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AbstractÐWe present an integrated approach to the derivation of scene descriptions from a pair of stereo images, where the steps of

feature correspondence and surface reconstruction are addressed within the same framework. Special attention is given to the

development of a methodology with general applicability. In order to handle the issues of noise, lack of image features, surface

discontinuities, and regions visible in one image only, we adopt a tensor representation for the data and introduce a robust

computational technique called tensor voting for information propagation. The key contributions of this paper are twofold: First, we

introduce ªsaliencyº instead of correlation scores as the criterion to determine the correctness of matches and the integration of feature

matching and structure extraction. Second, our tensor representation and voting as a tool enables us to perform the complex

computations associated with the formulation of the stereo problem in three dimensions at a reasonable computational cost. We

illustrate the steps on an example, then provide results on both random dot stereograms and real stereo pairs, all processed with the

same parameter set.

Index TermsÐBinocular stereo, tensor voting, perceptual grouping, surface inference.

æ

1 INTRODUCTION

BINOCULAR stereo, a process performed effortlessly by
humans with remarkable accuracy has not yet been

duplicated at a satisfactory level by computer vision. Four
decades ago, Julesz shed new light on binocular stereo
vision, introducing random dot stereograms, and demon-
strating that depth perception can occur even in the absence
of monocular information [17]. An epitome of Julesz's work
by the author himself can be found in [18]. The works of
Marr and Poggio in 1979 [23] and Burt and Julesz in 1980 [5]
are first attempts to define the problem and its fundamental
constraints. Since then, progress has been made but the
complete stereo problem remains unsolved. The derivation
of scene descriptions from a pair of images encompasses
two processes: The establishment of feature correspon-
dences and the reconstruction of surfaces based on the
depth measurements obtained by the previous process. The
completion of these tasks based on exactly two images is
encumbered with inherent difficulties. Lack of image
features, measurement and quantization noise, surface
discontinuities, and half occlusions hinder the perception
of the scene by the computer.

Our goal is to address these issues in a general way and
to propose an approach capable to deal with a wide variety
of scenes. Instead of tackling the correspondence and the

surface reconstruction problems sequentially, as most
previous methods do, we adopt a unified framework for
establishing correct correspondences and reconstructing the
surfaces inferred from these correspondences. The integra-
tion of these two phases was first proposed by Hoff and
Ahuja in 1989 [14] and was also used by Szeliski and
Golland in 1998 [34]. The novelty of our approach stems
from the use of a robust technique, tensor voting, that
allows discontinuities and outliers to be handled properly
when inferring surfaces and regions.

As demonstrated in many attempts to derive the
ªoptimalº stereo matcher, local measurements, such as
cross-correlation, provide reasonable hypotheses for feature
correspondence, among which correct matches cluster to
form visual structures, as illustrated in Fig. 1. To determine
the correct matches, we apply tensor voting in large three-
dimensional neighborhoods of the initial correspondences.
Analyzing the results of tensor voting, we are able to handle
the tasks of outlier detection, discontinuity localization, and
surface interpolation. The method is noniterative, robust to
initialization and thresholds, and has one critical-free
parameter, the size of the neighborhood of a location in
3D space, also called the scale of the voting field.

The paper is organized as follows: We briefly describe
previous work on stereo vision in Section 2, then discuss the
issues that need to be addressed by a stereo system in
Section 3. Section 4 contains a brief overview of tensor
voting, and Section 5 describes its application to stereo.
Experimental results are shown in Section 6, the strengths
and weaknesses of our approach and its relation with
respect to other stereo methods are discussed in Section 7,
and conclusions are drawn in Section 8.

2 PREVIOUS WORK

Previous attempts at solving the stereo problem have taken
various paths to reach the desired output, be it a depth map,
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a set of points in 3D space, or a set of visible surfaces. The

general paradigm they adhere to was established by Marr

and Poggio [23], the uniqueness and continuity constraints

were introduced a little later by Marr [24], the ordering

constraint by Yuille and Poggio [39], and the gradient limit

constraint by Burt and Julesz [5]. For early works on stereo,

we refer readers to the reviews by Barnard and Fischler [1]

and Dhond and Aggarwal [9]. This section discusses more

recent publications in the field.
A significant class of stereo algorithms takes an approach

based on the optimization of a cost function. Some of the
most representative work in this category was published by
Olsen [27], Okutomi and Kanade [28], Robert and Deriche
[29], Fua [10], Wei et al. [37]. The main challenge with these
methods is the selection of an objective function that
enforces the smoothness constraint and, at the same time,
handles discontinuities correctly and also degrades grace-
fully in the presence of noise. The proper treatment of all
the issues that arise in binocular stereo usually results in
very high-computational complexity. Roy and Cox [30] and,
later, Ishikawa and Geiger [16] formulated the stereo
problem as a maximum flow problem where the solution
is a minimum cut of an undirected or a directed graph,
respectively. This formulation reduces computational cost.

Stochastic formulations have also been attempted. Max-
imum a posteriori estimators were proposed by Geiger et al.
[11], Belhumeur and Mumford [3], and Belhumeur [2],
while a maximum-likelihood estimator was proposed by
Cox et al. [8] and an approach based on Markov random
fields by Boykov et al. [4]. These algorithms either demand
explicit modeling of the surfaces, the discontinuities, and
noise or assume that features and noise follow a normal
distribution. These complex models may be suitable for a

number of scenes which do not deviate much from their
essential assumptions but may fail on other scenes.

Given the nature of the problem, robust techniques seem
a good choice. Stewart proposed MINPRAN [33], a robust
estimator that can infer surfaces, compatible with prede-
termined models, even in severe noise conditions. The
shortcoming of MINPRAN lies in the need to know the type
and number of surfaces we try to extract a priori and in its
computational complexity for nonplanar surface models.
Sara and Bajcsy [31], after making a key observation on the
cause of the shift of occluding boundaries in disparity
maps, propose robust matching operators that can handle
considerable amounts of noise and occlusion. The general-
ity of their method remains to be demonstrated.

An interesting approach is to integrate the two phases,
namely, feature correspondence and surface reconstruction.
It was first proposed by Hoff and Ahuja [14] in 1989.
According to their algorithm, we can use matched features
to obtain disparity estimations from which we can recon-
struct surfaces. This surface information can be used to
validate the matches. A similar scheme was introduced by
Szeliski and Golland [34] where they simultaneously recover
depth, color, and opacity. Initial surface, color, and opacity
information is reprojected to the images for verification.

Finally, there is a different class of algorithms that
operate in three-dimensional space. It includes the algo-
rithms proposed by Collins [7] and Seitz and Dyer [32].
Their characteristic is the use of the projection rays from the
images to the scene and their relations in space to infer
possible locations of world points.

A combination of the latter techniques that is related to
our approach of the stereo problem was proposed by
Chen and Medioni [6]. The processing is performed in the
three-dimensional disparity space, where correct matches
are identified starting from locations where unique
maxima of the cross-correlation of intensity values occur.
The coherence principle and the gradient limit constraint
are used to guide the extraction of disparity assignments
in a volume that contains cross-correlation values for
every potential disparity of the image pixels. It produces
very good results as long as the input images are of high
quality and noise corruption remains low.

3 DESIGN ISSUES AND CONSTRAINTS

In this section, we will discuss the main challenges associated
with stereo vision and the choices that were made to address
them. Then, the most common constraints will be presented
along with the way they are enforced in our method.

3.1 Design Issues

The major factors that limit the performance of stereo
algorithms include depth and orientation discontinuities,
noise, incompatibility of the scenes with the selected
models, and inadequate internal representation of the data.
To avoid these shortcomings, we opt for a representation
that can handle all possible roles of a location in a binocular
stereo configuration, and is robust to noise. At the same
time, we refrain from making severely restrictive assump-
tions about the geometry of the scene or the properties of
the objects depicted. More specifically, we use the tensor
representation, described in the following section, which
can efficiently represent surface orientation, discontinuities
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Fig. 1. Stereo pair and correlation-based correspondences. (a) Left image.
(b) Right image. (c) Initial correspondences based on cross-correlation.



and outliers, and we perform all the processing in 3D
instead of 2 1/2D [20].

The 2 1/2D sketch was introduced by Marr [24] and is
very popular among stereo researchers. The weakness of
this representation lies in the fact that it is view-centered
and viewpoint dependent elements are unnecessarily
introduced into the framework. Even though this might be
acceptable when dealing with a single image, it is detri-
mental when dealing with a stereo pair and unsuitable for
extension to more views. We illustrate the problem using
the image pair seen in Fig. 2, which is perceived by humans
as three overlapping planes. A common solution from many
existing stereo algorithms, shown in Fig. 2, has the form of a
ªwedding cakeº where only one depth value is associated
with every pixel in the reference image. However, as
asserted by human perception of the stereo pair, this is
not what the output should be. Discontinuities in depth do
not correspond to any physical property of the 3D objects.
Human perception of the scene does not indicate a
ªwedding cakeº structure nor that the lower planes have
holes below the upper layers. Instead, humans perceive
three overlapping planes without holes or with an un-
certainty as to what lies beneath the upper layers. A single
depth map, the main form of 2 1/2D representation, is
incapable of conveying the correct interpretation of the
scene, therefore, a 3D representation in terms of layers is
appropriate.

The novelty of our method comes from the fact that we
use ªsaliencyº instead of cross-correlation to determine the
correctness of matches. Instead of making the decisions at
the matching stage based on cross-correlation, we delay
them until saliency information is available. From our
perspective, high cross-correlation values between image
intensities are indications of potential matches, but not very
reliable as a criterion for resolving the correctness of
matches. We propose the use of saliency for that purpose.
By saliency, we mean the likelihood that a location belongs

to a perceptual structure, which could be a surface, a curve,
or a junction. As demonstrated in the remainder of the
paper, our data representation and communication scheme
enable us to determine the saliency of data items. In this
approach, locations that produce erroneous high cross-
correlation values can be detected and removed. Since they
are not supported by other data, they will have low saliency
and will be identified as outliers. Had we opted to make
decisions immediately after the initial computation of cross-
correlation values, we would have been misled. This a
common failure of correlation-based matching.

A consequence of the use of saliency is the integration of
feature matching with surface and curve extraction. The
approach is similar to the one proposed in [14]. As we
compute the surface or curve saliency of a location, we are
able to decide whether the location is a correct match. If it
has high local support, in the sense that it is compatible
with its neighbors with respect to surface normal or curve
orientation, then it is more likely to belong to a surface or
curve of the scene. The lack of local support, which results
in low saliency, indicates that the location under examina-
tion is most likely an outlier and does not belong to some
underlying structure.

Since the objective is to obtain a scene description from
the stereo pair, the output of a stereo algorithm should be
surfaces and curves. A cloud of 3D points could be an
intermediate stage of the process but certainly not the goal.
Objects do not consist of isolated points but are three-
dimensional volumes whose bounding surfaces are visually
perceived. Therefore, a description in terms of surfaces,
surface boundaries, curves, and curve junctions should be
the desired output. Combining tensor voting with a
marching process, the proposed framework extracts sur-
faces in the form of a triangulated mesh in a way similar to
[22] and [35].

3.2 Constraints

Taking into consideration that the problem at hand is ill-
posed, several constraints that should be imposed on the
solution have been proposed. Besides the epipolar con-
straint, the most widely used among these constraints
include the continuity constraint which expresses the fact
that ªmatter is cohesive,º the uniqueness constraint, and the
ordering constraint [24], [39].

We apply the epipolar constraint in the initial matching
phase. Corresponding features are assumed to lie on
corresponding epipolar lines, therefore, the search for
potential matches can be limited to a one-dimensional
problem in image space. After the initial matches have been
generated using a simple cross-correlation based technique,
all processing is performed in three dimensions.

The continuity constraint states that objects tend to be
smooth and continuous, therefore, the scenes they are part of
exhibit the same properties. The problem with the continuity
constraint is that it applies ªalmost everywhere,º but not at
discontinuities. The inherent difficulties in the matching
process led researchers to substitute erroneous or missing
matches with estimates based on their neighbors, usually
along the same epipolar line, a practice that is effective in
areas where surfaces are smooth, but has to be avoided close
to discontinuities. We impose the smoothness constraint in
3D via tensor voting to overcome predicaments that arise
from its imposition in one or two dimensions.
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Fig. 2. The ªwedding cakeº interpretation of overlapping planes. (a) Input

images. (b) ªWedding cakeº output.



The uniqueness constraint states that a feature on one of
the images can match at most one feature on the other
image. The novelty of the proposed method is that we do
not enforce the uniqueness constraint immediately at the
matching stage. Instead, we allow all potential matches as
inputs to the tensor voting process, the results of which
point out the outliers. We then locally enforce the
uniqueness constraint to select the best correspondences.
Note that this local constraint does not translate into
uniqueness on the reconstructed surfaces, thus allowing
transparency and the continuation of occluded surfaces
behind the occluding ones. The latter is a desirable
phenomenon, as it is consistent with human perception
and is often explicitly ignored by many stereo algorithms.

Finally, the ordering constraint states that, along any
epipolar line, the order of two or more features should be
the same in two views. While it holds for scenes composed
of a single surface, the ordering constraint is not applicable
to scenes with either small or thin objects and containing
transparent or acutely concave surfaces. We implicitly
impose this constraint locally only.

4 TENSOR REPRESENTATION AND VOTING

The core of our framework is tensor representation and
tensor voting. The use of tensors in the field of signal
processing and computer vision was introduced by Knuts-
son [19] and Westin [38]. Medioni et al. [25] formulated a
methodology for inferring perceptual structures from
sparse noisy data under which tensors communicate with
their neighborhood sending and receiving information via a
voting process. This section presents the basic theory of
tensor representation and voting and the reasons they are
suitable for the problem at hand. We refer interested
readers to the Appendix and to the book [25] for details.

4.1 Tensor Representation

The use of tensors as a means of data representation stems
from the observation that discontinuities occur at locations
where multiple structures such as curves, surfaces, or
regions intersect. For instance, a surface orientation dis-
continuity, which has the form of a curve, occurs at the
intersection between two surfaces. In other words, whereas
there is only one normal orientation associated with a
location on a smooth surface patch there are multiple
orientations associated with any location on a discontinuity.
Hence, the desirable data representation is one that can
encode multiple orientations and the multiple roles a
location in a scene might have, as well as their certainty.

The second-order symmetric tensor possesses precisely
this property. It has the form of a 3x3 symmetric, positive
semidefinite matrix or, equivalently, of a three-dimensional
ellipsoid. The shape of the tensor is used to encode certainty
of orientation and its size to encode feature saliency. The
decomposition into its eigenvectors and eigenvalues can
provide information as to what the tensor represents (Fig. 3).
A tensor that only has one nonzero eigenvalue represents
perfect certainty of surface orientation with normal parallel
to the corresponding eigenvector, while the magnitude of
the eigenvalue indicates the saliency of the surface. A tensor
with two equal nonzero eigenvalues represents any possible
surface orientation perpendicular to the eigenvector corre-
sponding to the zero eigenvalue or a certain curve

orientation parallel to this vector. A tensor with three equal
eigenvalues represents perfect uncertainty of all orienta-
tions and the magnitude of the eigenvalues indicates
whether the location is an intersection of multiple features
or an outlier. These three types of tensors are referred to as
stick, plate, and ball tensors, respectively. Any second order
symmetric tensor can be decomposed into a linear
combination of these three basis components.

4.2 Tensor Voting

The strength of our approach resides in the way data points
communicate with each other through tensor voting. It is a
process similar to the Hough transform [15] in the sense
that we let the solution emerge from the data after
measurements of compatibility among data items. It differs
in the fact that there is no need to specify beforehand the
parametric configuration we are looking for and the
computational complexity is independent of the dimen-
sionality of the structures to be inferred.

In order to confirm the compatibility of our data or to
reach the conclusion that some data items are outliers, we
need to communicate local information among neighboring
locations. This is accomplished by tensor voting. Every
location, whose orientation and saliency information have
been encoded in a tensor, can cast votes to neighboring
locations. The decomposition of a second-order symmetric
tensor into the basis components allows for the execution of
the vote in three steps, one for each component, with pre-
defined voting fields. This eliminates the need to calculate a
voting field for every tensor we encounter and allows us to
perform the voting process using look-up tables, thus
significantly reducing the number of operations.

Conveniently, the voting fields are second-order sym-
metric tensor fields that produce second order symmetric
tensors as votes at the receiving locations. Their orientation
is determined by the relative position of the vote-casting
and the vote-receiving location. Their saliency, that is the
strength of their influence, is determined by the voter's
saliency attenuated with respect to the distance and
curvature between the voting and receiving location. These
choices were made because the effect of the vote should
obviously decrease with distance and it also decreases with
curvature since a planar patch is preferable to a curved
surface if both options are possible.

The onlyparameter in theentire tensorvoting process is the
rate of attenuation of the voting field's strength. It is
implemented as a Gaussian function, whose spread is the
free parameter, and is equivalent to the size of the voting
neighborhood, since the latter is essentially the area around a
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Fig. 3. A second order symmetric tensor.



location, where the votes cast by it are not negligible. The
framework has low sensitivity to this parameter, and slight
alterations of its value result in negligible changes of the
outputs.

4.3 Vote Interpretation

We have developed a unified framework for data repre-
sentation and communication. The next step is to define a
procedure to analyze the results of this communication.
This task is assisted by another convenient property of the
tensor representation. The accumulation of votes at a
location is implemented as a tensor addition, or a summa-
tion of 3x3 matrices. After voting is completed, the resulting
matrix, which also incorporates any prior information of the
location, can be decomposed into its eigensystem. We can
determine a location's role in the scene by analyzing the
eigensystem after the vote.

The total saliency of the location as an inlier is determined
from the magnitude of its largest eigenvalue. A very small
value indicates an isolated point without any support from its
neighbors. On the contrary, a large value indicates a location
that received a large number of votes and, therefore, is likely
to belong to an underlying structure. Surface saliency is
encoded by the difference of the two largest eigenvalues (see
Appendix) and its orientation is the eigenvector correspond-
ing to the largest eigenvalue. Similarly, curve saliency is
encoded in the difference between the second and third
eigenvalues. The tangent to this curve is the eigenvector
corresponding to the smallest eigenvalue. Finally, curve
junction saliency is encoded in the smallest eigenvalue. It is
not accompanied by any preference in orientation.

5 TENSOR VOTING AND STEREO

After reviewing the design choices that were made and the
theoretical background of our method, this section describes
the implementation of the tensor voting framework to stereo.
The various phases of the procedure are outlined in the
flowchart of Fig. 4. We begin by extracting features on each
image of the stereo pair and then establishing potential
correspondences based on cross-correlation. We proceed by
estimating the saliency of these correspondences using tensor
voting and removing outliers from the data set. The next step
is to compute saliency in the entire disparity space and extract
salient structures. Optionally, in the case of real images, we
can use monocular edge information to aid the process.

5.1 Initial Feature Correspondence

The algorithm accepts as input a pair of stereo images of a
static scene. If calibration information is not available, we use
a method such as the one proposed by Zhang et al. [40] to
obtain the epipolar geometry. In the remainder of this paper,
we will assume, without loss of generality, that the images
have already been rectified. The first preprocessing step is the
extraction of points of interest or features that can be matched.
Intensity variance is used as a criterion for the selection of a
pixel as a feature suitable for matching. The reason behind
this is to avoid totally textureless areas where all matches are
ambiguous. In practice, for most typical scenes, a large
percentage of the pixels, possibly exceeding 90 percent, are
retained for the next step. In case of random dot stereograms,
all the dots are retained. Intensity variance is defined as

��u; v� �
X

�i;j�2��uÿwin;u�win�;�vÿwin;v�win��
�I�i; j� ÿ �I�u; v��2;

�1�
where 2 � win� 1 is the size of the search window, and
�I�u; v� is the mean intensity in that window. We retain all
pixels whose intensity variance is not so close to zero as to
be considered insignificant.

Feature extraction is the only monocular processing step
in the entire algorithm. The next step is feature matching.
We use normalized cross-correlation of intensity values to
match features across the two views. To overcome the
inherent problems of matching, instead of devising a
sophisticated matching scheme, which we feel is not the
remedy to the problem, we allow all potential matches to be
used as input to the next stage. We define potential matches
as the ones with cross-correlation values close to the
maximum value for the feature under examination. Since
cross-correlation can be misleading (see [31] for a very
interesting analysis), we let the disambiguation of matches
take place at a later stage. It must be pointed out that stricter
thresholds on feature selection and matching, resulting in
fewer, but possibly better matches, do not affect the results
significantly since our framework works equally well for
sparse and dense initial data even in the presence of
significant outlier noise.

5.2 Correspondence Saliency Estimation

After the initial potential matches have been recorded, they
are encoded in the tensor representation described earlier.
The encoding and all subsequent processing are performed in
a three-dimensional space, either disparity space or real-
world space, in case calibration information is available. Our
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Fig. 4. Flowchart of our approach.



goal at this point is to determine which are the correct matches
and to discard erroneous matches and outliers. We accom-
plish this with a sparse tensor vote where every location casts
votes to all active sites in its neighborhood. The resulting
tensors at each location are decomposed into the three basis
components and the role of each point is determined. Points
with high surface saliency are more likely to belong to smooth
surface patches, points with low surface saliency but high
curve saliency are more likely to belong to surface disconti-
nuities, while points with no orientation preference are
probably outliers. More specifically, if:

�i;1 ÿ �i;2 > thres �max
j
f�j;1 ÿ �j;2g �2�

location i is considered a good candidate to belong to a
surface and is retained. The difference between the largest
and second largest eigenvalue of the tensor at location i, �i;1,
and �i;2, must be within a percentage of the maximum such
difference among all locations. The threshold thres has no
significant effect on the output if kept within a reasonable
range. The insensitivity to this parameter is due to the fact
that locations that are marginally labeled inliers or outliers
do not contribute much to structure extraction. Outliers
mistakenly kept do not have strong surface saliency to affect
the extracted surfaces, while missing points are filled in
when information is propagated.

Points that are labeled outliers on account of the fact that
they do not display any feature saliency are removed from
the data set and their influence is removed by performing
another vote. Each data item about to be removed casts
votes in its neighborhood that are subtracted from the
tensor of the receiving locations instead of being added.

After the collection of local support information at each
location, the local uniqueness constraint can be enforced with
respect to saliency. Each line of sight is examined and only
the most salient data item is retained. Locations that had
originally higher cross-correlation values in error are easily
detected at this stage since their presence is not supported by
the neighboring locations and their saliency is low. Correct

matches that seemed not to be the first choice for a feature in
the beginning may survive due to their compatibility with
their neighbors in the formation of a salient structure. Note
that erroneous removal of a correct point is not catastrophic
since it will most likely be interpolated at the next stage. The
input pair of a random dot stereogram is shown in Fig. 5a, the
initial matches produced by cross-correlation in Fig. 5b, and
the matches retained after tensor voting and uniqueness
enforcement in Fig. 5c.

5.3 Salient Structure Extraction

The desired output is not a cloud of points with associated
depth measurements but a description of the scene in terms of
surfaces and surface discontinuities. Therefore, starting from
the sparse tensors, we must derive a dense representation of
the space from which to extract structure. We perform a dense
tensor vote in which the ball components do not contribute
and compute a saliency tensor at every voxel in the three-
dimensional space. Once we have the necessary saliency
information, salient surfaces, surface junctions, and curve
junctions are extracted by a nonmaximal suppression process
[35] based on the original Marching Cubes algorithm
proposed by Lorensen and Cline [22].

In order to reduce computational cost, the calculation of
saliency tensors at locations with no prior information and
structure extraction are integrated and performed as a
marching process. Beginning from seeds, locations with
highest saliency, we perform a dense vote only towards the
directions dictated by the orientation of the features.
Surfaces are extracted with subvoxel accuracy, as the
zero-crossings of the first derivative of surface saliency. A
slice of the inferred surface saliency in the volume can be
seen in Fig. 6. Brighter gray-scale values indicate higher
saliency. Locations with high surface saliency are selected
as seeds for surface extraction, while locations with high
curve saliency are selected as seeds for curve extraction. The
marching direction in the former case is perpendicular to
the surface normal, the eigenvector of the saliency tensor
corresponding to the largest eigenvalue, while, in the latter
case, the marching direction is along the tangent to the
curve, the eigenvector corresponding to the smallest
eigenvalue. Curve junction saliency is a strictly local
property and is not communicated in the extraction process.
The surfaces extracted from the random dot stereogram of
Fig. 5 are shown in Fig. 7. They consist of overlapping layers
parallel to the image plane.
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Fig. 5. Random dot stereogram with three overlapping layers. (a) Random

dot stereogram input. (b) Initial correspondences. (c) Correspondences

after tensor voting and uniqueness enforcement.

Fig. 6. Cut of the surface saliency volume.

Fig. 7. Rotated views of the extracted surfaces.



As mentioned in the previous section, the extraction
process degrades very gracefully in the presence of noise.
Since outliers are unlikely to accidentally form structured
arrangements, their tensors are dominated by the ball
component and given that the ball component does not
participate in the dense tensor vote their effects are
negligible. Conversely, correct points that may have not
been detected by the initial matching process or have been
mistakenly removed may be filled in during the dense vote.

5.4 Computational Complexity

The establishment of initial correspondences is of linear
complexity, more specifically, O�dn�, where n is the number
of features and d is the disparity range we examine. The
sparse vote is of O�Cn� complexity, where C is the average
number of neighbors of a data item. In the worst case, this
can lead to O�n2�, but that is a clear indication of an
incorrect setting of the size of the neighborhood. For most
practical cases, C is a small fraction of the data set. The
enforcement of the uniqueness constraint is a linear process
since it is done along the lines of sight which, in general, are
less than the data items and at most are equal to them.

The most time consuming stage is the extraction process.

The inherent output sensitivity of the Marching Cubes

algorithm [22], [35] causes our method to be output sensitive

as well. The marching process examines voxels that contain

some structure to be extracted with high accuracy, in the

order of 98 percent. The cost associated with the calculation of

the saliency tensor at these locations is reduced by storing

previously computed votes in a balanced binary tree, which is

purged when its size becomes a hindrance, rather than an

acceleration to the algorithm. Correct use of the balanced

binary tree can ensure that only a negligible number of

tensors have to be computed twice, saving a significant

amount of floating point operations. Given that each voxel is

affected by a constant number of its neighbors, which will be

denoted byK and is a function of the attenuation factor of the

voting field, and that the binary tree contains at most

M entries, an estimate of the computational complexity of

this stage is O�sKlogM�, where s is the number of voxels

containing features. Since we cannot alter the number of

voxels containing features without loss of accuracy in the

output and we need a large enough neighborhood for correct

results, a more efficient way of selecting the size of the binary

tree should be devised.
Space complexity is O�n� in the first stages, and O�n�

s�M� in the extraction stage. The relationship between the

number of input locations and the number of voxels

containing features depend on the scene and the quantiza-

tion of the 3D volume where the marching process takes

place.
Since all processing is local, a parallel implementation is

feasible. Feature matching can be done in parallel along

epipolar lines, sparse tensor voting can be performed

locally in segments of the data set, uniqueness enforcement

can be carried out in parallel along lines of sight, and the

extraction process can also be performed in parallel, starting

from various seeds simultaneously.

6 EXPERIMENTAL RESULTS

In this section, we present experimental results from
random dot stereograms, as well as real stereo pairs. We
applied our algorithm to diverse scenes, keeping the size of
the voting neighborhood constant at 51 x 51 x 35.

6.1 Synthetic Data

The example used to illustrate the steps of our method
(Figs. 5, 6, and 7) demonstrates the capability of our
framework to handle multiple layers. Fig. 8 shows another
example of a random dot stereogram depicting a cross
floating over two overlapping planes. This a classical
example, adapted from Nalwa's book [26]. It is also
properly handled without layer initialization or alterations
of the parameters. Note that the boundaries of the cross are
accurate and we even detect the corners explicitly.

The random dot stereogram shown in Fig. 9 is a special
case, as it involves transparency. Every dot on the right
image has exactly two matches in the left image. This
configuration was introduced by Julesz [18] and gives rise
to two layers at different disparity levels. Due to the
symmetry between the two layers, they are equivalent in
terms of saliency and they are both extracted as seen in
Fig. 9d. This example illustrates our point that even though
we enforce uniqueness at the local level, the output still
contains overlapping layers.

The final example on synthetic data is shown in Fig. 10.
The input is two views of a synthetic cube and the output
surfaces can be seen in Fig. 10b. This example illustrates the
capability of our approach to explicitly handle sharp
orientation discontinuities in synthetic datasets and extract
curves along these discontinuities.

6.2 Real Data

In this section, we present results on stereo pairs of real
scenes. Fig. 11 depicts the steps of processing a stereo pair of
the famous ªRenaultº part, used in many stereo experiments.

830 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 6, JUNE 2002

Fig. 8. Random dot stereogram of a cross and two overlapping

planes.(a) Input images. (b) Output surfaces.



The input images can be seen in Fig. 11a, the initial
correspondences in Fig. 11b, the output of the sparse tensor
vote and uniqueness enforcement in Fig. 11c, the extracted
surfaces in Fig. 11d, and texture-mapped views of the inferred
surfaces in Fig. 11e. Note that parts of the occluded
background have been filled in near the occluded edges.

Fig. 12 is an example based on aerial images of a sports
arena. The major difficulty in this case is the fact that the
arena itself and the surrounding environment do not
contain significant texture information. Nevertheless, we
are able to extract surfaces based on the sparse initial
matches. Note that calibration information was not avail-
able and, as a result, the extracted surfaces are displayed in
scaled disparity space.

Fig. 13 depicts a stereo pair from a different domain.
Surfaces are extracted from an uncalibrated stereo pair of a
face. We are able to represent the complex surface of the
human face without imposing additional constraints such
as locally planar or spherical patches. The background
plane, that has disparity zero, has been removed for clarity.

Finally, Fig. 14 is also a classical stereo pair. It consists of
a number of approximately fronto-parallel layers. A depth
map of the reconstructed surfaces is shown in Fig. 14b. A
total of six layers are extracted. Lighter shades of gray
indicate layers that are further from the viewer.

6.3 Region Trimming

A final, optional step after surface extraction, still at an
experimental stage, is region trimming. It can be applied to

correct region boundaries in case monocular edge informa-
tion is available. Obviously, it is not applicable to random
dot stereograms. As pointed out in [31], surface boundaries
are often shifted by intensity-based stereo matching. This
affects our results only in the case of depth discontinuities
since orientation discontinuities are properly handled by
tensor voting. When depth discontinuities occur there is a
noticeable overextension of the surfaces. To illustrate the
symptoms in the book scene, we compute the product of the
input images and the corresponding disparity maps
(Fig. 15). One can identify background regions that appear
brighter than the rest of the background and as bright as the
foreground and which have been assigned erroneous
disparity values.

We propose to treat surface overextension by inferring
the correct boundaries and removing the overextensions.
For instance, in [16], other researchers have used monocular
edge information to treat discontinuities. Our approach is
entirely different. We do not use edges to reduce dis-
continuity penalties, a characteristically two-dimensional
process, but, instead, project those edges in the three-
dimensional space and use them to guide the true surface
boundary detection. Since edge detectors often fail to
extract the entire occluding boundary, the detected edgels
need to be linked. This is a curve inference problem
addressed in [21]. Tensor voting and analysis of the results
with respect to curve saliency allows the extraction of
complete boundaries.

The last step is the identification of which of the two
segments of the surface, as segmented by the boundary,
should be retained and which should be removed. A vector
voting scheme can be employed to measure the ªpolarityº
of boundary points [21], that is, the side on which the
majority of their neighbors lies. It can be easily implemen-
ted under the tensor voting philosophy, with the sole

LEE ET AL.: INFERENCE OF SEGMENTED OVERLAPPING SURFACES FROM BINOCULAR STEREO 831

Fig. 10. Stereo pair of a synthetic cube. (a) Input images. (b) Output

surfaces.

Fig. 9. Transparent planes random dot stereogram. (a) Random dot

stereogram input. (b) Initial correspondences. (c) Unique disparity

assignments. (d) Extracted surfaces.



difference being that instead of performing tensor additions
to accumulate the votes, vector additions are performed,
thus maintaining direction as well as orientation. A simple
illustration can be seen in Fig. 16. After we have established
on which side the inliers lie, the overextended surfaces are
removed, as seen in Fig. 17.

7 DISCUSSION AND FUTURE WORK

We have presented a framework that is able to deal with the
binocular stereo problem 3D space. The necessity of
processing in three dimensions, as opposed to one or two,
was justified in Section 3. This is difficult for stereo
techniques based on optimization ([2], [3], [8], [11], [27],
[28], [29], [31], [37]) due to the increase in computational
cost associated with the increase in dimensionality. Even
the maximum flow formulation ([16], [30]) is essentially

two-dimensional since there can only be one depth value

associated with an image pixel. These methods, by design,

are incapable of handling transparency, and their outputs
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Fig. 12. The arena. (a) Input images. (b) Views of extracted surfaces.

Fig. 11. Renault part. (a) Input images. (b) Initial correspondences. (c) Unique disparity assignments. (d) Inferred surface in disparity space.

(e) Texture-mapped views.

Fig. 13. A face. (a) Input images. (b) Extracted surface.

(c) Texture-mapped surface.



are view-dependent since they allocate a single depth value
to each ray of sight of a reference camera, either one of the
two real cameras, or a virtual camera.

In addition to the capability to handle transparency,
three-dimensional processing plays an important role in the
enforcement of the continuity constraint. Unless we operate
in three dimensions, there is the unwanted effect that two
locations adjacent in one of the images but very distant in
the three-dimensional world interact significantly with each
other. This occurs at depth discontinuities and is definitely
an undesirable phenomenon since there should not be any
propagation of information between locations that belong to
different objects or distinct parts of the same object. The
tensor voting framework enables the proper enforcement of
the continuity constraint locally, in the actual neighborhood
of the locations in real or disparity space.

A key contribution is the use of saliency instead of cross-
correlation as the criterion for determining correct matches.
The shortcomings of cross-correlation based matching are
well known and are the cause of failures in stereo systems.
We claim that surface saliency is a more relevant quantity
when one is interested in extracting surfaces from a stereo
pair. Similarly, curve saliency is more relevant during curve
extraction. The delay in the enforcement of the uniqueness
constraint allows us to examine the local support a location
receives, before deciding whether it is an inlier or an outlier.
Calculation of saliency can disambiguate matches, remove
outliers and interpolate surfaces and curves in case of
missing features.

Related to the above is the integration of feature
matching with structure extraction. Unlike conventional
methods, where the two tasks are performed sequentially,
that is surface extraction is performed after the ªcorrectº
matches have been established, we use saliency to establish

the correct matches, and use these matches to reconstruct
the underlying structure of the scene. The matches that are
considered inliers, are used to guide and constrain the
extraction process and, hence, their correctness can be
judged by the type of surface they produce.

The presence of noise is something that cannot be
neglected in any stereo system. Noise is introduced by the
imaging devices, imperfect calibration, and image coordi-
nate and disparity quantization. The tensor voting frame-
work has proven to be extremely robust to noise [21], [25],
[35]. It is able to survive corruption of noise up to a few
times the order of the inlier data. Corruption by noisy data
five times larger in number than the correct data was shown
not to be catastrophic in [13]. Even if similar corruption is
unlikely in the case of binocular stereo, this example
demonstrates the noise tolerance of the tensor voting
framework. In fact, the only assumption we make about
noise is that even if it accidentally forms artifacts, these
should be less salient than the actual features of the scene. If
that is not the case, these artifacts are extracted, a fact not
inconsistent with human perception.

All the examples shown in previous sections were
carried out with the same value of the scale of the voting
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Fig. 14. The ªparking metersº stereo pair. (a) Input images. (b) Depth

map.

Fig. 15. Illustration of overextended surfaces. (a) Input images.

(b) Disparity after densification. (c) Intensity-disparity product.



field. While the robustness of the algorithm with respect to
this parameter is an advantage, it is also a weakness. A
single scale for the entire data set is most effective when the
distribution of the data does not display significant
variations. If that is not the case, different scales should
be applied on regions with different data densities. A large
scale enables the communication of more distant locations
and is less vulnerable to noise, but may cause excessive
smoothing of the results. On the other hand, a smaller scale
is more suitable for dense areas, as it allows local influence
only and preserves details. A scheme for automatic scale
adaptation is one of the major axes of our future research.

Of equal importance is the continuation of research on

more accurate boundary detection. The results demon-

strated in Section 6.3 are promising but the work on

boundary detection that would inhibit surface overexten-

sion is far from finished. We intend to further develop our

boundary detection technique and make it independent of

edge detectors. Polarity information is sufficient for dis-

continuity detection as indicated by our experiments on

synthetic data. Boundaries can be extracted as curves in 3D

that display locally maximum polarity.
We intend to augment our framework by incorporating

more information that currently is not utilized to the proper
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Fig. 17. Surface trimming. (a) Intensity-disparity product. (b) Overlapping regions. (c) Edge segments in the region. (d) Boundary saliency of the

edgels. (e) Curve saliency. (f) Trimmed surfaces.

Fig. 16. Voting for boundary extraction. (a) Vector sums for boundary

detection. (b) Voting field.



extent. Our naõÈve initialization of the tensors as balls does

not take into account the fact that these locations are not

points but are surfaces visible by the cameras. Therefore,

the tensors could be initialized as stick tensors parallel to

the lines of sight. Furthermore, curvature information that

can be extracted from the data should be used to guide

surface and curve extraction. So far, we have conducted

experiments on curvature extraction from synthetic data

with satisfactory results [36].
Finally, the efficiency of the extraction process is an area

that can be considerably improved. The complexity of the

Marching Cubes algorithm depends on the voxel size rather

than the complexity of the extracted surfaces. The need to

capture detail in some regions forces us to generate

triangulated meshes of the surfaces containing large

numbers of triangles even in flat regions. Postprocessing

to reduce the number of triangles is an option, but a more

efficient extraction technique is clearly superior.

8 CONCLUSION

Undeniably, there is a plethora of stereo methodologies,
each encompassing interesting ideas and features. They
succeed in many of the tasks involved in the process of
extracting information from a binocular stereo pair of
images. Unfortunately, none of them can be described as
a complete approach with general applicability regardless
of the scene depicted. The reasons for this are twofold: on
one side, one can attribute the shortcomings to unsuitable
representation of the data and incorrect implementation of
the constraints and, on the other, to the lack of a framework
capable of handling all the major and minor details of the
stereo problem with a reasonable computational cost.

Tensor representation is sufficient and general enough

for encoding all the necessary information for the problem

at hand. Tensor voting is a framework that enables the

communication and interpretation of this information in a

complete three-dimensional space with a reasonable com-

putational complexity. This ratio of sophisticated proces-

sing to complexity has not been attained by other methods.

Equipped with these tools, we had to make some critical

choices in the selection of the constraints and in the setting

of our goals in order to develop a robust solution to the

stereo problem. We believe that the use of saliency to

determine the correctness of matches and the integration of

feature matching and structure extraction to be the major

contributions of this paper.

APPENDIX

OVERVIEW OF TENSOR VOTING FORMALISM

A.1 Representation

Points can simply be represented by their coordinates. A

local description of a curve is given by the point coordinates,

and its associated tangent or normal plane. A local descrip-

tion of a surface patch is given by the point coordinates and

its associated tangent or normal plane. Here, however, we do

not know in advance what type of entity (point, curve,

surface) a token may belong to. Furthermore, because

features may overlap, a location may actually correspond

to multiple feature types at the same time.
To capture first order differential geometry information

and its singularities, a second order symmetric tensor is

used. It captures both the orientation information and its

confidence, or saliency. Such a tensor can be visualized as

an ellipse in 2D or an ellipsoid in 3D. Intuitively, the shape

of the tensor defines the type of geometric entity repre-

sented (point, curve, or surface element) and its size

represents the saliency.
To express a second order symmetric tensor SS, we

choose to take the associated quadratic form and to

decompose it into its eigensystem, leading to a representa-

tion based on the eigenvalues �1; �2; �3 and the eigenvectors

ê̂e1; ê̂e2; ê̂e3. In a more compact form,

SS � �1 ê̂e1 ê̂e1
T � �2 ê̂e2 ê̂e2

T � �3 ê̂e3 ê̂e3
T ;

where �;1� �2 � �3 � 0 are the eigenvalues, and ê̂e1; ê̂e2; ê̂e3

are the eigenvectors corresponding to �1; �2; �3, respec-

tively. The eigenvectors represent the principal directions of

the ellipsoid and the eigenvalues encode the size and shape

of the ellipsoid.

A.2 Tensor Decomposition

As a result of the voting procedure, we produce arbitrary

second-order, symmetric tensors; therefore, we need to

handle any generic tensor. The spectrum theorem [12] states

that any tensor can be expressed as a linear combination of

three basis tensors, i.e.,

SS � ��1 ÿ �2�ê̂e1 ê̂e1
T

� ��2 ÿ �3��ê̂e1 ê̂e1
T � ê̂e2 ê̂e2

T � � �3�ê̂e1 ê̂e1
T � ê̂e2 ê̂e2

T � ê̂e3 ê̂e3
T �;

where ê̂e1 ê̂e1
T describes a stick tensor with one non-zero

eigenvalue, �ê̂e1 ê̂e1
T � ê̂e2 ê̂e2

T � describes a plate tensor with two

equal nonzero eigenvalues and �ê̂e1 ê̂e1
T � ê̂e2 ê̂e2

T � ê̂e3 ê̂e3
T � de-

scribes a ball tensor with three equal eigenvalues. Fig. 18

illustrates the decomposition of a general second-order

symmetric tensor into these components.
A dominant stick component indicates a location that

most likely belongs on a smooth surface, a dominant plate

component indicates preference for a smooth curve, and a

dominant ball component indicates a possible curve

junction. At each location, the saliency of each of the three

types of information is captured as follows: Point-ness is

defined by no orientation and the saliency is given by �3.

Curve-ness is defined by a tangent orientation given by ê̂e3

and saliency by �2 ÿ �3. Surface-ness is defined by a normal

parallel to ê̂e1 and saliency �1 ÿ �2.

A.3 Tensor Communication

We now turn to our communication and computation
scheme which allows a site to exchange information with its
neighbors and infer new information.

Token refinement and dense extrapolation. The input
tokens are first encoded as second-order tensors. In 3D, a
point token is encoded as a 3D ball. A curve element is
encoded as a 3D plate. A surface element is encoded as a
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3D stick. These initial tensors communicate with each other in
order to derive the most preferred orientation information (or
refine the initial orientation if given) for each of the input
tokens (token refinement, sparse vote) and extrapolate the
inferred information at every location in the domain for the
purpose of coherent feature extraction (dense extrapolation,
dense vote). Note that, each token is first decomposed into the
basis elements, before broadcasting this information. While
they may be implemented differently for efficiency, these two
operations are equivalent and can be regarded as tensor
convolution of the data set with voting kernels.

Derivation of the 3D voting kernels. All voting kernels
can be derived from the fundamental 2D stick kernel, by
rotation and integration. Fig. 19 shows this 2D stick kernel.
In [25], we explain in mathematical terms that this voting
kernel, in fact, encodes the proximity and the smoothness
constraints. Denote the fundamental 2D stick kernel by VF .
The 3D stick kernel is obtained by revolving the normal
version of VF 90 degrees about the z-axis, then integrating
the contributions of the rotating VF field by rotating about
the x-axis by tensor addition. To obtain the plate kernel, we
rotate the 3D stick kernel obtained above about the z-axis,
integrating the contributions by tensor addition. To obtain
the ball kernel, we rotate the 3D stick kernel about the y-axis
and z-axis, integrating the contributions by tensor addition.

Saliency decay function. We use the Gaussian function
as the saliency decay function that determines the strength
of the voting field with respect to distance and curvature.
The voting function, in polar coordinates, for a stick tensor
parallel to the x-axis with unit magnitude is:

V�s;�; '� � eÿ
s2�c�2

�2

ÿ �
� � 2 cos �

l

s � l�

sin �
:

�3�

The distance between the vote-casting and receiving
locations is denoted by l, while s is the length of the
circular arc that goes through the receiving location and

whose normal is the stick tensor. # is the angle of the
circular arc, while c is a constant. The only free parameter is
� which is used to control essentially the size of the
neighborhood for data communication.

ACKNOWLEDGMENTS

This research was funded in part by the US National
Science Foundation under grant No. IRI-9811883. Funding
support was also provided by Geometrix, Inc.

REFERENCES

[1] S.T. Barnard and M.A. Fischler, ªComputational Stereo,º Comput-
ing Survey, vol. 14, pp. 553-572, 1982.

[2] P. Belhumeur, ªA Bayesian Approach to Binocular Stereopsis,º
Int'l J. Computer Vision, vol. 19, no. 3, pp. 237-260, 1996.

[3] P. Belhumeur and D. Mumford, ªA Bayesian Treatment of the
Stereo Correspondence Problem Using Half Occluded Regions,º
Proc. Computer Vision and Pattern Recognition, pp. 506-512, 1992.

[4] Y. Boykov, O. Veksler, and R. Zabih, ªMarkov Random Fields
with Efficient Approximations,º Proc. Computer Vision and Pattern
Recognition, pp. 648-655, 1998.

[5] P. Burt and B. Julesz, ªA Disparity Gradient Limit for Binocular
Fusion,º Perception, vol. 9, pp. 671-682, 1980.

[6] Q. Chen and G. Medioni, ªA Volumetric Stereo Matching Method:
Application to Image-Based Modeling,º Proc. Computer Vision and
Pattern Recognition, vol. 1, pp. 29-34, 1999.

[7] R.T. Collins, ªA Space-Sweep Approach to True Multi-Image
Matching,º Proc. Computer Vision and Pattern Recognition, pp. 358-
363, 1996.

[8] I.J. Cox, S.L. Hingorani, S.B. Rao, and B.M. Maggs, ªA Maximum
Likelihood Stereo Algorithm,º Computer Vision and Image Under-
standing, vol. 63 no. 3, pp. 542-567, 1996.

[9] U.R. Dhond and J.K. Aggarwal, ªStructure from StereoÐA
Review,º IEEE Systems, Man, and Cybernetics, vol. 19, pp. 1489-
1510, 1989.

[10] P. Fua, ªFrom Multiple Stereo Views to Multiple 3-D Surfaces,º
Int'l J. Computer Vision, vol. 24, no. 1, pp. 19-35, 1997.

[11] D. Geiger, B. Ladendorf, and A. Yuille, ªOcclusions and Binocular
Stereo,º Int'l J. Computer Vision, vol. 14, pp. 211-226, 1995.

[12] G.H. Granlund and H. Knutsson, Signal Processing for Computer
Vision. Kluwer Academic, 1995.

[13] G. Guy and G. Medioni, ªInference of Surfaces, Curves and
Junctions from Sparse Noisy 3D Data,º IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 19, no. 11, pp. 1265-1277,
Nov. 1997.

836 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 6, JUNE 2002

Fig. 18. Tensor decomposition.

Fig. 19. The fundamental 2D stick field. (a) Normal voting field.

(b) Intensity-coded strength (saliency).



[14] W. Hoff and N. Ahuja, ªSurfaces from Stereo: Integrating Feature
Matching, Disparity Estimation, and Contour Detection,º IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 2,
pp. 121-136, Feb. 1989.

[15] P.V.C. Hough, ªMethods and Means for Recognising Complex
Patterns,º US Patent 3 069 654, 1962.

[16] H. Ishikawa and D. Geiger, ªOcclusion, Discontinuities, and
Epipolar Lines in Stereo,º Proc. European Conf. Computer Vision,
pp. 232-248, 1998.

[17] B. Julesz, ªBinocular Depth Perception of Computer-Generated
Patterns,º Bell System Technical J., vol. 39, pp. 1125-1162, 1960.

[18] B. Julesz, Dialogues on Perception. MIT Press, 1995.
[19] H. Knutsson, ªRepresenting Local Structure Using Tensors,º Proc.

Sixth Scandinavian Conf. Image Analysis, pp. 244-251, 1989.
[20] M.S. Lee and G. Medioni, ªInferring Segmented Surface Descrip-

tion from Stereo Data,º Proc. Computer Vision and Pattern
Recognition, pp. 346-352, 1998.

[21] M.S. Lee and G. Medioni, ªGrouping ., -, ->, O-, into Regions,
Curves, and Junctions,º Computer Vision and Image Understanding,
vol. 76, no. 1, pp. 54-69, 1999.

[22] W.E. Lorensen and H.E. Cline, ªMarching Cubes: A High
Resolution 3-D Surface Reconstruction Algorithm,º Computer
Graphics, vol. 21, no. 4, pp. 163-169, 1987.

[23] D. Marr and T. Poggio, ªA Theory of Human Stereo Vision,º Proc.
Royal Soc. London, vol. B204, pp. 301-328, 1979.

[24] D. Marr, Vision: A Computational Investigation into the Human
Representation and Processing of Visual Information. W.H. Freeman
and Co., 1982.

[25] G. Medioni, M.S. Lee, and C.K. Tang, A Computational Framework
for Segmentation and Grouping. Elsevier Science, 2000.

[26] S. Nalwa, A Guided Tour of Computer Vision. Addison-Wesley,
1993.

[27] S.I. Olsen, ªStereo Correspondence by Surface Reconstruction,º
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, no. 3,
pp. 309-314, Mar. 1990.

[28] M. Okutomi and T. Kanade, ªA Multiple-Baseline Stereo,º IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 4,
pp. 353-363, Apr. 1993.

[29] L. Robert and R. Deriche, ªDense Depth Map Reconstruction: A
Minimization and Regularization Approach which Preserves
Discontinuities,º Proc. Fourth European Conf. Computer Vision,
pp. 439-451, 1996.

[30] S. Roy and I.J. Cox, ªA Maximum-Flow Formulation of the N-
Camera Correspondence Problem,º Proc. Int'l Conf. Computer
Vision, pp. 492-499, 1998.

[31] R. Sara and R. Bajcsy, ªOn Occluding Contour Artifacts in Stereo
Vision,º Proc. Computer Vision and Pattern Recognition, pp. 852-857,
1997.

[32] S.M. Seitz and C.R. Dyer, ªPhotorealistic Scene Reconstruction by
Voxel Coloring,º Proc. Computer Vision and Pattern Recognition,
pp. 1067-1073, 1997.

[33] C.V. Stewart, ªMINPRAN: A New Robust Estimator for Computer
Vision,º IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 17, no. 10, pp. 925-938, Oct. 1995.

[34] R. Szeliski and P. Golland, ªStereo Matching with Transparency
and Matting,º Int'l J. Computer Vision, vol. 32, no. 1, pp. 45-61,
1999.

[35] C.K. Tang and G. Medioni, ªInference of Integrated Surface,
Curve and Junction Descriptions from Sparse 3-D Data Sets,º IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 11,
pp. 1206-1223, Nov. 1998.

[36] C.K. Tang and G. Medioni, ªCurvature-Augmented Tensorial
Framework for Integrated Shape Inference from Noisy, 3D Data,º
IEEE Trans. Pattern Analysis and Machine Intelligence, to be
published.

[37] G.Q. Wei, W. Brauner, and G. Hirzinger, ªIntensity- and Gradient-
Based Stereo Matching Using Hierarchical Gaussian Basis Func-
tions,º IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20,
no. 11, pp. 1143-1160, Nov. 1998.

[38] C.F. Westin, ªA Tensor Framework for Multidimensional Signal
Processing,º PhD thesis, Linkoeping Univ., Sweden, 1994.

[39] A.L. Yuille and T. Poggio, ªA Generalized Ordering Constraint for
Stereo Correspondence,º AI Memo 777, AI Lab, MIT, 1984.

[40] Z. Zhang, R. Deriche, L.T. Luong, and O. Faugeras, ªA Robust
Approach to Image Matching: Recovery of the Epipolar Geome-
try,º Artificial Intelligence J., vol. 78, pp. 87-119, 1995.

Mi-Suen Lee received the BSc degree from the
Chinese University of Hong Kong in 1989, the
MPhil degree from the University of Hong Kong
in 1992, and the PhD degree from the University
of Southern California in 1998, all in computer
science. Since 1998, she has been a senior
member of the research staff at Philips Re-
search, Briarcliff Manor, New York. Her current
research interests include perceptual grouping,
robust techniques, shape analysis, shape from

stereo, motion or shading, and image-based rendering. She is a
member of the IEEE Computer Society.

GeÂrard Medioni received the DiploÃme d' In-
geÂnieur Civil from the Ecole Nationale SupeÂr-
ieure des TeÂ leÂcommunications, Paris, France, in
1977, and the MS and PhD degrees in computer
science from the University of Southern Califor-
nia, Los Angeles, in 1980 and 1983, respec-
tively. He has been with the University of
Southern California (USC) in Los Angeles since
1983, where he is currently a professor of
computer science and electrical engineering,

codirector of the Computer Vision Laboratory, and chairman of the
Computer Science Department. He was a visiting scientist at INRIA
Sophia Antipolis in 1993 and chief technical officer of Geometrix, Inc.
during his sabbatical leave in 2000. His research interests cover a broad
spectrum of the computer vision field and he has studied techniques for
edge detection, perceptual grouping, shape description, stereo analysis,
range image understanding, image to map correspondence, object
recognition, and image sequence analysis. He has published more than
100 papers in conference proceedings and journals. Dr. Medioni is a
senior member of the IEEE. He has served on the program committees
of many major vision conferences and was program chairman of the
1991 IEEE Computer Vision and Pattern Recognition conference in
Maui, program cochairman of the 1995 IEEE Symposium on Computer
Vision held in Coral Gables, Florida, general cochair of the 1997 IEEE
Computer Vision and Pattern Recognition conference in Puerto Rico,
program cochair of the 1998 International Conference on Pattern
Recognition held in Brisbane, Australia, and general cochairman of the
upcoming 2001 IEEE Computer Vision and Pattern Recognition
Conference in Kauai. Professor Medioni is an associate editor of the
Pattern Recognition and Image Analysis journal and one of the North
American editors for the Image and Vision Computing journal.

Philippos Mordohai received his Diploma in
electrical and computer engineering from the
Aristotle University of Thessaloniki, Greece, in
1993, and the MS degree in electrical engineer-
ing from the University of Southern California
(USC), Los Angeles, in 2000. He is pursuing the
PhD degree in electrical engineering at USC. He
is a graduate research assistant at the Computer
Vision Laboratory of the Institute of Robotics and
Intelligent Systems, and the Integrated Media

Systems Center at USC. His research interests include computer vision,
perceptual grouping, and integrated media systems. He is a student
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

LEE ET AL.: INFERENCE OF SEGMENTED OVERLAPPING SURFACES FROM BINOCULAR STEREO 837


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


