with 512x384 resolution. We processed the data on a PC

with an NVIDIA GeForce 8800 GTX graphics card.



Figure 5. Comparison of the basic fronto-parallel plane sweep

and sweeping in multiple directions. Top left: the original view-

point. Top right: The depthmap triangulated into a polygonal mesh

viewed from above. B ottom: A cross-section of the surface. Note

the scale on the axes. We measured the standard deviation of the

surface from the best-fit line. This was 1.31 cm for the fronto-

parallel sweep and 0.61 cm for our algorithm.

In the first experiment, we compare our algorithm with

the basic fronto-parallel sweep. The scene is a fl at brick

wall which is viewed obliquely. We reconstruct the scene

using 144 plane hypotheses for both algorithms. For our

algorithm we selected the depths from the multiple sweep-

ing directions using best-cost, and achieved a processing

rate of at 6.33 Hz. Figure 5 compares a scanline of the

depthmaps resulting from the fronto-parallel sweep algo-

rithm and our algorithm. The surface from our algorithm

is much smoother and better approximates the planar fa-

cade. Note here that for both algorithms we compute sub-

pixel matches by parabolic fitting of the best cost. Despite

this fact, the fronto-parallel sweep is unable to compute a

smooth surface. Since only a percentage of the points in

the aggregation window actually have the correct depth, the

matching costs to which the polynomial is fit are less in-

dicative of the depth of the surface.

In Figure 6 we demonstrate the graph-cut-based depth

selection from Section 4.4. Selecting the best-cost sweep-

ing directions already produces a surface normal labeling

which is quite accurate. However, small errors remain. The

graph cut is able to eliminate the incorrectly labeled regions

and straighten out the interface between the two facades.

The cross-sections in Figure 6 shows that by selecting the

correct surface normals labels the computed depthmap is

improved. This graph cut, although unsuitable for real-time,

is quite efficient and takes less than 2 seconds to compute.

In Figure 7, we demonstrate the ability to compute ac-

curate depthmaps with only a small number of plane hy-

potheses. By testing only the planes with highest prior

probability, we produced quality reconstructions with just

48 plane hypotheses per frame. This increases the speed

of our algorithm to 33.7 Hz. Although we assume the pres-

Figure 6. Top: The best-cost sweeping direction labeling (left) and

the labeling after the graph cut (right) Several mislabeled pixels are

corrected by the graph cut. B ottom: The improvement in accuracy

after the graph cut. This shows the incorrectly labeled pixels were

indeed errors in depth. This figure is best viewed in color.

Figure 7. The reconstruction produced by our algorithm from sev-

eral hundred frames of video. By testing only plane hypotheses

with high prior probability, the reconstruction was achieved with

only 48 plane hypotheses per frame at a speed of 20.0 Hz.

ence of planes in the scene, our algorithm is a general stereo

matcher, and we are still able to reconstruct non-planar ob-

jects such as the bushes.

Finally, we present the reconstruction of a scene captured

by a hand-held camera. We computed the direction of the

gravity vector from vertical vanishing points and computed

the sweeping directions as described in Section 4.1. The re-

construction of the scene is shown in Figure 8. By rendering

the scene with a synthetic light source we can see that with-

out aligning the sweeping plane to the surface normals, the

reconstructed surface is quite bumpy. Our algorithm pro-

duces a reconstruction which is much smoother.

6 . Conclusion

We have presented a real-time multi-view stereo algo-

rithm based on plane-sweeping which correctly handles

slanted surfaces. It is very effective in real-world appli-

cations, such as video-based reconstruction of large urban

areas. This is due to the algorithm being inherently fast and

to the proper selection of parameters to achieve high quality

reconstruction with a limited number of plane hypotheses.

We utilize sparse point correspondences, which are avail-



(a) (b)

(c) (d)

(e) (f)
Figure 8. (a): Frame of video captured by a handheld camera. (b):

The best-cost labeling of sweeping direction. (c) and (e): Novel

views of the reconstructed scene. (d) and (f): The reconstructed

scene rendered as a polygonal mesh with a light source. (d) is from

the basic plane sweeping algorithm, and (f) is from our algorithm.

The lighting demonstrates a much smoother surface is obtained by

aligning the sweeping plane to the surface normals. This figure is

best viewed in color.

able from the structure from motion estimation, to obtain an

estimate of the normals of the planar surfaces in the scene.

Then we perform plane-sweeps along multiple directions

and combine the results according to best-cost or, option-

ally, a simple three-label graph cut. Furthermore, by incor-

porating plane priors given by the sparse point correspon-

dences, we can reduce computation time and noise in am-

biguous parts of the scene. Comparisons with ground truth

show a clear improvement over the basic fronto-parallel

plane-sweeping algorithm.
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