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Abstract— In this paper, we control image collection for a
mobile stereo camera that is actively localizing a group of
mobile targets. In particular, assuming that at least one pair
of stereo images of the targets is available, we propose a
novel approach to control the rotation and translation of the
stereo camera so that the next observation of the targets will
minimize their localization uncertainty. We call this problem
the Next-Best-View problem for mobile targets (mNBV). The
advantage of using a stereo camera is that, using triangulation,
the two simultaneous images taken by the robot during a
single observation can yield range and bearing measurements
of the targets, as well as their uncertainty. A Kalman filter
fuses the full state history and covariance estimates, as more
measurements are acquired. Our solution to the mNBV problem
determines the relative transformations between camera and
targets that will minimize the fused uncertainty of the targets’
locations. We determine a motion plan that realizes the mNBV
while respecting field of view constraints. In particular, with
every new observation, we compute a new mNBV in the frame
relative to the camera and subsequently realize this view in
global coordinates via a gradient descent algorithm that also
respects field of view constraints. Integration of mNBV with
motion planning results in a hybrid system, which we illustrate
in computer simulations.

I. INTRODUCTION

The increasing capabilities of mobile robots illuminate
the need for robotic systems that are able to operate out-
side the controlled infrastructure of lab environments. Such
environments, equipped with e.g., Vicon systems, provide
robots with continuous and precise position and orientation
information [1]. This information is not available outside the
lab, where the robots should be able to self localize. In our
previous work [2], we have shown that allowing a mobile
stereo camera to actively find the Next-Best-View of a group
of static targets in 2D is advantageous in terms of its effect
on localization accuracy. In this work, we control a 6-DOF
mobile stereo camera that observes a group of mobile targets,
which may themselves be other mobile robots.

The advantage of binocular stereo, compared to the use
of monocular camera systems, is that it provides both depth
and bearing measurements of a target from a single pair of
simultaneous images. Differentiation of these measurements
provides an estimate for the uncertainty of the target’s
location [3]–[5]. We leverage this “inherent” uncertainty of
stereo vision to define the Next-Best-View (mNBV) as the
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position and orientation of a stereo camera that, given a
sequence of observations of a group of possibly mobile
targets, minimizes their localization uncertainty.

In the computer vision literature, the NBV problem has
often been formulated as the selection of the next image from
a finite data set using sampling or grid-based methods [6]–
[12]. While these methods do obtain uncertainty estimates
that depend on factors such as viewing distance and camera
resolution, which improves accuracy in 3D reconstruction,
they do not continuously guide the image collection process,
consider dynamic environments or mobile targets.

Approaches capable of computing the mNBV position
have been proposed in the cooperative localization litera-
ture [13]–[19]. They approximate the target location error
covariance matrix, which captures the uncertainty, using
abstract sensor models, often treating range and bearing
measurement uncertainty as independent of range or in-
dependent of each other. Instead, in this work we show
how to leverage the true sensing uncertainty for mNBV
determination. Assuming noise is dominated by quantization
of pixel coordinates and propagating uncertainty from pixel
to target coordinates, we obtain more accurate estimates of
the structure of the covariance matrix. This is true for both
the instantaneous covariance of one measurement and for the
filtered covariance of the full sequence of measurements. As
a result, our proposed controller guides the robot to more
effective viewing positions compared to other approaches.
Specifically, we first determine the mNBV, expressed as an
optimal transformation between sensor and target, and then
realize it by moving the camera via a gradient descent on
an artificial potential that additionally respects field-of-view
constraints. The robot moves until a next observation is
made, which is used to determine a new next best viewing
position to be realized. Integration of mNBV with continuous
motion planning gives rise to a hybrid system that drives a
robot in the direction that minimizes localization uncertainty
of the mobile targets.

The paper is organized as follows. Section II outlines the
system model, the assumptions made, and the details of the
Kalman filter (KF), which fuses the observation sequence in
real time. Section III determines the mNBV in the camera
coordinate system. Section IV realizes the mNBV in the
global coordinate frame. Sections V and VI show simulations
of our approach and conclude the paper.

II. SYSTEM MODEL & PROBLEM FORMULATION

Consider a group of n mobile targets, indexed by i ∈ N =
{1 . . . N}, with initially unknown positions xi. Consider also
a mobile, stereo, camera located at r(t) ∈ R3 and with
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Fig. 1. Stereo geometry in 3D. Two rays from the camera centers to a target
located at pi creates a pair of image coordinates, (xL, y) and (xR, y).

orientation R(t) ∈ SO(3), which is the special orthogonal
group of dimension three, with respect to the global frame
at time t ≥ 0. The relative coordinate frame is anchored
to the stereo camera. This frame, hereafter referred to as
the relative coordinates, is oriented such that, without loss
of generality, the x-axis joins the centers of two monocular
cameras and the positive z-axis measures range. We denote
the two cameras by (L) and (R). The (L) and (R) camera
centers are located at (−b/2, 0, 0) and (b/2, 0, 0) in the
relative coordinates, where b denotes the baseline.

The position of target i with respect to the relative camera
frame is

pi , p(xLi, xRi, yi) =




b(xLi+xRi)
2(xLi−xRi)

byi
xLi−xRi

bf
xLi−xRi


 , (1)

where f denotes the focal length of the camera lens, mea-
sured in pixels, and xLi, xRi, and yi denote the coordinates
of target i, measured in pixels, on the left and right camera
images, as in Fig. 1, noting that yi is equal in each image
by the epipolar constraint. Since the actual coordinates of
target i on the two images can be anywhere within these
pixels, we may assume that they are uniformly distributed
around the pixel centers. We denote the pixel centers by
x̂Li, x̂Ri, and ŷi, which now take values in Z. In view of
(1), the above pixelation errors on the images work their
way in the coordinates pi of target i in space causing non-
Gaussian error distributions [3], [5]. For convenience, we
follow [4], [20] and approximate the uniform pixelation
errors as Gaussian to allow uncertainty propagation from
image to world coordinates. Under this assumption, the
localization error of the target in the relative camera frame
will also be Gaussian with mean p̂i = p(x̂Li, x̂Ri, ŷi) and
covariance Σi ∈ S3

+ in global coordinates, where S3
+ denotes

the set of 3 × 3 symmetric positive definite matrices. An
analytical representation of Σi,k is given in Section III.

A. Kalman Filtering for Mobile Targets

Now, assume that the stereo camera has made a sequence
of observations of the mobile targets. Introduce an index

k ≥ 0 associated with every observation such that yi,k ∈ R3

denotes the observation and Σi,k ∈ S3
+ denotes its associated

covariance, which is always in the global frame.
The goal of localization is to create accurate state informa-

tion for a group of targets based on these observations. We
consider the history of measurements with a Kalman filter
(KF), which is an efficient information filter that incorporates
noisy observations within a system model to create accurate
state estimates [18].

Let zi = [xTi ẋTi ẍTi ]T be the true state of target i. Since
observations are discrete events, we model the continuous
time evolution of zi with the discrete time linear system

zi,k = Φzi,k−1 + ui,k−1, (2a)
yi,k = Hzi,k + vi,k, (2b)

where H = [I3×3 03×6], Φ is the state transition matrix,
ui,k−1 and vi,k are noise terms, and cov(vi,k) = Σi,k. The
specific nature of Φ and u, including time-based adaptations
and initialization procedures, is well studied from the per-
spective of mobile target tracking [21], [22]. In Section V,
we use a constant acceleration model for Φ. The term ui,k−1

can be used to account for variations in the acceleration;
see [21]. If a priori knowledge of the target trajectories is
available, more specific models of Φ can be used. For any
target motion model, denote by ẑi the estimate of zi. Also,
denote the covariance of ẑi−zi by Ui. Given prior estimates
ẑi,k−1|k−1 and Ui,k−1|k−1, the Kalman Filter for target i is

ẑi,k|k−1 = Φẑi,k−1|k−1, (3a)

Ui,k|k−1 = ΦUi,k−1|k−1ΦT +Wk, (3b)

Kk = Ui,k|k−1H
T
[
HUi,k|k−1H

T + Σi,k
]−1
, (3c)

ẑi,k|k = ẑi,k|k−1 +Kk

[
yi,k −H ẑi,k|k−1

]
, (3d)

Ui,k|k = Ui,k|k−1 −KkHUi,k|k−1, (3e)

where Wk is process noise related to ui,k, which is explicitly
given in [21], along with a simple initialization protocol.
From equation (3e) and the results of [23], a closed form
expression for the fused covariance estimate follows in the
form of a Lemma. The proof is omitted.

Lemma 2.1: Let Ui,k|k−1 denote the fused covariance of
all prior observations and Σi,k denote the covariance of the
most recent measurement. Then, the location estimate of
target i, H ẑi,k|k, has a covariance matrix, which we hereafter
denote by Ξi,k, given by

Ξi,k , HUi,k|kH
T =

[(
HUi,k|k−1H

T
)−1

+ Σ−1
i,k

]−1

. (4)

B. The Mobile Next Best View Problem

Suppose there have been k − 1 observations of the group
of mobile targets in N , and let

HUs,k|k−1H
T with s = argmax

j∈N

{
tr
[
HUj,k|k−1H

T
]}

(5)
denote the predicted covariance of the worst localized target
and

HUc,k|k−1H
T =

1

n
H
∑

i∈N
Ui,k|k−1H

T . (6)



denote the average of all predicted target covariances at
iteration k. The problem that we address in this paper is
as follows.

Problem 1 (Next Best View): Given the predicted covari-
ance of the worst localized target HUs,k|k−1H

T (respec-
tively, the average of the targets’ predicted covariances
HUc,k|k−1H

T ) and the predicted next location zs,k|k−1 of
target s (respectively, the average of the targets’ predicted
locations zc,k|k−1), determine ps,k (respectively, pc,k) so
that tr[Ξs,k] (respectively, tr[Ξc,k]) is minimized.

In problem 1, we have chosen the trace as a measure of
uncertainty among other choices, such as the determinant
or the maximum eigenvalue. It is shown in [24] that all
such criteria behave similarly in practice. Since minimization
of tr[Ξs,k] is associated with improving localization of the
worst localized target, we call it the supremum objective. We
call minimization of tr[Ξc,k] the centroid objective. Clearly,
Ξs,k will depend only on the predicted next position of the
worst localized target, which we denote by ps,k, but Ξc,k will
depend on the predicted next positions pi,k∀i ∈ N . Attempt-
ing to find a pc,k that solves Problem 1 by controlling the
relative coordinates pi of all targets simultaneously requires
a nonconvex constraint to maintain consistency between
images. Instead, we place a virtual target at the centroid,
pc = 1

n

∑
i∈N pi. The centroid serves as a proxy for all

targets.
In what follows, we decompose optimization of the above

objectives in the relative camera frame and the global frame.
Integration of the two stages results in a hybrid control
scheme, where the next best views obtained by every new
observation correspond to the switching signal in the contin-
uous motion of the camera.

III. CONTROLLING THE RELATIVE FRAME

Assume that k − 1 observations are already available and
let tk denote the time instant corresponding to the k-th
observation. Our goal in this section is to determine the
next best target location proxies ps,k or pc,k on the relative
camera frame so that if a new observation is made at time
tk with the targets at these new relative locations, the fused
localization uncertainty, which is captured by Ξs,k or Ξc,k,
is optimized. For this, we need to express the instantaneous
covariance Σi of target i as a function of its relative position
pi for any time t ∈ [tk−1, tk]. Let

Q = cov([x̂Li x̂Ri ŷi]) ≈ diag
[
σ2
L σ2

R σ2
y

]
(7)

denote the approximate covariance of the error in target
coordinates image frames, respectively, where σ2

L, σ2
R, and

σ2
y denote the associated variances.1 Also let Ji be the

Jacobian of pi , p(xLi, xRi, yi) evaluated at the point
(x̂Li, x̂Ri, ŷi). Then, the first order (linear) approximation
of pi = p(xLi, xRi, yi) about the point (x̂Li, x̂Ri, ŷi) is

p(xLi, xRi, yi) ≈ p(x̂Li, x̂Ri, ŷi) +Ji[xLi xRi yi]
T. (8)

1Recall that we approximate the uniform pixelation noise as Gaussian,
hence the approximate nature of Q.

Since pi(x̂Li, x̂Ri, ŷi) corresponds to the current mean esti-
mate of target coordinates, it is constant in (8). Therefore,
the covariance of pi in the relative camera frame is JiQJTi .
Fusing covariance matrices as in Lemma 2.1 requires that
they are represented in the same coordinate system. To
represent the covariance JiQJ

T
i in global coordinates, we

need to rotate it by an amount corresponding to the cam-
era’s orientation at the time this covariance is evaluated.
Assuming that consecutive observations are close in space,
so that the camera makes a small motion during the time
interval [tk−1, tk], we may approximate the camera’s rotation
R(t) at time t ∈ [tk−1, tk] by its initial rotation R(tk−1).
Dropping the time index, i.e. R(tk−1) ≈ R, the instantaneous
covariance of pi at any time instant t ∈ [tk−1, tk] can be
approximated by

Σi = cov[p(x̂Li, x̂Ri, ŷi)] ≈ RJiQJTi RT. (9)

In view of (1), the covariance in (9) is clearly a function of
the target coordinates on the relative image frame.

To determine the vector po,k that minimizes localization
uncertainty, we define the uncertainty potential,

h(po,k) = tr
[
Ξo,k

]
, (10)

where o stands for ‘objective’ and can be either s or c,
depending on the objective that is used to obtain the next
best view [cf. (5) and (6)]. Then, a gradient descent step for
the minimization of h is

po,k = po,k−1 −
∫ T

0

∇h (po(τ)) dτ. (11)

The length T > 0 of the integration interval is chosen so
that the distance between po,k and po,k+1 is less than the
maximum distance the robot can travel before another NBV
is calculated at time tk. The following result provides an
analytical expression for the gradient of the potential h in
(11). Here, the relative velocities of the targets play a key
role in determining ∂Σo

∂po
.

Proposition 3.1: The j-th coordinate of the gradient of h
with respect to po is given by

[∇h (po)]j = tr

{
Σ−1
o Ξ2

o,kΣ−1
o

[
∂Σo
∂po

]

j

}
, (12)

where
[
∂Σo

∂po

]
j

is the j-th coordinate of the gradient of Σo

with respect to the individual coordinates of po, and j =
1, 2, 3, corresponding to the three coordinates of po.
The proof of Proposition 3.1 is omitted.

IV. CONTROLLING THE GLOBAL FRAME

The update in (11) provides the relative target coordinates
on the camera frame where, if the next observation of target
o at time tk is at po,k, the localization uncertainty associated
with objective “o” is minimized. Our goal in this section is
to determine a new camera position r(tk) and orientation
R(tk) in space and that realizes the mNBV defined by po,k
from (11). For this, let

ψ (r, R) = ‖Rpo − x̂o + r‖2F , (13)
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Fig. 2. The field of view for a stereo camera in the xz plane. The field
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denote a positive semidefinite function that becomes zero
only if the next best view is realized in the global frame,
where ‖·‖F is the Frobenious norm and to simplify notation
we have dropped dependence of x̂o,k and po,k on the
observation index k.

The stereo setup is not omnidirectional. For a 3D point to
appear in a given image, the point must lie within the field
of view of the stereo pair as the robot rotates and translates
in an effort to minimize (13). The two cameras are identical
to each other; they have square images with the same field
of view, which is determined by the image width w and the
focal length, f . Denote by S the set of points in relative
coordinates that are visible to both cameras in the pair. In
Fig. 2, this set is given by the blue shaded polyhedron

S =

{
(x, y, z) ∈ R3 : |x| ≤ wz − bf

2f
, |y| ≤ zw

2f
, z >

bf

w

}
,

(14)

which is the intersection of two pyramids facing the positive
z direction with vertices located at the two camera centers.
Note that the intersection of the two pyramids is located at
z = bf

w , and therefore any point with z < bf
w can not be in

view of both cameras.
In (14), any feasible target location in relative coordinates

can be written as

(xi, yi, zi)
T , pi(r, R) = RT (x̂i − r) (15)

In view of (14) and (15), we constrain the control variables
(r, R) during the minimization of ψ(r, R) to the set

D = {(r, R) ∈ R3 × SO(3) : (xi, yi, zi) ∈ S ∀ i ∈ N}.
(16)

Define, further, the functions

φi1(r, R) =

(
wzi − bf

2f

)2

− x2
i , (17)

φi2(r, R) =

(
wzi
2f

)2

− y2
i , φi3(r, R) = z2

i −
(
bf

w

)2

,

that are positive if (r, R) ∈ D, where xi, yi and zi are given
in (15) as functions of r and R. Given a vector po, an initial
pose

(
r(tk−1), R(tk−1)

)
, and an estimate of target locations

x̂i for i = 1, . . . , n, our goal is to solve the problem

min
(r,R)

ψ (r, R) s.t. φij(r, R) ≥ 0 ∀i ∈ N , j = 1, 2, 3, (18)

where (r, R) ∈ R3 × SO(3). We solve problem (18) by
designing a gradient flow on the space of rotations and

translations that minimizes ψ while respecting the field of
view constraints. We enforce the field of view constraints
using a barrier method, which incorporates them into the
objective function. Specifically, since the initial pose satisfies
(r(tk−1), R(tk−1)) ∈ D, we choose 1

φij
as suitable barriers,

since 1
φij
→ +∞ if any φij → 0 from the right. This gives

rise to the objective function,

ψ̂ (r, R) = ψ (r, R) +
ρ

n

∑

i∈N

3∑

j=1

1

φij(r, R)
, (19)

where ρ > 0 is a penalty parameter and multiplication by
1/n ensures that the number of targets does not affect the
strength of the penalty.

Letting tk−1 > 0 denote the time instant associated with
observation k − 1 and for all time t ∈ [tk−1, tk], we define
the gradient flow

ṙ = −K∇rψ̂(r, R), (20a)

Ṙ = −R∇Rψ̂(r, R), (20b)

on the joint space of camera positions R3 and orienta-
tions SO(3). K is a positive gain for numerical purposes.
Equations (20), ensure that if R(tk−1) ∈ SO(3) and R(t)
evolves as in (20b) and ∇Rψ̂(r, R) is skew-symmetric, then
R(t) ∈ SO(3) for all time t ∈ [tk−1, tk], see, e.g., [25].

A. Gradients of the Global Potential Function

In the remainder of this section we provide analytic ex-
pressions for the gradients in (20). In particular, the gradient
of ψ with respect to r and R are given by

∇rψ = 2(Rpo − x̂o + r) (21a)

∇Rψ = RT (r− x̂o)p
T
o − po(r− x̂o)

TR. (21b)

Equation (21b) is obtained by taking the first order approx-
imation of ψ in a neighborhood of R, defined as R(I + Ω)
with Ω a skew-symmetric matrix and using the fact that the
matrix inner product is defined by 〈A,B〉 = tr(ATB).

The gradients of 1
φij

with respect to r and R are available
through the chain rule:

∇r
1

φij
=
−1
φ2
ij

∂φij

∂xi
∇rxi −

1

φ2
ij

∂φij

∂yi
∇ryi −

1

φ2
ij

∂φij

∂zi
∇rzi,

(22a)

∇R
1

φij
=
−1
φ2
ij

∂φij

∂xi
∇Rxi −

1

φ2
ij

∂φij

∂yi
∇Ryi −

1

φ2
ij

∂φij

∂zi
∇Rzi.

(22b)

The coefficient derivatives in (22) are elementary. Next, the
gradients of xi, yi, and zi with respect to R are given by the
skew symmetric matrices

∇Rxi = (1/2)
[
RT (x̂i − r)eT1 − e1(x̂i − r)TR

]
, (23a)

∇Ryi = (1/2)
[
RT (x̂i − r)eT2 − e2(x̂i − r)TR

]
, (23b)

∇Rzi = (1/2)
[
RT (x̂i − r)eT3 − e3(x̂i − r)TR

]
, (23c)

where e1, e2, and e3 are unit vectors of the standard basis.
Finally, the gradients of xi, yi, and zi with respect to r are

∇rxi = −Re1, ∇ryi = −Re2, and ∇rzi = −Re3.
(24)



0 0.5 1 1.5 −0.5 0 0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Y (m)
X (m)

Z
(m

) Fig.4
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Fig. 4. A closeup of the trajectories Fig. 3. The final KF-output locations
are plotted as × with lines to connect them to guide the eye. The ground
truth target locations are plotted as •. Each of the camera’s outputs are
plotted, and the colors correspond to the legend in Figs. 5, 6, and 7.

Combining (21), (22), (23), and (24), the gradients of ψ̂(r, R)
as required in (20) are

∇rψ̂ (r, R) = ∇rψ +
ρ

n

∑

i∈N

3∑

j=1

∇r
1

φij
, (25a)

∇Rψ̂ (r, R) = ∇Rψ +
ρ

n

∑

i∈N

3∑

j=1

∇R
1

φij
. (25b)

Note that (25b) is a skew-symmettric matrix.

V. SIMULATION RESULTS

In this section, we illustrate our approach in computer
simulations. Subject to pixelated images (quantized noise),
we compare the localization performance of the proposed
two motion objectives, namely the supremum objective and
the centroid objective. All simulations were performed using
image width equal to 1024 pixels and a baseline (b from
Fig. 2) of 10 cm. The standard deviation of the Gaussian
approximation to quantization noise was set equal to 1 pixel.

In each simulation, the stereo cameras localize a group of
mobile targets that fly in the Olympic ring pattern, which
represents a difficult maneuvering task for unmanned aerial
vehicles, in which precise localization would be critical.
The three upper target trajectories move counterclockwise
while the two lower trajectories move clockwise at 0.5 m/s.
Although the group’s motion is not a priori known to the
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Fig. 5. The minimum, mean, maximum errors localization from the centroid
objective, averaged over 100 simulations.
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Fig. 6. The minimum, mean, maximum errors localization from the
supremum objective, averaged over 100 simulations.

cameras, the cameras use the constant acceleration model of
target motion. This model is integrated into the respective
Kalman Filters. The penalty parameter, ρ = 1e−2, ensured
that all targets remained within the 70◦ field of view.

Given a frame rate and sensor speed, which for our
simulations were set equal to 30 fps and 1 m/s, we set
the integration time interval T so that the distance between
po,k+1 and po,k is the distance the camera travels before
taking a new measurement. Once the new mNBV po,k+1

has been determined in the relative frame, the camera drives
(in the global coordinates) to realize po,k+1. The gain for the
global update was K = 0.1. The camera moves until one of
two events occurs. Either the next best view is successfully
realized, or the robot moved the maximum distance.

We show the results of 100 simulations. The initial camera
location in each simulation was a random point on a sphere
centered at the origin of the XY Z coordinate system shown
in Figure 3. The orientation was initialized toward the
centroid of the targets. All observations were faced with
quantization noise after pixel coordinates are rounded to the
nearest integer.

Figure 3 shows an example of camera trajectories in one
of the simulations. Figure 4 plots the KF location outputs
on top of the actual target trajectories from one of the
100 simulations that were used to create Figs. 5, 6, and 7.
Figures 5 and 6 show the localization error per target for
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the centroid and supremum objectives, averaged over 100
simulations. Figure 7 shows the values of the trace of the
average of all target covariance matrices.

Figures 5 and 6 suggest that both objectives achieve local-
ization resolution of <1.5 cm of fast and nonrigidly moving
point targets. Because of the symmetry in the data set, the
centroid objective is advantaged, which is why it outperforms
the supremum objective in Figure 7. We also performed
simulations with asymmetric data sets and outliers, which
favored the supremum objective. Note that, in Figures 5 and
6, the difference between the maximum and mean errors for
the centroid objective is greater than it is for the supremum
objective. This is because the centroid objective algorithm
gives less weight to the poorest localized target in favor of
the majority. Any nondecreasing properties in Figures 5, 6,
and 7 appear due to quantized observations. The correlation
coefficient between the mean target error in Figures 5 and 6
and the average of the traces of the updated covariances from
Figure 7 is 0.98 for the centroid objective and 0.90 for the
supremum objective. Overall localization accuracy could be
further improved by a priori knowledge of motion model,
on-line adaptive modeling [22], and multiple observers.

VI. CONCLUSIONS

In this paper, we posed the localization problem for
moving targets in 3D as the mobile Next-Best-View (mNBV)
problem. Our approach relied on a novel control decom-
position that was designed to iteratively reduce sensing
uncertainty. In the relative frame, we explicitly modeled
uncertainty in target localization with stereo vision. We inte-
grated this information via Kalman Filtering, which provided
accurate covariances and target location predictions. This
allowed us to obtain the mNBV using gradient descent on
appropriately defined potentials, without sampling the pose
space or having to select from a set of previously recorded
image pairs. The camera’s motion in the global space realized
the mNBV via the potentials, jointly guiding the camera
location and orientation to match a sequence of desired next
best views. Compared to previous gradient-based approaches,
our integrated hybrid system is more precise since we take
into account the correlation between errors in range and bear-
ing, which are both due to quantization noise in the images,
instead of treating them as independent. Furthermore, we do

not assume omnidirectional sensors, but impose field of view
constraints.
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