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Abstract— This paper addresses optimal path planning and
resource allocation for active multi-target localization. For
each target, we solve a local Dynamic Program (DP) that
plans optimal trajectories in the joint state-space of robot
positions and target location uncertainties, captured by a
cumulative error covariance matrix. The transitions in the
space of robot positions are governed by the robot dynamics,
while the transitions in the space of target uncertainties are
regulated by a Kalman filter (KF) that fuses new information
about the target locations with the current beliefs. The fused
target uncertainties enter the objective function of the local DP
using the trace of the associated covariance matrix. Using the
optimal sensing policies local to each target, we construct a
global DP to determine how far along the single target optimal
trajectories the sensor should travel before transitioning to
the next target. The integrated system jointly optimizes the
collective target localization uncertainty and the total distance
traveled by the sensing agent. The proposed control scheme
is more computationally efficient than methods that use only
the sensor configuration to compute future uncertainty and
more exact than methods that abstract away the filtered sensing
uncertainty.

I. INTRODUCTION

Localization focuses on determining the exact location of
a source, robot, person, or otherwise interesting object in
a possibly noisy or cluttered environment. For a growing
number of commercial and defense applications, this needs
to be done with very high accuracy over long periods of time
and for large numbers of objects. Compared to static arrays
or remotely operated mobile sensors, autonomous robots
have the potential to accomplish this task more efficiently
and with less human intervention.

In this paper, we address the problem of optimal path
planning and resource allocation for active multi-target lo-
calization. We compute an optimal control policy that guides
a mobile sensing agent, i.e. a robot, through a sequence of
configurations that maximize the expected target localization
accuracy while minimizing the total distance travelled. Gen-
eral approaches to problems such as this formulate a Partially
Observable Markov Decision Process (POMDP), where the
targets take on the characteristics of a Hidden Markov Model
(HMM) [1]–[3]. Finding the optimal control policy for a
POMDP is notoriously difficult because these models reason
over all possible future control outcomes and observations.
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Consequently, specialized approximation algorithms that are
intended to mitigate the path dependence that arises are
required [4]–[6]. In this work, we assume that the robot
is self localized and its exteroceptive sensor is corrupted
by approximately Gaussian noise, which is propagated to
the target locations also as a Gaussian uncertainty. Under
these assumptions, the active sensing problem has received
significant attention in the controls community as far back as
1967 [7], recently [8], [9], and in the active vision community
[10]–[15]. The key idea that enables our work is to formulate
the active sensing problem as a Dynamic Program (DP) that
incorporates the target uncertainty (along with the sensor
positions) in the state-space and employs a Kalman filter
(KF) to regulate the dynamics in this uncertainty space. By
defining the state-space in this way, the instantaneous reward
only relies on the current state-action pair. In typical POMDP
[1]–[3], optimal control [7]–[9], and receding horizon [16]
approaches, the objective function at any given control
instance depends on the full history of observations.

To obtain a method that is tractable for problems of
practical size, defined in terms of the number of targets,
in this paper we develop a hierarchical control scheme for
multi-target active localization that consists of the following
two components: a local DP that finds the optimal sequence
of sensor configurations in the vicinity of a single target and
a global DP that balances between the time spent at every
target following the locally optimal sensing policy and the
total distance travelled in order to best localize all targets.
Both DPs have reward functions that capture the positive
impact of uncertainty reduction and the negative impact of
the distance the sensor must travel between measurements.
Like the Traveling Salesman Problem (TSP) approaches to
active sensing [17]–[19], our method uses a binary flag to
represent whether or not a target has been sensed, except that
for us, the robot only deems a given target “sensed” when
the potential for reward elsewhere outweighs the potential for
reward at the current site. Compared to POMDP approaches,
the complexity reduction allows us to solve problems of
practical size, using exact value iteration on the global DP,
that would otherwise be intractable.

The paper is organized as follows. In Section II, we
formulate the active localization problem using Dynamic
Programming. In Sections III and IV, we detail our hierarchi-
cal control scheme that integrates the local and global DPs
in a multi-target active localization mission. In Section V,
we show simulations of an active stereo vision sensor that
localizes several targets.



II. PROBLEM FORMULATION

Consider a mobile sensing robot with configuration p ∈
W ⊂ R2 × [0, 2π), which corresponds to a position in R2

and orientation in the half open interval [0, 2π) ⊂ R. In
this paper, the workspace W is a finite set. The robot has
deterministic dynamics φ : W × U → W , where U is the
set of admissible control inputs, which, in this paper, are
combinations of physical motion and measurement action,
e.g., ‘move north and observe target i.’ Assume there are M
static point targets at locations

{
xi ∈ R2

}M
i=1

, of which the
agent can only observe one at a time. Every observation of
target i, which we denote by yi, is corrupted by zero mean
Gaussian noise with error covariance matrix Q (xi,p) ∈ S2+
that depends on both range and bearing, or simply Qi,p when
the meaning is clear. We use the symbol Sn+ to denote the
set of n × n symmetric positive semidefinite matrices. The
sensing agent acquires a sequence of observations {yi,k}
of target i with measurement error covariances {Qi,pk

}
from various vantage points along a controlled trajectory
{pk} ⊂ W , where k denotes a time index. A KF fuses
observations as they are acquired, producing a sequence
of estimates {x̂i,k} and their associated error covariances
{Σi,k}. In particular, if the robot observes target i at the k-th
time step while being in configuration pk, then the KF fuses
the prior belief N (x̂i,k−1,Σi,k−1) with the new observation
N (yi,k,Qi,pk

) to obtain the new target location distribution
N (x̂i,k,Σi,k), where N (x̂,Σ) denotes the normal distribu-
tion with mean x̂ and covariance matrix Σ. Initialization of
the KF assumes that the robot has access to an a priori set
of target location estimates {x̂i,0}Mi=1, which are considered
to be normally distributed random variables with zero mean
and error covariance matrices {Σi,0}Mi=1.

As discussed in Section I, our goal is to minimize the
variance in the target locations as well as the distance the
robot needs to travel while observing the targets in order to
achieve this goal. We denote by ψ : U → R+ a metric that
measures the distance the agent needs to travel as a result of
actions in U . Then, given a factor ρ ∈ [0, 1] that controls the
tradeoff between target uncertainty reduction and distance
travelled, and a sufficiently large horizon length K, we seek
a control sequence {uk}K−1k=0 that minimizes the objective

H
(
{uk}K−1k=0

)
= (1−ρ)

M∑
i=1

(
tr(Σi,K)

)1/2
+ρ

K−1∑
k=0

ψ(uk).

Letting the horizon length K →∞, it can be shown that the
infinite horizon DP,

max
{uk}⊂U

∞∑
k=0

γk
[
(1−ρ)

M∑
i=1

(
tr(Σi,k−Σi,k+1)

) 1
2− ρψ(uk)

]
s.t. pk+1 = φ (pk,uk) (1a)

Σi,k+1 =


(
Σ−1i,k + Q−1i,pk+1

)−1
if i = ik+1

Σi,k else
, (1b)

with initial condition p0 and a priori error covariance Σi,0

for each i is a valid approximation of the minimization

problem involving the objective H(·) above. The parameter ρ
controls the trade-off between the effort spent sensing targets
and traveling to obtain new measurements. As localization
uncertainty and distance travelled can differ by orders of
magnitude, ρ provides a way to linearly scale those quantities
so that they can be fairly compared. The robot dynamics
(1a) are problem-specific; we define a simple possibility in
Section III. In (1b), ik+1 ∈ {1, . . . ,M} is a scalar indicator
function that determines which target is observed at time step
k+1. Therefore, the condition i = ik+1 means that target i is
the only target that is observed at time k+ 1. The particular
dynamics of ik+1 are discussed in details in Section IV. The
constant γ ∈ (0, 1] in (1) is a user-specified discount factor
for future rewards, which is usually set to 0.9 or higher.

In the next two sections, we propose a hierarchical control
scheme to solve problem (1). First, we solve a set of
M local Dynamic Programs (DPs), one for every target.
Each local DP is defined as in (1), assuming M = 1.
The state-space of each local DP consists of two parts: a
finite local configuration space confined to the vicinity of
every target and a finite representation of the set of target
uncertainties, or covariance matrices, that are reachable by
any observation sequence generated by the robot. Transitions
in this joint state-space are governed by the robot dynamics
(1a) and the KF update of the target error covariance (1b),
respectively, and the reward function in (1) balances between
uncertainty reduction and distance traveled by the sensor.
Then, we construct a second, global DP that determines for
how long the agent should follow the local optimal sensing
policy at each target before transitioning to the next target.
The integrated system jointly optimizes the collective target
localization uncertainty and the total distance traveled by the
mobile sensor, as per the requirements of problem (1).

III. THE SINGLE TARGET CASE

In this section, we propose a method to solve problem (1)
for one target. We call this the local DP. We solve M
instances of the local DP, one for every target, and the
obtained local solutions constitute the inputs to the global
DP discussed later in Section IV. To construct the local state-
space for target i, we approximate the space of reachable
covariances by a discrete subset of the positive semidefinite
matrices, which we denote by Ci ⊂ S2+. We discuss the
specifics of designing Ci in Section III-A. We use the finite
set Ci as a component of the local state-space, given by

Si ,Wi × Ci =
{

si , (pi,Σi) | pi ∈ Wi and Σi ∈ Ci
}
,

where Wi denotes the discrete set of robot configurations in
the vicinity of target i. A state s′i ∈ Si is accessible from
si ∈ Si if there exists a control input u ∈ Ui that satisfies
the joint dynamical equation

p′i = φ (pi,u) (2a)

Σ′i = ΠCi

[
Σ−1i + Q−1i,φ(pi,u)

]−1
, (2b)

where Ui is the set of control options for the robot when
it is in the local state-space Si, φ : Wi × Ui → Wi is



the deterministic robot dynamics, and ΠCi in (2b) is the
projection of the updated KF covariance to the finite set Ci.
The projection in (2b) is necessary because we require that
Σ′i ∈ Ci, and Ci, as a finite set, is inherently much smaller
than S2+. Let Φi : Si × Ui → Si denote the joint dynamics
(2). It constitutes the transition function for the local DP.
Then, denote by Ri : Si ×Ui → R the instantaneous reward
from problem (1), given by

Ri(si,u) , −ρψ(u) + (1− ρ)
(
tr
[
Σi −Σ′i

])1/2
, (3)

where s′i = Φi(si,u). We seek the optimal policy µ∗i : Si →
Ui that solves the following problem, which, because of the
covariance projection, is an approximation to (1) for M = 1:

max
µi

∑∞

k=0
γkRi(si,µi(si)) (4)

We use value iteration to determine the local optimal value
function V ∗i : Si → R, which maps local states in Si to a
scalar representing the potential for discounted future reward.
Computing V ∗i yields the local optimal policy µ∗i : Si → Ui
as a byproduct.

A. The uncertainty state-space and transition function

If Ci is manageable in size, the local DP in (4) admits
a solution using value iteration. If we used all of S2+ as
the covariance component of the state-space, an approximate
form of the value function would be necessary; see, e.g., [20].
In the context of the present problem, function approximation
is not straightforward, and, instead, we propose a specialized
method to discretize S2+ based on the parameters of the
problem. We emphasize that, in general, finding the optimal
discrete representation of Sn+ is not trivial [21]. The following
method works well within the active sensing context for two
dimensional (n = 2) environments.

Let λ1 : S2+ → R+ denote the maximum eigenvalue
function of a 2× 2 positive semidefinite matrix, λ2 : S2+ →
R+ denote the minimum eigenvalue function, and θ : S2+ →
[0, π) denote the counter-clockwise angle between a line
parallel to the eigenvector corresponding to the maximum
eigenvalue and the positive x-axis. Note that this angle is
always contained in [0, π). In what follows, we use λ1,
λ2, and θ as features of matrices in S2+. We discretize the
space of feature vectors using the properties of the KF. We
begin by the following lemma, which will be useful for
determining a bound on the trace of the target location error
covariance matrices that are reachable in our state-space by
any sequence of observations that the sensor can make. The
proof is similar to that of Lemma 2.7 in [22].

Lemma 3.1: Let n ∈ N. Denote by Sn++ the set of n× n
symmetric positive definite matrices. If A,B ∈ Sn++, then

tr
(
A−1 + B−1

)−1
< trA. (5)

Note that Lemma 3.1 does not apply to matrices A ∈
Sn+ \Sn++. The first useful implication of Lemma 3.1 is that,
since the trace is the sum of the eigenvalues, the trace of
the largest instantaneous covariance bounds the maximum

eigenvalue of the reachable covariance matrices. Define this
bound as

βi , maxpi∈Wi
trQi,p. (6)

Lemma 3.1 also implies that the trace is decreas-
ing with additional independent measurements. There-
fore, the set of reachable covariances is contained in{
Σi ∈ S2++ | λ1(Σi) ≤ βi

}
.

Lemma 3.1 and the resulting bound in (6) can be used to
obtain a discretization of S2++. In particular, we define the
logspace set

Li , {βieκLi(j−NLi)/NLi }
NLi
j=1 ⊂ (0, βi], (7)

where NLi is the number of maximum eigenvalue samples
and κLi is a sampling gain that controls how clustered
the samples are toward zero. The set Li represents the set
of maximal eigenvalues that we allow to occur during the
mission.

The finite sampling of the smaller eigenvalue is not as
straightforward as (7). In particular, we need to satisfy the
obvious constraint that λ1(Σi) ≥ λ2(Σi) for every triplet
(λ1(Σi),λ2(Σi),θ(Σi)). We address this by sampling the
eigenvalue ratio α(Σi) , λ2(Σi)

λ1(Σi)
. This ratio is related to

the ratio between lengths of the minor and major axes of the
confidence ellipse defined by the error covariance matrix Σi.
Depending on the sensor model, we can tune the sampling
to account for “skinnier” ellipses by using the logspace
distribution with a variable gain parameter. Define

Ai , {eκAi(j−NAi)/NAi }NAi
j=1 ⊂ (0, 1]. (8)

In (8), NAi is the number of eigenvalue ratio samples
and κAi

is a sampling gain that controls the “skinni-
ness” of the confidence ellipse. Note that, given any pair
(λ1(Σi),α(Σi)) ∈ Li×Ai, we immediately have λ2(Σi) =
α(Σi)λ1(Σi).

We discretize the angular dimension of Ci linearly,

Ti , {π(j − 1)/NTi}
NTi
j=1 ⊂ [0, π), (9)

where NTi is the number of angles in the discretization. Let

Ci,
{

Σi∈S2++

∣∣∣λ1(Σi)∈Li,α(Σi)∈Ai,θ(Σi)∈Ti
}
∪{0}

be the covariance part of the state-space Si, where 0 is the
2 × 2 matrix of all zeros. The 0 covariance is an artificial
state that we include in the state-space Ci to denote that no
more uncertainty remains in the variable being estimated,
i.e., localization is complete to the user-specified tolerance,
defined by the minimal element of the set Li.

As new information is acquired by the sensor, the target
error covariance Σi is updated according to (2b). The projec-
tion operator ΠCi guarantees that the fusion of the current
covariance state Σi and the new measurement covariance
Qi,φ(pi,u) is a member of Ci, namely that Si is closed
under actions in Ui. In particular, we define the projection



ΠCi : S+ → Ci as

ΠCi

[
Σ−1i + Q−1i,φ(pi,u)

]−1
, Rθdiag[λ1, αλ1]R>θ , (10)

where λ1, α, and θ are given by

λ1 = argmin
λ′∈Li∪{0}

∣∣∣∣λ′ − λ1

([
Σ−1i + Q−1i,φ(pi,u)

]−1)∣∣∣∣ ,
α = argmin

α′∈Ai

∣∣∣∣α′ −α([Σ−1i + Q−1i,φ(pi,u)

]−1)∣∣∣∣ ,
θ = argmin

θ′∈Ti∪{π}

∣∣∣∣θ′ − θ([Σ−1i + Q−1i,φ(pi,u)

]−1)∣∣∣∣ .
In (10), Rθ is the rotation matrix with parameter θ. If the
value for θ found by solving (10) is π, we set θ = 0.
Additionally, if λ1 = 0, then we do not compute α or θ,
and instead the projected covariance is assigned 0.

IV. THE MULTI-TARGET CASE

In this section, we use the solutions of the local DPs dis-
cussed in Section III to develop a global Dynamic Program
that determines for how long the robot should follow the
local optimal policies for every target before transitioning
to a new target. Essentially, the goal of the global DP is
to balance between the time spent at every target and the
total distance traveled in order to best localize all targets.
In order to formulate the proposed global DP we first need
to define some relevant notation. Let v ∈ {0, 1}M denote
a vector containing the visitation history, so that vi = 1 if
target i has been visited by the robot and vi = 0 otherwise.
Moreover, define an indicator function i ∈ {1, . . . ,M} that
returns the index of the target that is currently being sensed
by the robot, an indicator function j ∈ Ei that returns the
entry state from where the robot begins sensing target i,
where Ei = ∂Wi×{Σi,0} ⊂ Si is the set of boundary states
of the local configuration space Wi ×Ci of target i, and the
number k of steps that the robot follows the local optimal
policy for target i. Together, this information comprises the
global state s , (v, i, j,k) ∈ S, where S is the state-space
of the global DP. Then our goal is to find the optimal policy
µ that solves the following optimization problem:

maxµ

∑∞

k=0
γkR(s,µ(s)), (11)

where R denotes the global reward function that, along with
the state-space S and the global transition function Φ, is
defined in Section IV-A. As in Section III, value iteration
can be used to determine the global optimal value function
V ∗ : S → R, which provides the global optimal policy
µ∗ : S → U for (11) as a byproduct.

A. The Global State-Space, Transition Function, and Reward
Function

In this section, we first associate transitions in the global
DP with transitions in the local state-spaces of every target.
Then, we define the necessary global state-space, transition
function, and reward function. Consider a global state s =

(v, i, j,k), as defined previously, and define by {sji}
|Ei|
j=1 the

set of all entry states of target i that are contained in Ei.

Here, the superscript j is an index used to uniquely identify
the entry states using an integer between 1 and |Ei| . Define
also the k-times recursive local optimal transition function
for target i as Φ∗ki : Ei → Si, given by

Φ∗0i (sji ) = sji

Φ∗1i (sji ) = Φi

(
sji ,µ

∗
i (s

j
i )
)

Φ∗2i (sji ) = Φi

(
Φ∗1i (sji ),µ

∗
i (Φ

∗1
i (sji ))

)
...

Φ∗ki (sji ) = Φi

(
Φ∗k−1i (sji ),µ

∗
i (Φ

∗k−1
i (sji ))

)
. (12)

The function Φ∗ki denotes the local state at which the robot
will land when starting observing target i at state sji and
after following the local optimal policy µ∗i for k time steps.
Therefore, given a global state s containing the current target
i, the index j of the entry state to this target, and the
number of steps k that the robot has followed the local
optimal policy at this target, the function Φ∗ki (sj

i) ∈ Si

returns the local state si = (pi,Σi) containing the current
robot position and current uncertainty of target i. Using this
notation we can associate transitions in the global DP with
transitions in the local state-space of target i. Specifically,
let ui denote the action that directs the robot to continue
observing the current target i according to the local optimal
policy µ∗i . Then, under action ui the global state k transitions
to k + 1, and as result the local state Φ∗ki (sj

i) transitions to
Φ∗k+1

i (sj
i). Note that, since the optimal policy is stationary,

there is always an optimal action to take, implying that local
optimal trajectories are infinitely long, i.e., it is possible to
extend k→∞. The following proposition truncates any such
sequence by showing that any optimal trajectory reaches an
absorbing state. The proof is omitted due to space limitations.

Proposition 4.1: ∀i ∈ {1, . . . ,M} and sji ∈ Ei, there
exists Ki ∈ N such that Φ∗Ki

i (sji ) = Φ∗ki (sji ) ∀k ≥ Ki.
As a result of Proposition 4.1, we do not store local

optimal trajectories longer than maxi∈{1,...,M}Ki. We can
now define the global state-space as the product of finite sets

S , {0, 1}M × {1, . . . ,M}× (13){
1, . . . , max

i∈{1,...,M}
|Ei|
}
×
{

0, . . . , max
i∈{1,...,M}

Ki

}
.

We define the set of admissible controls in the global DP as
U , {u0, . . . ,uM}. We denote the global transition function
that captures the set of all admissible global transitions by
Φ : S × U → S. When in state s = (v, i, j,k), we have
already discussed the result of taking action ui, which we
now define formally as

Φ(s,ui) =

{
(v, i, j,k + 1) if k < Ki

(v, i, j,k) if k = Ki

, (14)

The action u0 is the null action, i.e. Φ(s,u0) = s. For i 6= i
and i 6= 0, the action ui transitions the robot to the local
state-space of the i-th target via the closest entry state in Ei
in the i-th configuration space Wi × Ci. To determine this



new local state, note that si = Φ∗ki (sj
i) denotes the current

local state corresponding to the global state s = (v, i, j,k)
and, therefore, psi , pΦ∗ki (sji)

∈ Wi denotes the current
robot position associated with the global state s. Then, we
can define the index of the new local state resulting from
taking action ui by

j∗i (psi) , argmin
j∈{1,...,|Ei|}

∥∥∥psji
− ps

∥∥∥ (15)

The global transition function in this case is

Φ(s,ui) = (Jiv, i, j
∗
i (ps), 0) , (16)

where Ji is the M×M identity matrix with the i-th diagonal
entry equal to zero. Recalling that v is a binary vector,
the matrix Ji operates on v by turning the i-th entry in
v from 1 to 0, i.e., flagging target i as ‘observed,’ which
prevents it from offering any further positive reward in the
way of uncertainty reduction. The combination of (14) for
the transition when u = ui, the null transition for u = u0,
and (16) for u = ui 6=i, comprise the global transition function
Φ : S × U → S .

For a global state s = (v, i, j,k) , let the reward for
following the local optimal policy be

R(s,ui) =


(1− ρ) (tr [Σsi −Σsi′ ])

1/2

−ρψ(u∗)
if e>i v = 1

−ρ
∥∥psi − ps′i

∥∥ if e>i v = 0

,

(17)
where

si = Φ∗ki (sj
i), u∗ = µ∗i

(
Φ∗ki (sj

i)
)
, and

s′i =

{
Φ∗k+1

i (sj
i) if k < Ki

Φ∗ki (sj
i) if k = Ki

,

where ei is the vector or all zeros except for the i-th entry
equal to 1. The purpose of introducing the unit vector ei is so
that if e>i v = 1, then the robot has not deemed localization
for the i-th target complete. If e>i v = 0, then no positive
reward can be gained by visiting target i.

The remaining actions ui for i 6= i have the nonpositive
rewards given by

R(s,ui 6=i) =

{
0 if i = 0

−ρ ‖ps − ps′‖ else
, (18)

where s′ = Φ(s,ui). The combination of (17) and (18)
comprise the reward function for the global DP.

V. NUMERICAL SIMULATIONS

In this section, we present simulations of the proposed
hierarchical control scheme. In our simulations, we use two
cameras in a rigid fronto-parallel configuration, i.e., stereo
vision, as the exteroceptive sensor model. Stereo vision, due
to its light weight, low cost, low power consumption, and
analytical covariance model, has shown great promise in
active sensing. We omit a direct derivation of the covariance
function Q(x̂i,p) for stereo vision, and instead we refer
the reader to our prior work on this subject [13], [14]. The
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Fig. 1: Various values for ρ and the resulting optimal trajectories in the
single target simulations. Top-left: ρ = 5×10−2. Top-right: ρ = 5×10−3.
Bottom: ρ = 5 × 10−4 and the 95% confidence ellipses. The robot starts
at the square and ends at the triangle. All units in meters.

10
-4

10
-3

lo
ca
li
za
ti
on

er
ro
r
(m

m
)

0

5

10

to
ta
l
d
is
ta
n
ce

(m
)

0

50

100

⇢

Fig. 2: Plotting terminal localization error and total distance traveled by the
sensor versus ρ in the single target simulations. Note the different length
units on the vertical axes. Lines are drawn to guide the eye.

stereo rig model we use employs two 1024×1024 resolution
cameras with identical 70◦ fields of view. The baseline of the
rig is 5 cm. Our simulations also focus on the case where
Wi =Wj and Σi,0 = Σj,0 for all i, j ∈ {1, . . . ,M}.

We determined the optimal policy for the single-target case
using a polar grid as the pose space and stereo vision as
the sensing model. The polar grid W was centered at the
initial guess of the estimated target location x̂0 and was 80
m in diameter, so that views in ∂W had disparity 1, i.e.,
they were at the limit of the sensing range. There were 100
total views in W at ten equally spaced radii and angles.
We note that in practice, other discretizations, e.g. [23], may
be preferable, and our method extends to them as well. To
discretize the covariance space, we set NL = 10, NA =
10, NT = 15, κL = 15, and κA = 12. The discount factor γ
was 0.9.

The value of the uncertainty reduction gain ρ controls the
tradeoff between traveling cost and uncertainty reduction due
to more images. Fig. 1 shows example optimal trajectories
using three different values for ρ. The general trend is as
expected: the smaller ρ is, the further the robot will travel to
reduce localization uncertainty. Fig. 2 shows the sensitivity
of the terminal localization performance as it depends on ρ.

We also present several simulations of the proposed hier-



Fig. 3: Path planning and resource allocation for 10 targets on a hexagonal
pattern. All units are in meters.

Fig. 4: The effect of varying ρ in the global DP. From top to bottom, the
values of ρ are 5×10−2, 5×10−3, and 5×10−4. All units are in meters.

archical scheme for multi-target active localization. In Fig. 3,
we run our hierarchical control scheme for ten targets, which
results in about 1.3 million states. We use the empirically
determined value of ρ = 5 × 10−4 in these simulations.
Since the time horizon is longer in these simulations, we
used a higher discount factor of γ = 0.9999 to generate these
trajectories. Exact value iteration converges for this case in
about 5 minutes using MatlabTM on a Macbook AirTM with
a 1.7 GHz Intel Core i7 processor. In Fig 4, we show the
effect of varying ρ in the global DP for multiple targets.

VI. CONCLUSION

In this paper, we addressed the optimal path planning
and resource allocation problem for active multi-target lo-
calization. We framed the problem using tools from opti-
mal control, ultimately proposing a hierarchical Dynamic
Programming solution. The hierarchical approach solves a
local DP for each target that simultaneously minimizes
target localization uncertainty and distance traveled. We
determined the reduction in variance by using a sensor
model and a Kalman filter to fuse observations. We achieved
lower computational complexity compared to more general
POMDP methods by including the error covariance matrix
of a target’s location in the local state-spaces. Then, we
combined the local optimal trajectories in a global DP that

balances between reducing the uncertainty in the targets
and traveling among configuration spaces. Simulations show
automatically generated trajectories that address uncertainty
reduction in terms of an information-theoretic objective
function while remaining computationally tractable, a novel
pair of characteristics that compare favorably with POMDP
and TSP approaches.
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