
Do End-to-end Stereo Algorithms Under-utilize Information?

Changjiang Cai
ccai1@stevens.edu

Philippos Mordohai
mordohai@cs.stevens.edu

Stevens Institute of Technology

Abstract

Deep networks for stereo matching typically leverage 2D
or 3D convolutional encoder-decoder architectures to ag-
gregate cost and regularize the cost volume for accurate dis-
parity estimation. Due to content-insensitive convolutions
and down-sampling and up-sampling operations, these cost
aggregation mechanisms do not take full advantage of the
information available in the images. Disparity maps suf-
fer from over-smoothing near occlusion boundaries, and
erroneous predictions in thin structures. In this paper, we
show how deep adaptive filtering and differentiable semi-
global aggregation can be integrated in existing 2D and
3D convolutional networks for end-to-end stereo matching,
leading to improved accuracy. The improvements are due
to utilizing RGB information from the images as a signal
to dynamically guide the matching process, in addition to
being the signal we attempt to match across the images.
We show extensive experimental results on the KITTI 2015
and Virtual KITTI 2 datasets comparing four stereo net-
works (DispNetC, GCNet, PSMNet and GANet) after inte-
grating four adaptive filters (segmentation-aware bilateral
filtering, dynamic filtering networks, pixel adaptive con-
volution and semi-global aggregation) into their architec-
tures. Our code is available at https://github.com/
ccj5351/DAFStereoNets.

1. Introduction
Progress in learning based stereo matching has been

rapid from early work that focused on aspects of the stereo
matching pipeline [32], such as similarity computation [43],
to recent end-to-end systems [7, 23, 29, 45]. What is re-
markable is that the evolution of learning based stereo has
largely mirrored that of conventional algorithms: initial
end-to-end systems resembled winner-take-all stereo with
the disparity of each pixel determined almost independently
based on a small amount of local context, while GA-Net
[45], arguably the most effective current algorithm, includes
a differentiable form of the Semi-Global Matching (SGM)
algorithm [20], which has been by far the most popular con-

ventional optimization technique for over a decade.
Despite their success, deep stereo networks seem to

under-utilize information present in their inputs. Specifi-
cally, in this paper we demonstrate how many existing net-
works leverage RGB information from the images to extract
features that facilitate matching, but leave additional infor-
mation unexploited. We show that the accuracy of represen-
tative network architectures can be improved by integrating
into them modules that are sensitive to pixel similarity, im-
age edges or semantics and act like adaptive filters.

In our experiments, we have integrated four components
that can be thought of as adaptive or guided filters into
four existing networks for stereo matching. Specifically, we
have experimented with segmentation-aware bilateral filter-
ing (SABF) [17], dynamic filtering networks (DFN) [22],
pixel adaptive convolution (PAC) [34] and semi-global ag-
gregation (SGA) from GANet [45] integrated into Disp-
NetC [29], GCNet [23], PSMNet [7], and GANet [45]. The
set of filters is diverse: SABF, for example, is pre-trained
to embed its input via a semantic segmentation loss, while
SGA aggregates matching cost along rows and columns of
cost volume slices. The backbone networks are also diverse,
spanning 2D [29] and 3D [7, 23] convolutional networks
and GANet that foregoes 3D convolutions in favor of the
SGM-like aggregation mechanism. The number of parame-
ters of the backbones ranges from 2.8 to 42.2 million.

The contributions of this paper are:
• Several novel deep architectures for stereo matching.
• Evidence that further progress in stereo matching is

possible by leveraging image context as guidance for
refinement, filtering and aggregation of the matching
volume.

• A comparison of four filtering methods leading to the
conclusion that SGA typically achieves the highest ac-
curacy among them.

2. Related Work
We review deep learning based end-to-end stereo match-

ing and content-guided or adaptive filtering in CNNs.
End-to-end Stereo Matching. End-to-end stereo match-
ing methods can be generally grouped into two categories:

1

https://github.com/ccj5351/DAFStereoNets
https://github.com/ccj5351/DAFStereoNets

2D CNNs for correlation-based disparity estimation and 3D
CNNs for cost volume based disparity regression.

A representative work in the first category is DispNetC
[29]. It computes the correlations among features between
stereo views at different disparity values, and regresses
the disparity via an encoder-decoder 2D CNN architecture.
Many other methods [26, 31, 33, 36, 41, 42, 44] extend this
paradigm. CRL [31] employs a two-stage network for cas-
cade disparity residual learning. Feature constancy is added
in iResNet [26] to further refine the disparity. SegStereo
[41], DSNet [44] and EdgeStereo [33] are multi-task learn-
ing approaches jointly optimizing stereo matching with se-
mantic segmentation or edge detection.

State-of-the-art stereo networks [7, 16, 23, 45] largely
fall in the second category. Different than the correlation
based cost volume in 2D-CNN stereo networks, 3D-CNNs
generate a 4D cost volume by concatenating the deep fea-
tures from the Siamese branches along the channel dimen-
sion at each disparity level and each pixel position. GCNet
[23] and PSMNet [7] apply 3D convolutional layers for cost
aggregation, followed by a differentiable soft-argmin layer
for disparity regression. GwcNet [16] leverages group-wise
correlation of channel-split features to generate a hybrid
cost volume that can be processed by a smaller 3D convo-
lutional aggregation sub-network. GANet [45] includes lo-
cal guided aggregation (LGA) and semi-global aggregation
(SGA) layers for efficient cost aggregation which are com-
plementary to 3D convolutional layers. LGA aggregates the
cost volume locally to refine thin structures, while SGA is a
differentiable counterpart of SGM [20].

Content Guided and Adaptive Filtering in CNNs. Exist-
ing content-adaptive CNNs fall into two general classes. In
the first class, conventional image-adaptive filters (e.g. bilat-
eral filters [1, 35], guided image filters [18] and non-local
means [2, 4], among others) have been adapted to be differ-
entiable and used as content-adaptive neural network lay-
ers [6, 8, 9, 14, 21, 24, 27, 28, 37, 38, 46]. Wu et al. [38]
propose novel layers to perform guided filtering [18] inside
CNNs. Wang et al. [37] present non-local neural networks
to mimic non-local means [4] for capturing long-range de-
pendencies. The bilateral inception module by Gadde et
al. [14] can be inserted into existing CNN segmentation ar-
chitectures for improved results. It performs bilateral fil-
tering to propagate information between superpixels based
on the spatial and color similarity. Harley et al. [17] inte-
grate segmentation information in the CNN by firstly learn-
ing segmentation-aware embeddings, then generating local
foreground attention masks, and combining the masking
filters with convolutional filters to perform segmentation-
aware convolution (see details in Sec. 3.2). Deformable
convolutions [12, 47] produce spatially varying modifica-
tions to the convolutional filters, where the modifications
are represented as offsets in favor of learning geometric-

invariant features. Pixel adaptive convolution (PAC) [34]
mitigates the content-agnostic drawback of standard convo-
lutions by multiplying the convolutional filter weights by a
spatial kernel function. PAC has been applied in joint image
upsampling networks [25] and in a learnable dense condi-
tional random field (CRF) framework [9, 21, 24, 46]. See
Sec. 3.2 for more details.

Another class of content-adaptive CNNs focuses on
learning spatial position-aware filter weights using separate
sub-networks. These approaches are called “Dynamic Filter
Networks” (DFN) [22, 39, 40] or kernel prediction networks
[3], which have been used in several computer vision tasks.
Jia et al. [22] propose the first DFN where the convolutional
filters are generated dynamically depending on input pix-
els. The filter weights, provided by a filter-generating net-
work conditioned on an input, are applied to another input
through the dynamic filtering layer (see details in Sec. 3.2).
It is extended by Wu et al. [39] with an additional attention
mechanism and a dynamic sampling strategy to allow the
position-specific kernels to also learn from multiple neigh-
boring regions.

3. Approach

In this section, we describe our approach for adapting
state-of-the-art stereo matching networks [7, 23, 29, 45] by
integrating deep filtering techniques to improve their accu-
racy. We show how four filtering techniques, segmentation-
aware bilateral filtering (SABF) [17], dynamic filtering net-
works (DFN) [22], pixel adaptive convolution (PAC) [34]
and semi-global aggregation (SGA) [45], can be used to fil-
ter the cost volume for accurate disparity estimation.

3.1. Cost Volume in Stereo Matching

Given a rectified stereo pair IL and IR with dimen-
sions H × W (H: height, W : width), stereo matching
finds the correspondence between a reference pixel pL in
the left image IL and a target pixel pR in the right image
IR. The cost volume (or matching volume) C is defined
as a 3D or 4D tensor with dimensions D × H × W or
2F ×D ×H ×W (D: disparity range, F : feature dimen-
sionality for each of the views), to represent the likelihood
of a reference pixel pL(u, v) corresponding to a target pixel
pR(u − d, v), with disparity d ∈ [0, D). Its construction
is illustrated in Fig 1. Specifically, the extracted left fea-
ture vector fL(u, v) ∈ RF of the reference pixel pL(u, v)
is either correlated (in 2D CNNs e.g. DispNetC [29] and
iResNet [26]) or concatenated (in 3D CNNs e.g. GCNet
[23], PSMNet [7] and GANet [45]) with the corresponding
feature fR(u− d, v) ∈ RF of the target pixel pR(u− d, v),
for each disparity d ∈ {0, . . . , D − 1}. It is formulated in
Eq. 1:

2

W

H

Left Feature

Right Feature

W

H

D

!

"!($, &) ∈ ℝ"

" #
$−

+ $
,&

∈
ℝ"d%d&d$… …

∀+'∈ [0, !)

"! $, & ∈ ℝ"

!01234056 !

" #
$−

+ &
,&

∈
ℝ"

" #
$−

+ %
,&

∈
ℝ"

"# $ − +', & ∈ ℝ"

2D CNNs: Correlation

3D CNNs: Concatenation

… …

… …

!!

!"
7(!,*,+ =< "! ($,&), "# $−+',& >

(a) (b) (c)

CD-1 Cd C0… …

… …

!!

!"
7(!,*,+ = ["! $, & , "# $ − +' , &]

… …

!01234056 !

!01234056 !

(d)

2D CNNs: Correlation V.S.
3D CNNs: Concatenation

7(!,*,+ = ["! $, & , "# $ − +' , &] ∈ ℝ$,

Cost Volume Slice Cd , ∀$ ∈ [0,))

<< ,<>

[< ,<]

7(!,*,+ =< "! $, & , "# $ − +' , & >∈ ℝ&

W

H

Figure 1: Cost volume in 2D and 3D CNNs for stereo matching. (a) Deep features are extracted for each view. (b) A left
feature vector fL(u, v) and several counterparts fR(u − di, v), at disparity di ∈ [0, D). (c) The left feature vector is either
correlated (top branch for 2D CNNs) or concatenated (bottom branch for 3D CNNs) with the corresponding right feature
vectors. (d) The cost volume, including the highlighted cost volume slice Cd (green), cost volume fiber Cu,v (blue) and cost
feature Cd,u,v (light blue) that is a scalar for 2D CNNs or a vector for 3D CNNs.

Cd,u,v =

{
〈fL(u, v), fR(u− d, y)〉 ∈ R1 2D CNNs

[fL(u, v), fR(u− d, v)] ∈ R2F 3D CNNs
(1)

where 〈·, ·〉 denotes correlation, [·, ·] indicates concatena-
tion, resulting in a 3D or 4D tensor for 2D and 3D CNNs,
respectively. We denote a cost volume slice at disparity d
by Cd (i.e., Cd = Cd,u,v|u=1:W ;v=1:H).

3.2. Content-Adaptive Filtering Modules

In this subsection, we present four content-adaptive fil-
tering approaches which can be effectively incorporated as
content-adaptive CNN layers in state-of-the-art networks
for end-to-end stereo matching.

3.2.1 Segmentation-aware Bilateral Filtering Module

Segmentation-aware bilateral filtering (SABF) [17] was
proposed to enforce smoothness while preserving region
boundaries or motion discontinuities in dense prediction
tasks, such as semantic segmentation and optical flow es-
timation. As shown in Fig. 2, here we adapt the SABF to
stereo matching to filter the cost volume C (Sec. 3.1), by (i)
learning to embed in a feature space where semantic dissim-
ilarity between pixels can be measured by a distance func-
tion [10]; (ii) creating local foreground (relative to a given
pixel) attention filters Ksabf ; (iii) filtering the cost volume
C so as to capture the relevant foreground and be robust to
appearance variations in the background or occlusions.

K

!(2,(2 !4,(2 !2,(2

!(2,4 !4,4 !2,4

!(2,2 !4,2 !2,2

K

%"
(

Embedding Network

:1

Em
bed

din
g

$'

$'
&&"

$(&!"!", &#,#) $(&#,!", &#,#) $(&",!", &#,#)

$(&!",# , &#,#) K(&#,# ,&#,#) $(&",#, &#,#)

$(&!",", &#,#) $(&#,", &#,#) $(&",", &#,#)

EBF Module

Segmentation-aware Bilateral
Filtering (SABF) Module

Gaussian Bilateral Filter

Figure 2: Integrating the segmentation-aware bilateral filter-
ing (SABF) module. The upper branch shows the embed-
ding e is learned by an embedding network from an input
image IL. Pairwise embedding distances are converted (Eq.
4) to SABF filter weights K, as shown at the bottom. The
overall figure shows how SABF filters a cost volume slice
Cd to obtain a segmentation-aware filtered result C′d.

Learning the Embedding. Given an RGB image I,
consisting of N pixels q, and its semantic segmentation
label map l, the embedding function is implemented as
an Embedding Network (see the detailed architecture in
supplement) that maps pixels into an embedding space as
f : R3 7→ R64, or f(q) = e, where e ∈ R64 is the em-
bedding for RGB pixel q, with 64 as the dimension of the
embedding space. See Fig. 2. The embeddings are learned
via a loss function over pixel pairs sampled in a neighbor-
hood around each pixel. Specifically, for any two pixels pi

3

and pj and corresponding object class labels li and lj , the
pairwise loss is:

`i,j =

{
max(||ei − ej ||1 − α, 0) if li = lj

max(β − ||ei − ej ||1, 0) if li 6= lj
(2)

where || · ||1 indicates the L1-norm, and the thresholds are
α = 0.5 and β = 2. Therefore, the total loss for all the
pixels in the image I is defined in Eq. 3:

L =

N−1∑
i=0

∑
j∈Ni

`i,j (3)

where j ∈ Ni spans the spatial neighbors of index i. We
follow the implementation of Harley et al. [17] where three
overlapping 3 × 3 neighborhoods with dilation rates of 1,
2, and 5 are used for a good trade-off between long-range
pairwise connectivity and computational efficiency.
Applying the SABF Layer. Once the embedding is
learned, the SABF filter weights are obtained by converting
the pairwise distance between ei and ej into (unnormalized)
probabilities using two Gaussian distributions as in Eq. 4:

Ksabf
i,j = exp

(
−||pi − pj ||2

2σ2
s

− ||ei − ej ||2

2σ2
r

)
(4)

where σs and σr are two predefined standard deviations.
Then, given an input feature xi, we can efficiently compute
a segmentation-aware filtered result yi via the SABF layer:

yi =

∑
k∈Ω(i) xkK

sabf
i,k∑

k∈Ω(i)K
sabf
i,k

(5)

where Ω(·) defines an s × s (e.g., 5 × 5) filtering window.
The input xi and output yi here are from a raw cost volume
slice Cd and the filtered slice C′d, respectively (Fig. 2).

3.2.2 Dynamic Filtering Networks (DFN) Module

Dynamic Filter Networks (DFN) [22] are a content-adaptive
filtering technique. As shown in Fig. 4(b), the filters Fθ
in the DFN are dynamically generated by a separate filter-
generating network conditioned on an input xA. Then, they
are applied to another input xB via the dynamic filtering
layer. In our implementation, xA is the deep feature fL of
the reference image IL, and xB is a cost volume slice Cd.
Filter-Generating Network. Given an input xA ∈
RH×W×CA (H: height, W : width, CA: channel size of
xA), the filter-generating network generates dynamic filters
Fθ, parameterized by θ ∈ Rs×s×CB×nF (s: filter window
size, CB : channel size of xB , nF : the number of filters).
Dynamic Local Filtering Layer. The generated fil-
ters Fθ are applied to input images or feature maps xB ∈

RH×W×CB via the dynamic filtering layer to output the fil-
tered result G = Fθ(xB) ∈ RH×W . Specifically, the dy-
namic filtering layer in the DFN [22] has two types of in-
stances: dynamic convolutional layer (with nF = 1) and
dynamic local filtering layer (with nF = H · W). The
latter is adopted in this paper because it guarantees content-
adaptive filtering via applying a specific local filter F (u,v)

θ

to the neighborhood centered around each pixel coordinate
(u, v) of the input xB :

G(u, v) = F (u,v)
θ (xB(u, v)) (6)

Therefore, the operations in Eq. 6 are not only input content
specific but also spatial position specific.

3.2.3 Pixel Adaptive Convolutional (PAC) Module

Pixel adaptive convolution (PAC) proposed by Su et al. [34]
is a new content-adaptive convolution, which can alleviate
the drawback of standard convolution that ignores local im-
age content, while retaining its favorable spatial sharing
property compared with existing content-adaptive filters,
e.g. the DFN [22]. As illustrated in Fig. 4(a), PAC mod-
ifies a conventional spatially invariant convolution filter W
at each position by multiplying it with a position-specific
filter Kpac, the adapting kernel. Kpac has a pre-defined
form, e.g. Gaussian: e−

1
2 ||fi−fj ||

2

, where fi and fj are the
adapting features, corresponding to pixels pi and pj . The
adapting features f can be either hand-crafted (e.g. position
and color features) or deep features. We use deep features
extracted from the left image as the adapting features f .

Given an input xi ∈ RCx at pixel pi, the output yi ∈
RCy filtered by PAC is defined as

yi =
∑
j∈Ω(i)

Kpac(fi, fj)W[pi − pj]xi + b (7)

where Cx and Cy denote the feature dimension of xi and
yi, respectively. Ω(·) defines an s× s convolution window.
W ∈ RCy×Cx×s×s and b ∈ RCy indicate the convolution
filter weights and biases. We adopt the notation [pi − pj]
to spatially index filter weights W with 2D spatial offsets.
In our approach xi and yi are from the raw and filtered cost
volume slices Cd and C′d, respectively.

3.2.4 Semi-Global Aggregation Module

In contrast to the above filters that leverage local context,
Semi-Global Aggregation (SGA) [45] is able to iteratively
aggregate the cost volume considering both pixelwise costs
and pairwise smoothness constraints in four directions. The
constraints are originally defined and approximately solved
by Semi-Global Matching (SGM) [20] as an energy func-
tion of the disparity map. SGA learns to aggregate the cost

4

!
!"#

$
()

Guidance Network

$%& (%, ')

SGAModule

!!

$'(%)$'()
& ((−*)

+ℎ

-

max* $%& (%−*,1)

.

.

(! (" (#

{#"' ,#"(,#") ,#"*}

.−0

2% =

(0 (0

(0 (0

($ (%

$'+)
& ((−*)$'

& ((−*)

Iteratively
Traverse to
Next 1&

&# = max
"
&"#

Weights for 4 Directions

current direction * ∈ {*#, *), *,, *-}
current weights2% ∈ {2%& ,2%' ,2%(,2%)}

Figure 3: Integrating the SGA module. The bottom branch
shows the guidance network which generates aggregation
weights in four directions. The top branch illustrates SGA
which iteratively aggregates the cost volume C via travers-
ing from pixel p − r to p in a direction r, over the entire
image and each disparity d. The maximum response among
the four directions is selected as the output C′.

volume C to approximately minimize the energy, and also
support backpropagation for end-to-end stereo matching as
shown in Fig. 3. The aggregated cost volume C′ is recur-
sively defined as:

C′r(p, d) = sum

w0(p, r) · C(p, d)

w1(p, r) · C′r(p− r, d)

w2(p, r) · C′r(p− r, d− 1)

w3(p, r) · C′r(p− r, d+ 1)

w4(p, r) ·max
i
C′r(p− r, i)

(8)

where r is a unit direction vector along which the cost
C′r(p, d) of pixel p at disparity d is aggregated. The weights
wj are achieved and normalized (s.t.

∑4
j=0 wj(p, r) = 1)

by a guidance sub-network to avoid very large accumulated
values when traversing along the path. The final aggre-
gated cost C′r(p, d) is obtained by picking the maximum
among four directions, namely, left, right, up and down, i.e.,
r ∈ {(−1, 0), (1, 0), (0, 1), (0,−1)}, defined as:

C′(p, d) = max
r
C′r(p, d) (9)

3.3. Network Architecture

As illustrated in Fig. 4, our architecture takes as back-
bones four state-of-the-art 2D and 3D CNNs for stereo
matching, i.e., DispNetC [29], GCNet [23], PSMNet [7]
and GANet [45], and adapts SABF (Fig. 2), PAC (Fig.
4(a)), DFN (Fig. 4(b)) and SGA (Fig. 3), to aggregate the
cost volume.

3.3.1 Network Backbones

Given a rectified stereo pair, the backbone architectures de-
scribed below include unary feature extraction from the im-
ages by a weight-sharing Siamese structure, cost volume
computation and regularization, and disparity regression.
Unary features are denoted by fu. 2D or 3D convolutional
and transpose convolutional layers have 3× 3 or 3× 3× 3
kernels, unless otherwise specified.

DispNetC Backbone. DispNetC [29] is an encoder-
decoder architecture with an explicit 1D correlation layer.
The encoder downsamples the input images via convolution
by up to 1/64, while the decoder gradually upsamples the
feature maps via transposed convolution at 6 different scales
ranging from 1/64 to 1/2. Features fu (H/4 ×W/4 × F ,
F = 128) are correlated by a 1D correlation layer [13] to
form a 3D cost volume C (D/4×H/4×W/4) with a max-
imum disparity of D/4. C is further contracted to 1/64 res-
olution and expanded by alternate transpose convolutions
and loss layers. There are six intermediate disparity maps
which are all interpolated to the input resolution. The loss
is computed on all six disparity maps, but only the last one
is used as output.

GCNet Backbone. GCNet [23] is a 3D CNN archi-
tecture that models geometry in stereo matching. We add
an initial bilinear interpolation layer to downsample the
input stereo pair to half resolution. GCNet extracts fu
(F ×H/4 ×W/4, F = 32) via a 5 × 5 convolution layer
and eight residual blocks [19] and then builds a 4D cost
volume C (D/4 × 2F ×H/4 ×W/4) by concatenating fu
with its counterpart from the other view across each dispar-
ity level. C is downsampled by up to 1/16 via four encoding
blocks (each with three convolutions with strides equal to
2, 1, and 1) and upsampled by 32 via five decoding blocks
(each has a skip-connection from the early layer and one
transposed convolution with stride 2), resulting in an aggre-
gated (D/2 × H/2 × W/2) volume. It is interpolated to
input resolution and regressed to predict the disparity map
via the differentiable soft argmin:

D̂ =

D−1∑
d=0

d · σ(−Cd) (10)

where cost Cd is first converted to a probability of each dis-
parity value d via the softmax operation σ(·).The disparity
map D̂ comprises the expected values of d for each pixel.

PSMNet Backbone. PSMNet [7] learns fu (F × H/4 ×
W/4, F = 128) via three convolution layers followed by
four basic residual blocks [19]. fu is further processed sepa-
rately by spatial pyramid pooling (SPP), a 1×1 convolution,
bilinear interpolation and feature concatenation. This gen-
erates the SPP features (F ×H/4×W/4, F = 32) used to
construct a 4D (D/4×2F ×H/4×W/4) cost volume C. C

5

(b) Dynamic Filtering Networks (DFN) Module

! = #$!

A
dapting

Feature

Stereo RGB Pair

RGB Input & Feature Extraction

Cost ttt
Volume

Cost Volume Generation & Filtering

3D CNNs
Cost Aggregation Soft ArgM

in

Disparity Estimation

Filtering
Modules

(a) Pixel Adaptive Convolution (PAC) Module

Disparity Regression

2D CNNs
Cost Aggregation

;+ = !
5"4

6(2
+ < =(−>5

&)

;+ = ?@8A2+(>&, C78
= D,C9:; = 1)

3D-CNN
SOTA
Stereo

Networks

2D-CNN
SOTA
Stereo

Networks

2D
CNNs()#$% =

1)

W

K

!!",!" !$,!" !",!"

!!",$!$,$!",$

!!"," !$," !","

!(#!"!", ##,#) !(##,!", ##,#) !(#",!", ##,#)

!(#!",# , ##,#) K(##,# ,##,#) !(#",#, ##,#)

!(#!",", ##,#) !(##,", ##,#) !(#",", ##,#)

K

%"

-

Cos
t S

lic
e

Fi
lte

re
d

Input F.

Input F/

Filer-Generating
Network *

+

,×,
×.% !!",!" !$,!" !",!"

!!",$!$,$!",$

!!"," !$," !","

Output $'&

Cost
Slice
$'

Left
feature
91

&"

Cos
t S

lic
e

&/#

&/

ℱ&

(c) Our Content-adaptive Stereo Networks

Figure 4: (a) PAC filters the cost volume slice Cd by multiplying it with a standard spatially invariant convolutional filter W
and a spatially varying filter K that depends on input pixel features f . The output is the filtered slice C′d. (b) DFN filters Fθ
are dynamically generated by the filter-generating network conditioned on left pixel features fL. Cd is filtered by Fθ to output
C′d. (c) Overview of network architecture: a stereo pair is fed into a weight-sharing Siamese sub-network for feature learning;
the extracted features of each view are correlated or concatenated to generate the cost volume C; content-adaptive filtering
modules are applied to C and output the filtered volume C′d, followed by state-of-the-art encoder-decoder cost aggregation
and disparity regression, as shown in two branches for 2D and 3D convolutional architectures.

is regularized by a stacked hourglass with three encoding-
decoding blocks. Each hourglass generates a regularized
volume, from which an intermediate disparity is obtained
via the soft argmin (Eq. 10). The training loss is computed
on all three intermediate disparities.

GANet Backbone. GANet [45] introduces local guided
aggregation (LGA) and semi-global aggregation (SGA) lay-
ers which are complementary to 3D convolutional layers.
The unary features fu (F × H/3 × W/3, F = 32) are
extracted through a stacked hourglass CNN with skip con-
nections. They are then used to construct a 4D cost volume
(D/3×2F×H/3×W/3), which is fed into a cost aggrega-
tion block (built of alternate 3D convolution and transpose
convolution layers, SGA and LGA) for regularization, re-
finement and disparity regression via the soft argmin (Eq.
10). The guidance sub-network generates the weight matri-
ces for SGA (Sec. 3.2) and LGA. The LGA layer is used
before disparity regression and locally refines the 4D cost
volume for several times. We adopt the GANet-deep ver-
sion which achieves the best accuracy among all variants.

Network Capacity. Network capacities are listed in Table
1. The parameters of four backbone networks (i.e, row W/O
in gray, meaning no filters applied) increase in the order of
GCNet< PSMNet< GANet< DispNetC. The order of the

filtering modules (rows in skyblue) according to increasing
number of parameters is PAC < DFN < SABF < SGA.

3.3.2 Loss Function

The smooth L1 loss function (see the supplement) is used
for end-to-end training. The GCNet backbone has one dis-
parity output, while the other backbones produce multi-
ple intermediate disparity maps. The network loss is their
weighted average. The corresponding weights are defined
as 1) GANet: 0.2, 0.6, and 1.0; 2) PSMNet: 0.5, 0.7, and
1.0; 3) DispNetC: 0.05, 0.10, 0.14, 0.19, 0.24, and 0.29 as
training starts on Scene Flow, while in finetuning, only the
final disparity is activated. When integrating the SABF fil-
ter to the backbones, the embedding loss in Eq. 3 is added
with a weight of 0.06.

4. Experiments
4.1. Datasets

Our networks are trained from scratch on Scene Flow
[29], then finetuned on Virtual KITTI 2 (VKT2) [5, 15] or
KITTI 2015 (KT15) [30]. Scene Flow is a large scale syn-
thetic dataset containing 35, 454 training and 4, 370 testing
images with dense ground truth disparity maps. We exclude

6

Filters
Network Backbones

DispNetC PSMNet GANet GCNet
No. ↑(%) No. ↑(%) No. ↑(%) No. ↑(%)

W/O 42.2 - 5.2 - 6.6 - 2.8 -
SABF 44.0 4.2 7.0 34 8.4 27 4.6 62.4
DFN 42.6 0.8 5.6 6.4 6.9 5.1 3.2 11.8
PAC 42.3 0.1 5.3 2.0 6.7 1.6 2.9 3.6
SGA 45.2 7.0 8.3 58.8 - - 5.9 108

Table 1: Network capacity. For each combination of the
filtering techniques and network backbones, columns No.
show the number of parameters in millions, and columns
↑(%) are the relative increase in the number of parameter
w.r.t. the backbone baselines. Largest values are in bold.
Inapplicable entries are marked by “-”.

the pixels with disparities d > 192 in training. Virtual
KITTI 2 (VKT2) is a synthetic clone of the real KITTI
dataset. It contains 5 sequence clones of Scene 01, 02, 06,
18 and 20, and nine variants with diverse weather conditions
(e.g. fog, rain) or modified camera configurations (e.g. ro-
tated by 15◦, 30◦). Since there is no designated validation
set, we select (i) Scene06 (i.e., VKT2-Val-S6 with 2, 700
frames) and (ii) multiple blocks of consecutive frames from
Scene 01, 02, 18, 20 (i.e., VKT2-Val-WoS6 with 2, 620
frames), and use the remaining 15, 940 images for training.
The former scene remains unseen during training, while
networks observe similar frames to the latter. We evalu-
ate these settings separately. KITTI 2015 (KT15): is a real
dataset of street views. It contains 200 training stereo image
pairs with sparsely labeled disparity from LiDAR data. We
divided the training data into a training set (170 images) and
a validation set (30 images) for our experiments.
Metrics. For KT15, we adopt the bad-3 error (i.e., per-
centage of pixels with disparity error > 3px or ≥ 5% of the
true disparity) counted over non-occluded (noc) or all pix-
els with ground truth. For VKT2, in addition to bad-3, we
also use the endpoint error (EPE) and bad-1 error (≥ 1px or
≥ 5%) over all pixels.

4.2. Implementation Details

Architecture Details. Our models are implemented with
PyTorch. Each convolution layer is followed by batch nor-
malization (BN) and ReLU unless otherwise specified. We
use the official code of PSMNet and GANet, and implement
DispNetC (no PyTorch version) and GCNet (no official
code). Our implementations achieve similar or better re-
sults on the KT15 benchmark, i.e., bad-3 errors 4.48% (all)
and 3.85% (noc) versus the authors’ 4.34% (all) and 4.05%
(noc) for DispNetC, and 2.38% (all) and 2.07% (noc) ver-
sus the authors’ 2.87% (all) and 2.61% (noc) for GCNet.
We use σs = 0.7 and σr = 0.1 in Eq. 4 for SABF. We
investigate how the filter window s and dilation rate r affect
the filtering output, and find that s = 5 with r = 2 achieve a

good balance in accuracy, space requirements and runtime.
Please see the supplementary material for ablation studies.

Training Details. The SABF embedding network is
pre-trained on Cityscapes [11]. For data augmentation we
randomly crop 256 × 512 image patches and do channel-
wise standardization by subtracting the mean and dividing
by the standard deviation. For fair comparison, we follow
the baselines and set the maximum disparity to D = 192.
We use the official pre-trained models on Scene Flow for
GANet and PSMNet, and train DispNetC and GCNet on
Scene Flow from scratch for 10 epochs with a learning rate
(lr) of 0.001. Training is optimized with Adam (β1 = 0.9,
β2 = 0.999), except for GCNet which uses RMSprop
(α = 0.9). For KT15, our models and baselines are fine-
tuned for 600 epochs (with lr of 0.001 for the first 300
epochs and 0.0001 for the next 300 epochs). For VKT2,
we finetune all algorithms for 20 epochs, with lr of 0.001 at
first, then divided by 10 at epoch 5 and epoch 18.

4.3. Quantitative Results

All the results are on the validation sets since we could
not submit all combinations to the benchmarks. Due to page
limits, qualitative results are available in the supplement.

Virtual KITTI 2 Evaluation. We finetune our models (the
pre-trained backbones on Scene Flow after integrating the
filters) on the VKT2 dataset. (EPE, bad-1 and bad-3) on the
VKT2-Val-WoS6 and VKT2-Val-S6 validation sets are listed
in Table 2. In most cases, our models (rows in skyblue)
achieve higher accuracy than the baselines (row W/O). The
exception is standard GANet which performs well since it
always includes SGA and LGA for global and local match-
ing volume aggregation. Fig. 5 plots EPE errors on individ-
ual categories of VKT2-Val-S6. SABF, DFN and SGA boost
2D and 3D CNNs, while PAC improves 2D CNNs, but not
3D CNNs. When moving from familiar (VKT2-Val-WoS6)
to unseen (VKT2-Val-S6) validation scenes, DFN achieves
better adaptation than SGA, and the SABF and DFN vari-
ants outperform standard GANet.

KITTI 2015 Evaluation. The results on KT15 are shown
in Table 3. Our networks obtain improved accuracy for all
the backbones except for GANet. All the filters boost the
backbones due to leveraging image context as guidance, and
SGA achieves the highest accuracy among them.

Runtime In Table 4, we compare the GPU memory con-
sumption and runtime in inference mode on pairs of frames
with dimension 384 × 1280. All experiments are run on
the same machine, with the same configuration of disparity
range D = 192, filter size s = 5 and dilation rate r = 2.

Comparison and Summary. Our results show that most
architectures benefit from adaptive filtering, with the ex-
ception of GANet, which already includes such filtering of
SGA. It is worth pointing that GANet has the largest num-

7

Filters
DispNetC PSMNet GANet GCNet

EPE(px) ≥ 1 px ≥ 3 px EPE(px) ≥ 1 px ≥ 3 px EPE(px) ≥ 1 px ≥ 3 px EPE(px) ≥ 1 px ≥ 3 px
Seen locations (i.e., Scene01, 02, 18 and 20) from VKT2 validation set VKT2-Val-WoS6

W/O 0.68 11.54 3.72 0.45 7.08 2.21 0.33 5.34 1.70 0.62 9.71 3.18
SABF 0.65 10.86 3.48 0.36 5.92 1.98 0.34 5.50 1.76 0.60 9.89 3.19
DFN 0.57 9.85 3.26 0.42 6.45 2.17 0.37 6.23 1.99 0.60 9.20 3.11
PAC 0.58 9.92 3.39 0.52 7.81 2.61 0.40 7.01 2.20 0.75 12.98 4.02
SGA 0.57 9.37 3.21 0.40 6.08 2.14 - - - 0.55 9.24 2.98

Totally unseen location (i.e., Scene06) from VKT2 validation set VKT2-Val-S6
W/O 0.70 10.28 3.12 0.48 5.16 1.96 0.30 3.09 1.0563 0.59 7.48 2.25
SABF 0.69 9.75 3.00 0.44 4.47 1.73 0.28 3.16 0.97 0.56 7.51 2.23
DFN 0.599 8.54 2.791 0.39 4.83 1.69 0.29 3.54 1.0561 0.55 6.81 2.14
PAC 0.603 8.73 2.96 0.52 5.78 1.98 0.35 4.36 1.47 0.73 11.87 2.99
SGA 0.607 8.02 2.794 0.42 4.34 1.71 - - - 0.53 7.45 2.29

Table 2: Evaluation on the validation sets of VKT2-Val-WoS6 and VKT2-Val-S6. Results are shown in the entries of filters
(rows in skyblue) and backbones (columns) w.r.t. the baselines (rows W/O). Our improved results are highlighted in gray,
and the best ones are in bold. GANet already contains SGA, resulting in blank entries “-”.

(a) (b) (c) (d)
Figure 5: Results of (a) DispNetC, (b) PSMNet, (c) GCNet and (d) GANet on each category of validation set VKT2-Val-S6.

ber of parameters and the longest runtime among the back-
bones. Lighter architectures, e.g. PSMNet+SABF or PSM-
Net+DFN can achieve competitive results. DispNetC trails
in terms of accuracy, but has about 20% of the footprint of
GANet and its combination with DFN strikes a good bal-
ance between accuracy and processing requirements.

5. Conclusions
We demonstrate how deep adaptive or guided filtering

can be integrated into representative 2D and 3D CNNs for
stereo matching with improved accuracy. Our extensive
experimental results on Virtual KITTI 2 and KITTI 2015
highlight how our filtering modules effectively leverage the

Filters
DispNetC PSMNet GANet GCNet

noc all noc all noc all noc all
W/O 2.59 3.02 1.46 1.60 0.97 1.10 2.06 2.64
SABF 2.26 2.63 1.28 1.40 1.07 1.17 1.76 2.10
DFN 2.37 2.78 1.23 1.34 0.99 1.11 1.70 2.08
PAC 2.38 2.72 1.29 1.48 1.13 1.23 1.71 2.03
SGA 1.90 2.18 1.17 1.32 - - 1.69 1.91

Table 3: KITTI 2015 bad-3 validation results. Improved
results are highlighted in gray, and best ones are in bold.
GANet contains SGA, resulting in blank entries “-”.

RGB information to dynamically guide the matching, re-
sulting in further progress in stereo matching. SGA, a com-
ponent of GANet, is the most effective filtering mechanism
and improves all backbones. More broadly, our work shows
that current state-of-the-art methods do not take full advan-
tage of available information, with the exception of GANet
which shows superior performance due to SGA and LGA,
but has more parameters than GCNet and PSMNet. Inte-
grating even the smaller filtering modules leads to decreases
in error in the order of 10%.
Acknowledgements. This research has been partially sup-
ported by National Science Foundation under Awards IIS-
1527294 and IIS-1637761.

Filters
DispNetC PSMNet GANet GCNet

Mem. Time Mem. Time Mem. Time Mem. Time
W/O 1394 18.35 5151 315.57 7178 1894.70 4280 146.83
SABF 1888 24.32 5386 563.42 7920 2488.72 4424 379.37
DFN 1422 28.33 5246 432.32 7466 2041.53 4298 255.20
PAC 1535 25.34 5168 514.91 8274 2383.44 4400 334.73
SGA 7066 489.60 11070 823.00 - - 9916 655.18

Table 4: Runtime (ms) and GPU memory consumption
(MiB). Results are shown in the entries of filters (rows in
skyblue) and backbones (columns) w.r.t. the baselines (rows
W/O). The smallest values are in bold. GANet already con-
tains SGA, resulting in blank entries “-”.

8

References
[1] V. Aurich and J. Weule. Non-linear Gaussian filters perform-

ing edge preserving diffusion. In Mustererkennung 1995,
pages 538–545. Springer, 1995. 2

[2] S. P. Awate and R. T. Whitaker. Higher-order image statis-
tics for unsupervised, information-theoretic, adaptive, image
filtering. In CVPR, volume 2, pages 44–51. IEEE, 2005. 2

[3] S. Bako, T. Vogels, B. McWilliams, M. Meyer, J. Novák,
A. Harvill, P. Sen, T. Derose, and F. Rousselle. Kernel-
predicting convolutional networks for denoising monte carlo
renderings. ACM Trans. Graph., 36(4):97–1, 2017. 2

[4] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm
for image denoising. In CVPR, volume 2, pages 60–65, 2005.
2

[5] Y. Cabon, N. Murray, and M. Humenberger. Virtual KITTI
2. arXiv preprint arXiv:2001.10773, 2020. 6

[6] S. Chandra and I. Kokkinos. Fast, exact and multi-scale in-
ference for semantic image segmentation with deep Gaussian
CRFs. In ECCV, pages 402–418, 2016. 2

[7] J.-R. Chang and Y.-S. Chen. Pyramid stereo matching net-
work. In CVPR, pages 5410–5418, 2018. 1, 2, 5

[8] L.-C. Chen, J. T. Barron, G. Papandreou, K. Murphy, and
A. L. Yuille. Semantic image segmentation with task-specific
edge detection using cnns and a discriminatively trained do-
main transform. In CVPR, pages 4545–4554, 2016. 2

[9] L.-C. Chen, A. Schwing, A. Yuille, and R. Urtasun. Learning
deep structured models. In ICML, pages 1785–1794, 2015.
2

[10] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity
metric discriminatively, with application to face verification.
In CVPR, pages 539–546, 2005. 3

[11] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The
cityscapes dataset for semantic urban scene understanding.
In CVPR, pages 3213–3223, 2016. 7

[12] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei.
Deformable convolutional networks. In ICCV, Oct 2017. 2

[13] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,
V. Golkov, P. Van Der Smagt, D. Cremers, and T. Brox.
Flownet: Learning optical flow with convolutional networks.
In ICCV, pages 2758–2766, 2015. 5

[14] R. Gadde, V. Jampani, M. Kiefel, D. Kappler, and P. Gehler.
Superpixel convolutional networks using bilateral incep-
tions. In ECCV, pages 597–613. Springer, 2016. 2

[15] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual worlds as
proxy for multi-object tracking analysis. In Proceedings of
the IEEE conference on Computer Vision and Pattern Recog-
nition, pages 4340–4349, 2016. 6

[16] X. Guo, K. Yang, W. Yang, X. Wang, and H. Li. Group-wise
correlation stereo network. In CVPR, 2019. 2

[17] A. W. Harley, K. G. Derpanis, and I. Kokkinos.
Segmentation-aware convolutional networks using local at-
tention masks. In ICCV, pages 5038–5047, 2017. 1, 2, 3, 4,
10

[18] K. He, J. Sun, and X. Tang. Guided image filtering. PAMI,
35(6):1397–1409, 2012. 2

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, pages 770–778, 2016. 5

[20] H. Hirschmüller. Stereo processing by semiglobal matching
and mutual information. PAMI, 30(2):328–341, 2008. 1, 2,
4

[21] V. Jampani, M. Kiefel, and P. V. Gehler. Learning sparse high
dimensional filters: Image filtering, dense crfs and bilateral
neural networks. In CVPR, pages 4452–4461, 2016. 2

[22] X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool. Dy-
namic filter networks. In Advances in Neural Information
Processing Systems, pages 667–675, 2016. 1, 2, 4, 10

[23] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry,
R. Kennedy, A. Bachrach, and A. Bry. End-to-end learn-
ing of geometry and context for deep stereo regression. In
ICCV, pages 66–75, 2017. 1, 2, 5

[24] P. Krähenbühl and V. Koltun. Efficient inference in fully
connected crfs with Gaussian edge potentials. In NIPS, pages
109–117, 2011. 2

[25] Y. Li, J.-B. Huang, A. Narendra, and M.-H. Yang. Deep joint
image filtering. In ECCV, pages 154–169, 2016. 2

[26] Z. Liang, Y. Feng, Y. Guo, H. Liu, W. Chen, L. Qiao,
L. Zhou, and J. Zhang. Learning for disparity estimation
through feature constancy. In CVPR, pages 2811–2820,
2018. 2

[27] G. Lin, C. Shen, A. Van Den Hengel, and I. Reid. Efficient
piecewise training of deep structured models for semantic
segmentation. In CVPR, pages 3194–3203, 2016. 2

[28] S. Liu, S. De Mello, J. Gu, G. Zhong, M.-H. Yang, and
J. Kautz. Learning affinity via spatial propagation networks.
In NIPS, pages 1520–1530, 2017. 2

[29] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers,
A. Dosovitskiy, and T. Brox. A large dataset to train convo-
lutional networks for disparity, optical flow, and scene flow
estimation. In CVPR, pages 4040–4048, 2016. 1, 2, 5, 6

[30] M. Menze and A. Geiger. Object scene flow for autonomous
vehicles. In CVPR, pages 3061–3070, 2015. 6

[31] J. Pang, W. Sun, J. S. Ren, C. Yang, and Q. Yan. Cascade
residual learning: A two-stage convolutional neural network
for stereo matching. In ICCV Workshop on Geometry Meets
Deep Learning, Oct 2017. 2

[32] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. IJCV,
47(1-3):7–42, 2002. 1

[33] X. Song, X. Zhao, L. Fang, and H. Hu. EdgeStereo: An
effective multi-task learning network for stereo matching and
edge detection. IJCV, 2020. 2

[34] H. Su, V. Jampani, D. Sun, O. Gallo, E. Learned-Miller, and
J. Kautz. Pixel-adaptive convolutional neural networks. In
CVPR, 2019. 1, 2, 4, 10

[35] C. Tomasi and R. Manduchi. Bilateral filtering for gray and
color images. In Sixth international conference on computer
vision (IEEE Cat. No. 98CH36271), pages 839–846. IEEE,
1998. 2

[36] A. Tonioni, F. Tosi, M. Poggi, S. Mattoccia, and L. Di Ste-
fano. Real-time self-adaptive deep stereo. In CVPR, June
2019. 2

9

[37] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural
networks. In CVPR, pages 7794–7803, 2018. 2

[38] H. Wu, S. Zheng, J. Zhang, and K. Huang. Fast end-to-end
trainable guided filter. In CVPR, pages 1838–1847, 2018. 2

[39] J. Wu, D. Li, Y. Yang, C. Bajaj, and X. Ji. Dynamic filter-
ing with large sampling field for convnets. In The European
Conference on Computer Vision (ECCV), September 2018. 2

[40] T. Xue, J. Wu, K. Bouman, and B. Freeman. Visual dynam-
ics: Probabilistic future frame synthesis via cross convolu-
tional networks. In NIPS, pages 91–99, 2016. 2

[41] G. Yang, H. Zhao, J. Shi, Z. Deng, and J. Jia. SegStereo:
Exploiting semantic information for disparity estimation. In
ECCV, pages 636–651, 2018. 2

[42] Z. Yin, T. Darrell, and F. Yu. Hierarchical discrete distribu-
tion decomposition for match density estimation. In CVPR,
June 2019. 2

[43] J. Žbontar and Y. LeCun. Stereo matching by training a con-
volutional neural network to compare image patches. Jour-
nal of Machine Learning Research, 17(1-32):2, 2016. 1

[44] W. Zhan, X. Ou, Y. Yang, and L. Chen. DSNet: Joint
learning for scene segmentation and disparity estimation. In
IEEE International Conference on Robotics and Automation,
pages 2946–2952, 2019. 2

[45] F. Zhang, V. Prisacariu, R. Yang, and P. H. Torr. Ga-net:
Guided aggregation net for end-to-end stereo matching. In
CVPR, 2019. 1, 2, 4, 5, 6

[46] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,
Z. Su, D. Du, C. Huang, and P. H. S. Torr. Conditional ran-
dom fields as recurrent neural networks. In ICCV, 2015. 2

[47] X. Zhu, H. Hu, S. Lin, and J. Dai. Deformable convnets v2:
More deformable, better results. In CVPR, June 2019. 2

Supplement

In this supplementary material, we show the loss function,
more details of filtering modules in the network, ablation
study, and additional qualitative results, some of which are
mentioned but not fully discussed in the main paper due to
the page limit.

Loss Function. The loss is evaluated over the valid pixels
which have ground truth disparity. We adopt the smooth L1

loss function for end-to-end training:

L(d, d̂) =
1

N

N∑
i=1

ls(||di − d̂i||1)

and, ls(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
(11)

where N counts the valid pixels, ||di − d̂i||1 measures the
absolute error of disparity prediction d̂i and ground truth di.

Deep Adaptive Filtering Architectures. The inte-
grated deep adaptive or guided filters include segmentation-
aware bilateral filtering (SABF) [17], dynamic filter-
ing networks (DFN) [22], pixel adaptive convolution
(PAC) [34] and semi-global aggregation (SGA). Please see
our source code (https://github.com/ccj5351/
DAFStereoNets) for the detailed architectures. Fig. 6
shows the embedding network of SABF.

Ablation Study. We perform ablation studies to inves-
tigate how the filter window s and the dilation rate r can
affect the filtering output and disparity estimation. Out of a
large number of possible combinations, we show two repre-
sentatives DispNetC+SABF and PSMNet+SABF in Table 5.
We find that s = 5 with r = 2 achieve a good balance in ac-
curacy, space and runtime. The 500-run averaged memory
consumption and runtime in GPUs are measured when we
test a 384× 1280 stereo pair, and the bad-3 (noc,all) errors
are evaluated on the KITTI 2015 validation set. Please note
that a 5× 5 filter (with dilation rate 2) covers 9× 9 regions
in the cost feature space, which is equivalent to 33× 33 re-
gions in the RGB image space, due to the cost volume being
a quarter of the size of the input images. In the following ex-
periments, we keep using s = 5 with r = 2 for our different
architectures. Please note that the results in Table 5 are ob-
tained on a 16-core Intel Core i7-9800X CPU at 3.80GHz,
and an NVIDIA TITAN Xp GPU with 12GB of RAM.

Effectiveness Comparison In Table 7, we further investi-
gate the effectiveness among those variants in terms of pa-
rameter increase (column δP%) and error decrease (column
δE%) evaluated on the KITTI 2015 validation set, as shown
in Table 6. Please note that Table 6 is originally included in

10

https://github.com/ccj5351/DAFStereoNets
https://github.com/ccj5351/DAFStereoNets

filter
size
s

DispNetC+SABF PSMNet+SABF
r = 1 r = 2 Mem. Time r = 1 r = 2 Mem. Time

EPE(px) ≥3(%) EPE(px) ≥3(%) (MiB) (ms) EPE(px) ≥3(%) EPE(px) ≥3(%) (MiB) (ms)
s = 3 0.875 3.14 0.845 2.99 2132 45.26 0.639 1.63 0.643 1.61 4681 449.40
s = 5 0.867 3.13 0.841 2.90 2228 48.99 0.657 1.54 0.630 1.46 4989 633.42
s = 7 0.832 2.83 0.795 2.46 2588 54.21 0.650 1.50 0.642 1.54 4709 939.40
s = 9 0.825 2.84 0.854 3.00 3008 60.56 0.868 1.77 0.689 1.91 4953 1226.72

Table 5: Illustration of the effects of different filter window sizes s and dilation rates r. We computer the bad-3 (noc,all)
errors on the KITTI 2015 validation set and the averaged GPU memory consumption and runtime to test a pair of frames
with dimension 384× 1280.

Figure 6: The embedding network in the segmentation-
aware bilateral filtering (SABF) module. Each convolu-
tional layer is followed by a ReLU layer which is not drawn.
Convolutional layers, e.g. conv1 0, are defined by 3 × 3 as
filter, 3/64 as in/out feature planes, and H ×W × 64 as the
output dimension). Max pooling layers are implemented as
3× 3 filter with stride of 2 for downsampling (i.e., ↓ 2).

the main paper, and we repeat it here to explain the effec-
tiveness in Table 7.

Qualitative Results In Figs. 7–10, we show reference im-
ages and disparity maps generated by each backbone with-
out modifications and the same backbone after integrating
one of the filtering techniques.

Filters
DispNetC PSMNet GANet GCNet
noc all noc all noc all noc all

W/O 2.59 3.02 1.46 1.60 0.97 1.10 2.06 2.64
SABF 2.26 2.63 1.28 1.40 1.07 1.17 1.76 2.10
DFN 2.37 2.78 1.23 1.34 0.99 1.11 1.70 2.08
PAC 2.38 2.72 1.29 1.48 1.13 1.23 1.71 2.03
SGA 1.90 2.18 1.17 1.32 - - 1.69 1.91

Table 6: KITTI 2015 bad-3 validation results. Improved
results are highlighted in gray, and best ones are in bold.
GANet contains SGA, resulting in blank entries “-”.

Filters DispNetC PSMNet GANet GCNet
δE(%) δP(%) δE(%) δP(%) δE(%) δP(%) δE(%) δP(%)

SABF 12.9 4.2 12.4 34 -5.9 27 20.6 62.4
DFN 7.9 0.8 16.2 6.4 -0.1 5.1 21.5 11.8
PAC 9.9 0.1 7.8 2.0 -12 1.6 23.3 3.6
SGA 27.8 7.0 17.7 58.8 - - 27.7 108

Table 7: Effectiveness comparison on the KITTI 2015 val-
30 dataset. For each combination of network backbone and
filtering, columns δE(%) and δP(%) indicate the relative de-
crease of error and increase of the number of parameters,
respectively, w.r.t. the backbone baselines.

11

7.19%

��
�� 4.66%

��
��

3.03%

����
2.43%

����
(a)

7.59%���� 5.42%����

9.23%

"!

7.35%

"!

(b)
Figure 7: Results using DispNetC as backbone. (a) DispNetC vs DispNetC+PAC on Virtual KITTI 2 Scene06 validation set.
(b) DispNetC vs DispNetC+SABF on KITTI 2015 validation set. In all rows, the left image is the reference image of the
stereo pair, the middle column in the disparity map from the unmodified backbone, and the right image is the disparity map
of the backbone with the integrated filter.

3.84%

��
�� 2.03%

��
��

11.50%

��
��6.69%

��
��

(a)
6.94% ��
��

4.82% ��
��

4.03% ��
��

2.54% ��
��

(b)
Figure 8: Results using GCNet as backbone. (a) GCNet vs GCNet+SGA on Virtual KITTI 2 Scene06 validation set. (b)
GCNet vs GCNet+SGA on KITTI 2015 validation set. In all rows, the left image is the reference image of the stereo pair, the
middle column in the disparity map from the unmodified backbone, and the right image is the disparity map of the backbone
with the integrated filter.

12

4.71%

��
��2.70%

��
��

12.23%

��
��3.81%

��
��

(a)
2.29%

�������
1.21%

�������
3.02%

��
�� 1.71%

��
��

(b)
Figure 9: Results using PSMNet as backbone. (a) PSMNet vs PSMNet+DFN on Virtual KITTI 2 Scene06 validation set.(b)
PSMNet vs PSMNet+PAC on KITTI 2015 validation set. In all rows, the left image is the reference image of the stereo
pair, the middle column in the disparity map from the unmodified backbone, and the right image is the disparity map of the
backbone with the integrated filter.

6.34%

��
�� 2.33%

��
��

4.30%

����
1.22%

����
(a)

1.79%

����
1.12%

����
1.07%��� 0.95%���

(b)
Figure 10: Results using GANet as backbone. (a) GANet vs GANet+SABF on Virtual KITTI 2 Scene06 validation set. (b)
GANet vs GANet+PAC on KITTI 2015 validation set. In all rows, the left image is the reference image of the stereo pair, the
middle column in the disparity map from the unmodified backbone, and the right image is the disparity map of the backbone
with the integrated filter.

13

