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Abstract— In this paper, we consider the problem of precisely
localizing a group of stationary targets using a single stereo
camera mounted on a mobile robot. In particular, assuming that
at least one pair of stereo images of the targets is available, we
seek to determine where to move the stereo camera so that the
localization uncertainty of the targets is minimized. We call this
problem the Next-Best-View problem. The advantage of using a
stereo camera is that, using triangulation, the two simultaneous
images can yield range and bearing measurements of the
targets, as well as their uncertainty. We use a Kalman filter to
fuse location and uncertainty estimates as more measurements
are acquired. Our solution to the Next-Best-View problem is
to iteratively minimize the fused uncertainty of the targets’
locations subject to field-of-view constraints. We capture these
objectives by appropriate artificial potentials on the camera’s
relative frame and the global frame, respectively. In particular,
with every new observation, the mobile stereo camera computes
the new next best view on the relative frame and subsequently
realizes this view in the global frame via gradient descent
on the space of robot positions and orientations, until a new
observation is made. Integration of next best view with motion
planning results in a hybrid system, which we illustrate in
computer simulations.

I. INTRODUCTION

The increasing capabilities of mobile robots illuminate
the need for robotic systems that are able to operate out-
side the controlled infrastructure of lab environments. Such
environments, equipped with e.g., Vicon systems, provide
robots with continuous and precise position and orientation
information [1]. This information is not available outside the
lab, where the robots should be able to self localize. In such
settings, allowing one or several sensors to be mobile has
been shown to be advantageous in terms of its effect on
localization accuracy [2], [3].

The novelty of this work lies in the use of stereo vision for
target localization. We consider a single robot equipped with
a stereo camera overlooking a group of stationary targets.
The advantage of stereo vision, compared to the use of
monocular camera systems, is that it provides both depth
and bearing measurements of a target from a single pair of
simultaneous images. Differentiation of these measurements
provides an estimate for the uncertainty of the target’s
location, which has been shown to grow quadratically with
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depth [4]–[6]. As such, we leverage the inherent uncertainty
of stereo vision to define the Next-Best-View (NBV) as the
position and orientation of a stereo camera that, given a
sequence of observations of a collection of targets, minimizes
their localization uncertainty.

The NBV problem has often been formulated as the selec-
tion of the next image from a given finite set using sampling
or grid-based methods [7]–[13]. While these methods can
apply multi-view constraints and obtain uncertainty estimates
that depend on factors such as viewing distance and camera
resolution, they can only select among the input set of
images. Furthermore, they have to satisfy constraints related
to maintaining consistency between images [9], require a
priori models of the environment [10], or use heuristic
estimates of the covariance [10], [11]. Our approach guides
the sensor to the NBV based on gradient descent of an
analytical representation of the uncertainty.

Approaches capable of computing the next best viewing
position have been proposed in the cooperative localization
literature [2], [14]–[19]. They typically employ abstract
sensor models and approximations of the uncertainty in the
range and bearing measurements, which are often treated
independently with respect to range and to each other. On
the other hand, assuming noise is dominated by quantization
of pixel coordinates and propagating uncertainty from pixel
to target coordinates, we obtain more accurate estimates
of the structure of the covariance matrix, which captures
uncertainty. This is true for both the instantaneous uncer-
tainty of one measurement and for filtered uncertainty of the
full sequence of measurements. As a result, our objective
function is a tighter approximation of the true uncertainty.
Gradient descent of this objective guides the robot to more
effective viewing positions, e.g., the NBV. To realize the
NBV in the global coordinate frame, we use gradient descent
in the space of robot positions and orientations. While
respecting field of view constraints, the robot moves until
a next observation is made, which, in turn, determines a
new next best viewing position to be realized. Integration of
NBV with continuous motion planning gives rise to a hybrid
system that drives a robot in the direction that minimizes
localization uncertainty of the targets.

The paper is organized as follows. Section II outlines
the system model, our assumptions, and the Kalman filter
(KF), which fuses the observation sequence in real time.
Section III determines the NBV in the camera coordinate
system. Section IV realizes the NBV in the global coordinate
frame. Sections V and VI show simulations of our approach
and conclude the paper.
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Fig. 1. A diagram of a single target (red dot) in both relative (black) and
global (blue) coordinate frames. The camera is enlarged for clarity.

II. SYSTEM MODEL & PROBLEM FORMULATION

Consider a group of N point targets, indexed by i ∈
I = {1 . . . N}. We assume that the targets are fixed and
we denote their, initially unknown, global coordinates by
xi ∈ R2. Consider also a mobile, stereo, camera and let
r(t) ∈ R2 denote its position on the plane and R(t) ∈ SO(2)
its orientation at time t ≥ 0, where SO(2) the special
orthogonal group of dimension 2. Since the camera an targets
lie in a plane, the y coordinates are omitted, and the camera
only measures x and z. The stereo camera consists of a
pair of two monocular cameras, referred to as the left (L)
and right (R) cameras, located at coordinates −b/2 and
b/2, respectively, with respect to the origin of the binocular
camera system, where b denotes the baseline measured in
meters; see Fig. 1. Let xLi and xRi denote the x-axis
coordinates of target i, measured in pixels, on the left and
right camera images, respectively. Then, the position of target
i with respect to the relative, camera, frame is

pi , p(xLi, xRi) =

[
b(xLi+xRi)
2(xLi−xRi)

bf
xLi−xRi

]
, (1)

where f denotes the focal length of the camera lens, mea-
sured in pixels. Note that xLi and xRi are measured in
pixels and can only take integer values. Since the actual
coordinates of target i on the two images can be anywhere
within these pixels, we may assume that they are uniformly
distributed around the pixel centers. We denote the pixel
centers by x̂Li and x̂Ri, which now take values in Z. In
view of (1), the above pixelation errors on the images work
their way in the coordinates pi of target i in space causing
non-Gaussian error distributions [4], [6]. For convenience,
we follow [5], [20] and approximate the uniform pixelation
errors as Gaussian to allow uncertainty propagation from
image to world coordinates. Under this assumption, the
localization error of the target in the relative camera frame
will also be Gaussian with mean p̂i = p(x̂Li, x̂Ri) and
covariance Ui ∈ S2+ in global coordinates, where S2+ denotes
the set of 2× 2 symmetric positive definite matrices.

Now, assume that the stereo camera has made a sequence
of observations of the targets and introduce an index k ≥ 0

associated with every observation. Moreover, let x̂i,k ∈ R2

denote the mean and Ui,k ∈ S2+ the covariance of the
location of target i on the global frame associated with
observation k. Similar to [21]–[23], these observations can
be fused using a linear Kalman filter (KF) to significantly
increase localization accuracy of the targets. In particular,
let x̂i,k = xi + vi,k denote the measured, noisy, coordinates
of target i in the global frame, where xi are the actual
coordinates of target i (which do not change with k for
fixed targets) and vi,k ∈ R2 is the realization of zero-mean
Gaussian noise with instantaneous covariance matrix Ui,k.
Then, x̂i,k can be related to the target coordinates p̂i,k in
the relative camera frame as[

x̂i,k

1

]
=

[
R(tk) r(tk)
01×2 1

] [
p̂i,k

1

]
. (2)

At k = 0, xi is unknown, and we take a measurement
x̂i,0 and calculate its covariance, Ui,0 by methods discussed
in section III. Because the targets are assumed to be fixed,
we predict that at k = 1, these values will not change. In
other words, based on the events at k = 0, we predict that
at k = 1, x̂i,1|0 = x̂i,0 and Ui,1|0 = Ui,0. If at k = 1 a new
observation is made, then new instantaneous measurements
x̂i,1 and Ui,1 are obtained that do not depend on any prior
event. The purpose of the KF is to fuse the new measurement
with the history of measurements to create an estimate x̂i,1|1
and a covariance Ui,1|1. All covariance matrices are defined
in the global coordinate system in this paper.

In general, at time k + 1, we have access to (i) the stand
alone measurements x̂i,k+1 and Ui,k+1 and (ii) the prediction
x̂i,k+1|k and its predicted covariance Ui,k+1|k, which are
based on the entire measurement history. Let

ei,k+1 = x̂i,k+1 − x̂i,k+1|k (3)

be the discrepancy between the prediction and the measure-
ment or the location of target i at time k + 1. Also let the
innovation covariance matrix for that target be

Si = Ui,k+1|k + Ui,k+1. (4)

We fuse the prior and current measurements according to the
linear Kalman Filter equation

x̂i,k+1|k+1 = x̂i,k+1|k +Wiei,k+1, (5)

Ui,k+1|k+1 = Ui,k+1|k −WiSiW
T
i , (6)

where the gain matrix is Wi = Ui,k+1|kS
−1
i . Using equa-

tion (6) we obtain a closed form expression for the fused
covariance Ui,k+1|k+1. In particular, we have the following
lemma, which follows from [24] using the simple form of
Si and Wi as defined above.

Lemma 2.1: Let Ui,k+1|k denote the fused covariance of
all prior measurements and Ui,k+1 denote the covariance
of the most recent measurement. Then, the updated co-
variance Ui,k+1|k+1 obtained by the linear KF is given by
Ui,k+1|k+1 = (U−1i,k+1|k + U−1i,k+1)−1.

We can now state the problem that we address in
this paper. For this, let Us,k+1|k = Ui,k+1|k with i =
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argmaxj∈I
{
tr
[
Uj,k+1|k

]}
denote the covariance of the

worst localized target up to observation k, and Uc,k+1|k =
1
N

∑
i∈I Ui,k+1|k denote the average of all target covariances

up to observation k. Then we have:
Problem 1 (Next Best View): Given the covariance of the

worst localized target Us,k+1|k (respectively, the average
of the targets’ covariances Uc,k+1|k), determine Us,k+1

(respectively, Uc,k+1) so that tr[Us,k+1|k+1] (respectively,
tr[Uc,k+1|k+1]) is minimized.

In problem 1, we have chosen the trace as a measure of to-
tal uncertainty among other choices, such as the determinant
or the maximum eigenvalue. It is shown in [25] that all such
criteria behave similarly in practice. Since minimization of
tr[Us,k+1|k+1] is associated with improving localization of
the worst localized target, we call it the supremum objective.
Accordingly, we call minimization of tr[Uc,k+1|k+1] the
centroid objective. Clearly, Us,k+1|k+1 depends only on the
position of the worst localized target, which we denote by
ps,k+1, but Uc,k+1|k+1 depends on the positions pi,k+1

of all targets. Attempting to find a Uc,k+1 that solves
Problem 1 by controlling the relative coordinates pi of all
targets simultaneously requires a nonconvex constraint to
maintain consistency between images. Instead, we can think
of the array of fixed targets as a mobile rigid body in the
relative coordinates and place a virtual target at the centroid,
pc,k+1|k = 1

N

∑
i∈I pi,k+1|k. The centroid serves as a proxy

for all targets.
As we discuss in the following sections, instantaneous

covariances depend on ps,k+1|k or pc,k+1|k, which in turn
are functions of the stereo camera position r and orientation
R. Since expressing the covariances directly in terms of the
camera translation and rotation results in highly nonlinear
expressions that are difficult to control, we propose an alter-
native approach. In particular, we decompose optimization
of the above objectives in the relative camera frame and the
global frame. During the former stage, we find the vector
that solves Problem 1. We denote this vector by po,k+1,
where o stands for s or c depending on the objective for
which we solve [cf. the supremum or the centroid objective]..
This vector is then realized by an appropriate rotation and
translation of the camera in the global space. Integration of
the two stages results in a hybrid control scheme, where
the next best views obtained by every new observation
correspond to the switching signal in the continuous motion
of the camera.

III. CONTROLLING THE RELATIVE FRAME

Assume that k observations are already available and let tk
denote the time instant corresponding to the k-th observation.
Our goal in this section is to determine the next best target
locations ps,k+1 or pc,k+1 on the relative camera frame
so that if a new observation is made at time tk+1 with
the targets at these new relative locations, it will optimize
the fused localization uncertainty. In particular, let Q =
cov([x̂Li x̂Ri]) ≈ diag

[
σ2
L σ2

R

]
denote the approximate

covariance of the target coordinates xLi and xRi on the
left and right image frames, respectively, where σ2

L and σ2
R

denote the associated variances.1 Let also Ji be the Jacobian
of pi , p(xLi, xRi) evaluated at the point (x̂Li, x̂Ri). Then,
the first order (linear) approximation of pi = p(xLi, xRi)
about the point (x̂Li, x̂Ri) is p(xLi, xRi) ≈ p(x̂Li, x̂Ri) +
Ji[xLi xRi]

T. Since pi(x̂Li, x̂Ri) corresponds to the current
mean estimate of target coordinates, the covariance of pi in
the relative camera frame is nothing but JiQJT

i . This is the
standard way to propagate error from one set of variables
to another when there is linear dependence, e.g., when the
first set of variables can be written as a linear combination
of the second. However, fusing covariance matrices as in
Lemma 2.1 requires that they are represented in the global
frame. To represent the covariance JiQJT

i in global coordi-
nates, we need to rotate it by an amount corresponding to the
camera’s orientation at the time this covariance is evaluated.
Assuming that consecutive observations are close in space,
so that the camera makes a small motion during the time
interval [tk, tk+1], we may approximate the camera’s rotation
R(t) at time t ∈ [tk, tk+1] by its initial rotation R(tk) at time
tk. Then the covariance of pi, rotated to global coordinates,
at any time instant t ∈ [tk, tk+1], can be approximated by

Ui = cov[p(x̂Li, x̂Ri)] ≈ R(tk)JiQJ
T
i R

T (tk), (7)

To obtain the next best estimate of the targets’ locations
on the relative camera frame that optimizes localization
uncertainty, we define the uncertainty potential h : R2 → R+

such that

h(po,k+1) = tr
[
Uo,k+1|k+1

]
= tr

[ (
U−1o,k+1|k + U−1o

)−1 ]
, (8)

where we have used the result in Lemma 2.1. Then the
target coordinates po,k+1 that locally minimize (8) can be
determined by

po,k+1 = po,k −
∫ T

0

∂h(po,k+1(τ))

∂po,k+1
dτ. (9)

The length T > 0 of the integration interval is chosen
sufficiently small so that our assumption that R(tk) remains
approximately constant during the update holds. The follow-
ing result provides an analytical expression for the gradient
of the potential h in (9).

Proposition 3.1: The gradient of h with respect to po is
given by

∂h

∂[po]v
= tr

[
U−1

o

(
U−1

o,k+1|k + U−1
o

)−2

U−1
o

∂Uo

∂[po]v

]
, (10)

where v can be either x or z, depending on which coordinate
of po we differentiate.

The proof of Proposition 3.1 depends on the following
Lemmas, which we present without proof due to space
limitations.

Lemma 3.2: Let M be a nonsingular matrix and f(M) =
trM−1. Then, ∇Mf(M) = −M−2.

1Recall that we approximate the uniform pixelation noise as Gaussian,
hence the approximate nature of Q.
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Fig. 2. The field of view for a 2D stereo camera.

Lemma 3.3: Let C(x) be a nonsingular matrix and let x
be a scalar. Then, ∂C−1(x)

∂x = −C−1(x)∂C(x)
∂x C−1(x).

Applying Lemmas 3.2 and 3.3 to (8) gives (10), which
completes the proof of Proposition 3.1. The term ∂Uo/∂[po]v
in (10) can be found from (7) and (1) using elementary
calculus.

IV. CONTROLLING THE GLOBAL FRAME

The update in (9) provides the relative target coordinates
po,k+1 on the camera frame from where, if a new observation
k + 1 is taken, the localization uncertainty associated with
objective “o” is minimized. Our goal in this section is to
drive the camera to a new position r and orientation R in
space that realizes the next best view po,k+1. For this, let

ψ (r, R) = ‖Rpo − x̂o + r‖2F , (11)

denote a positive semidefinite function that becomes zero
only if the next best view is realized in the global frame,
where ‖ · ‖F is the Frobenious norm and we have dropped
dependence of x̂o,k+1 and po,k+1 on the observation index
to simplify notation. To capture field of view constraints, let

gi(r, R) = α2
(
eT2 R

T (x̂i − r)− c
)2 − (eT1 RT (x̂i − r)

)2
,

(12)
where φ is the field of view of the camera, α = tan(φ/2),
c = b/(2α), e1 = [1 0]T , and e2 = [0 1]T . gi(r, R) > 0 if
and only if the position x̂i of target i lies in the camera’s
field-of-view; see Fig. 2. Then, to realize the next best view
po while maintaining all targets in the camera’s field of view
we equivalently need to minimize ψ while ensuring gi > 0
for all targets i ∈ I . For this, we combine (11) and (12) in
the artificial potential function ψ̂ : R2 × SO(2)→ R+ with

ψ̂ (r, R) = ψ (r, R) + ρ
∑
i∈I

1

gi(r, R)
, (13)

where ρ > 0 is a penalty parameter. The terms 1/gi in (13)
serve as barrier potentials, since ψ̂ → ∞ whenever there
exists a target i ∈ I for which gi → 0.

To minimize the potential ψ̂, let tk > 0 denote the time
instant associated with observation k and for all time t ∈
[tk, tk+1] we define the gradient flow

ṙ = −∇rψ̂(r, R), (14a)

Ṙ = R∇Rψ̂(r, R), (14b)

on the joint space of camera positions R2 and orientations
SO(2). It is well known that if R(tk) ∈ SO(2), the gradient

∇Rψ̂(r, R) is a skew-symmetric matrix, and R(t) evolves
as in (14b), then R(t) ∈ SO(2) for all time t ∈ [tk, tk+1];
see, e.g., [26].

The benefit of the gradient flow (14b) is that it implicitly
ensures the nonconvex constraint that R(t) must be a rotation
matrix during the minimization of ψ̂. In the remainder of this
section we provide analytic expressions for the gradients in
(14) and show that the closed loop system minimizes ψ̂. In
particular, we have the following results.

Lemma 4.1: The negative gradient of ψ with respect to R
is given by the skew-symmetric matrix

∇Rψ(r, R) = po(r− x̂o)TR−RT (r− x̂o)pT
o . (15)

Proof: Using the first order approximation of the
neighborhood of the rotation matrix R, R(Ω) ≈ R(I + Ω),
where Ω is skew-symmetric, we have that

ψ(r, R(I + Ω)) =

= tr
[(
R(I + Ω)po + r− x̂o

)(
R(I + Ω)po + r− x̂o

)T ]
≈ ψ(r, R) + tr

[
(Rpo + r− x̂o)(RΩpo)T

+ (RΩpo)(Rpo + r− x̂o)T
]

= ψ(r, R) + tr
{[

po(r− x̂o)TR−RT (r− x̂o)pT
o

]
Ω
}

where we have ignored terms of the order of Ω2. Defining
the matrix inner product as 〈A,B〉 = tr(ATB) (on SO(n)
this is proportional to the Killing form), we can identify the
negative gradient of the function ψ at R by ∇Rψ(r, R) =
po(r− x̂o)TR−RT (r− x̂o)pT

o .
Lemma 4.2: The negative gradient of gi with respect to

R is given by the skew-symmetric matrix

∇Rgi(r, R) = (16)

α2
(
eT2 R

T (x̂i − r)− c
)(

e2(x̂i − r)TR−RT (x̂i − r)eT2

)
−

−
(
eT1 R

T (x̂i − r)
)(

e1(x̂i − r)TR−RT (x̂i − r)eT1

)
.

Proof: Omitted; analogous to that of Lemma 4.1.
Note that the negative gradients of the functions ψ and

gi with respect to R are both skew-symmetric matrices, as
required for (14b) to ensure that R ∈ SO(2) for all time
t ∈ [tk, tk+1]. The gradients of ψ and gi with respect to r
are

∇rψ(r, R) = 2(Rpo − x̂o + r) (17)

and

∇rgi(r, R) = 2
(
eT1 R

T (x̂i − r)
)
Re1

− 2α2
(
eT2 R

T (x̂i − r)− c
)
Re2. (18)

Then, the gradients of ψ̂ required in (14) are

∇rψ̂(r, R) = ∇rψ(r, R)− ρ
∑
i∈I

∇rgi(r, R)

g2
i (r, R)

(19a)

∇Rψ̂(r, R) = ∇Rψ(r, R)− ρ
∑
i∈I

∇Rgi(r, R)

g2
i (r, R)

, (19b)

with ∇Rψ(r, R), ∇Rgi(r, R), ∇rψ(r, R), and ∇rgi(r, R)
obtained from (15), (16), (17) and (18), respectively. Note
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Algorithm 1 Hybrid control in the relative and global frames.
Require: A position r(tk) and orientation R(tk) of the

camera and estimated positions x̂i,k of the targets, so
that gi(r(tk), R(tk)) > 0 for all targets i ∈ I .

1: Find the next best view associated with objective “o”
according to equation (9):

po,k+1 = po,k −
∫ T

0

∂h(po,k+1(τ))

∂po,k+1
dτ.

2: Move the camera according to the system (14):

ṙ = −∇rψ̂(r, R),

Ṙ = R∇Rψ̂(r, R),

for a time interval of length tk+1− tk in order to realize
the next best view po,k+1 obtained from step 1.

3: At time tk+1 observe targets and incorporate new esti-
mates and covariances into KF as in (5) and (6). Increase
the observation index k by 1 and return to step 1.

that ∇rψ̂(r, R) is a positive gradient, while ∇Rψ̂(r, R) is a
negative gradient.

V. SIMULATION RESULTS

In this section we illustrate our approach in computer
simulations. Subject to pixelated images (quantized noise),
we compare the localization performance of the proposed
two motion objectives, namely the supremum objective and
the centroid objective, to two heuristic motion plans that are
subject to the same parameters. The first of the heuristic
motion plans is the circle baseline, which guides the robot
on a circle with center at the estimated centroid of the targets.
The second heuristic, the straight baseline, guides the robot
as close to the targets as possible without allowing any to
leave the field of view. Once this limit is reached, the robot
stops and continues to take measurements. In both heuristic
motion plans, the robot is always oriented toward its current
estimate of the centroid of the targets.

All simulations were performed using image width equal
to 1024 pixels and a baseline (b from Fig. 1) of 5 cm.
The standard deviation of the Gaussian approximation to
quantization noise was set equal to 0.25 pixels. In every
simulation, the robot begins 1.5 m west of a cluster of targets,
which are placed according to a uniform random distribution
in the unit circle. The penalty parameter, ρ = 1e−5, ensured
that all targets remained within the camera’s 70◦ field of view
throughout. The circle baseline and straight baseline traveled
a distance equal to whichever proposed gradient method went
further. All motion plans made the same amount of total
observations.

Implementation of the supremum objective and the cen-
troid objective are outlined in Algorithm 1. In step 1, we set
the integration time interval T so that the distance between
po,k+1 and po,k is at most 0.1 mm, the maximum allowed
distance the camera is allowed to travel before taking a
new measurement. Once the new next best view po,k+1 has
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Fig. 3. Camera trajectories. Colors and line styles correspond to Fig. 4.
The four exes are ground truth target locations.
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Fig. 4. Per target error between ground truth and KF outputs for the four
motion plans.

been determined in the relative frame, step 2 of Algorithm 1
drives the camera in the global frame to realize po,k+1. The
camera moves until one of two events occurs. Either the
next best view is successfully realized, or the robot moved
the maximum distance.

We performed 100 simulations of the proposed gradient-
based motion plans and the heuristic baselines. Each simula-
tion began by generating a random cluster of four targets and
running 10,000 iterations of Algorithm 1. All used identical
parameters. All observations were faced with quantization
noise after pixel coordinates are rounded to the nearest
integer. Figure 3 shows an example of camera trajectories
in one of the simulations. Figure 4 shows the average
localization error per target over all simulations for the
first 15 cm traveled by each sensor. After 15 cm, which
is equivalent to 1500 observations, all methods performed
similarly, except the straight baseline, which accumulates
error once it stops moving, when it suffers from the same
quantized noise in every observation. Figure 5 is a close up
on the target marked in Figure 3. It shows the true location
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KF-output location is a red triangle and a red ellipse, while the leading
sequence are black crosses and ellipses. The x is ground truth.

of the target as well as successive estimates of its location
and its uncertainty, represented by confidence intervals for
the supremum objective.

VI. CONCLUSIONS

In this paper, we presented a novel solution to the Next-
Best-View problem using mobile stereo vision. Our approach
relied on a novel control decomposition in the relative
camera frame and the global space. In the relative frame,
we explicitly modeled uncertainty in target localization. This
allowed us to obtain the next best view using gradient descent
on appropriately defined potentials, without sampling the
pose space or having to select from a set of previously
recorded image pairs. This next best view was realized in
the global space as a result of the camera’s motion. Motion
control was due to artificial potentials that jointly controlled
the camera’s rotation and translation in order to match a
sequence of desired next best views. The integrated hybrid
system was shown to exhibit superior localization properties
compared to baseline methods operating under the same
conditions. Compared to previous gradient-based approaches,
our formulation is more precise since we take into account
the correlation between errors in range and bearing, which
are both due to quantization noise in the images, instead of
treating them as independent. Furthermore, we do not assume
omnidirectional sensors, but impose field of view constraints.
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