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Abstract

We present a neural network architecture applied to the
problem of refining a dense disparity map generated by
a stereo algorithm to which we have no access. Our ap-
proach is able to learn which disparity values should be
modified and how, from a training set of images, estimated
disparity maps and the corresponding ground truth. Its only
input at test time is a disparity map and the reference im-
age. Two design characteristics are critical for the success
of our network: (i) it is formulated as a recurrent neural
network, and (ii) it estimates the output refined disparity
map as a combination of residuals computed at multiple
scales, that is at different up-sampling and down-sampling
rates. The first property allows the network, which we named
RecResNet, to progressively improve the disparity map, while
the second property allows the corrections to come from
different scales of analysis, addressing different types of
errors in the current disparity map. We present competi-
tive quantitative and qualitative results on the KITTI 2012
and 2015 benchmarks that surpass the accuracy of previ-
ous disparity refinement methods. Our code is available at
https://github.com/kbatsos/RecResNet

1. Introduction

Due to the recent developments in convolutional neu-
ral networks (CNNs) and the availability of labeled data,
state-of-the-art modern stereo pipelines either integrate deep
convolutional neural networks as components [7, 23, 37,
47, 48, 49] or cast the problem as an end-to-end learning
task, thus converting the entire stereo pipeline to a deep
convolutional architecture [17, 20, 24, 27, 38]. The taxon-
omy introduced by Scharstein and Szeliski [33], however,
still holds. It divides the stereo matching process into four
main steps: matching cost computation, cost aggregation,
optimization, and disparity refinement. In the context of
deep learning, matching cost computation is typically im-
plemented as a Siamese network, cost aggregation can be

though of as operating on the images or in the cost volume
by adjusting the receptive field of the networks, optimization
has been implemented using 3D convolutional operations in
the cost volume [17] and disparity refinement can be imple-
mented with a 2D convolutional architecture operating on
the disparity map [10, 27, 46].

In this paper, we address the last stage of the pipeline via a
novel deep network architecture that is based on the concepts
of residual networks and recurrent networks. We argue that
both aspects are critical for achieving high accuracy in a
label refinement task. The motivation for tackling the final
stage of the stereo matching pipeline, as opposed to matching
cost computation for example, comes from our observation
that post-processing can have dramatic effects on accuracy
in conventional stereo algorithms and also that a disparity
map can reveal a considerable amount of information about
where its errors are. The latter was confirmed by Poggi et
al. [31] who showed that cues from the disparity map are
more effective for confidence estimation than image features
or intermediate results of the matching process. Figure 1
shows an example of disparity refinement by our method on
a stereo pair from the Freiburg driving dataset [24].

The performance of deep networks is strongly related to
the number of their parameters, as long as sufficient training
data are available. Training very large networks, however, is
demanding in terms of computational and memory require-
ments. Therefore, a fair and informative comparison between
different architectures is to contrast their performance for a
given size of the network, imposed by the hardware. One
approach is to define a network which is as large as possible
and apply it to the problem at hand. Alternative approaches
aim to reuse the network, or parts of it, to achieve even better
performance; we call this the iterative approach. In a prob-
lem such as ours, a trained network that improves disparity
maps can be applied to its own output. However, the errors
in the outputs of the first application of the network do not
follow the patterns of the original inputs and this approach
is not very effective in practice. A better alternative is to
feed the output of a trained network to a second instance of
the same network and, then, fine tune the second network

4321



(a) Left view (b) Input error map (c) Final error map

(d) Ground truth (e) Input state Yinit (d) Final state Yfinal
Figure 1. An example from the synthetic Freiburg driving dataset [24]. 38.5% of the pixels in the initial disparity map have an error over 3
pixels. This is reduced to 16.2% by RecResNet. (Black and white pixels correspond to correct and wrong disparities, respectively.)

keeping the first one frozen; we call this the cascade training
approach. The DRR algorithm [10] is an example of a cas-
cade. Another alternative is the recurrent training approach
in which the output of the network is fed to itself. It can
be thought of as a cascade where the weights of the core
architecture are shared between time steps. A cascade with
N stages would have N times more parameters than the
recurrent network during deployment. The main drawback
of the recurrent network is the way weights and biases are
updated during back-propagation; intermediate gradient con-
tributions are stored through time steps and aggregated to
update the weights and biases in a single step. Approxima-
tions of the recurrent network training formulation without
the need of storing intermediate gradient results have been
proposed by [44, 21]. However, they require different parts
of the network to be trained independently and the training
process is rather disjoint than end-to-end. On the contrary,
the recurrent training approach is truly end-to-end and has a
more holistic view of the task at hand.

We argue that a recurrent architecture is the most appro-
priate for a dense label refinement problem, such as ours,
since it can progressively correct large erroneous regions by
being applied recursively on its own output while keeping
the number of parameters low.

A novel aspect of our work compared to other disparity re-
finement approaches relying on deep learning [10, 46] is that
it does not assign specific tasks to subnetworks, such as the
detect, replace and refine operations of DRR [10]. Instead,
we design a high-capacity residual network that predicts its
output by a combination of multiple residuals generated at
different scales of processing. This allows our approach to
correct different types of errors that require different degrees
of smoothness. For instance, pixels in uniform flat areas
would benefit from a large scale correction, while pixels near

surface discontinuities require finer corrections,
Due to the recurrent and residual aspects of our network,

we named it RecResNet. We evaluated it on the 2012 and
2015 KITTI stereo benchmarks [9, 25] using disparity maps
generated by the MC-CNN algorithm of Žbontar and LeCun
[49]. RecResNet ranks third and fifth respectively, consid-
ering only published results. We envision RecResNet being
adopted by other researchers as a component of a system or
to refine disparity maps generated by black box algorithms.

In summary, the contributions of this paper are:

• To the best of our knowledge, the first recurrent neural
network architecture for disparity map refinement.

• A novel residual network architecture that combines
multiple residuals to generate the final output.

• Competitive with state-of-the-art results on the KITTI
2012 and 2015 benchmarks.

2. Related Work
In the past few years, there has been a proliferation of

machine learning methods applied to stereo matching. Their
success has led to a rapid increase of publications relevant to
ours. We focus on supervised methods that require ground
truth disparity maps, but note the recent exciting research on
unsupervised methods [42, 43, 52]. We classify the methods
according to the aspect of the matching pipeline they address,
reviewing end-to-end methods, separately.

Cost Computation. Arguably, the first paper that presents
a method for learning the cost function was published by Li
and Huttenlocher [22]. It uses a structured support vector
machine to learn linear discriminant functions that compute
the data and smoothness terms of a Conditional Random



Field (CRF) based on discretized values of the matching
cost, image gradients and disparity differences among neigh-
boring pixels. Alahari et al. [3] formulated a similar learning
problem using the same node and edge features as [22] and
convex optimization to obtain the solution more efficiently.

The most impactful recent work in this area is by Žbontar
and LeCun [48, 49] who trained a CNN to predict whether
two image patches match or not. Two network architectures
are proposed: a fast architecture, MC-CNN-fst, which is a
Siamese network with two sub-networks consisting of con-
volutional layers and rectified linear units, and an accurate
architecture, MC-CNN-acrt, in which the fast network is
followed by a number of fully connected layers. The fast
architecture extracts a representation from each patch and
measures similarity by taking the inner product of the repre-
sentations. The accurate architecture generates a similarity
score as the output of the last layer. Both architectures are
trained using matching and mismatching patches undergoing
a multitude of changes in illumination, suffering from mis-
calibration and other sources of error. The CNN outputs the
matching cost volume, which then undergoes a number of
processing steps, including SGM optimization, to produce
the disparity map.

Inspired by the accurate MC-CNN architecture, which
was published first, other authors [7, 23] also proposed effi-
cient formulations that compute patch similarity via an inner
product layer operating of their representations. Related re-
search was also carried out by Han et al. [14] and Zagoruyko
and Komodakis [47] who investigated network architectures
and training strategies for matching image patches. Most top
performing conventional methods have either been inspired
by MC-CNN or directly use it to compute the matching cost
[4, 10, 18, 35, 36, 41, 50].

Park and Lee [28] enabled the network to access wider
context by adding a per-pixel pyramid pooling layer that con-
siders data over multiple scales without causing foreground
fattening. The high computational cost of this approach
was alleviated by a modification proposed by Ye et al. [46].
Shaked and Wolf [37] increase the capacity of the matching
residual network by introducing constant highway skip con-
nections that essentially allow matching cost computation
along multiple pathways. Zhang and Wah [51] derive new
deep matching costs by imposing the principle of distinctive-
ness in the objective function.

Cost Modulation. Recently, several authors proposed
ways to inject the confidence estimates into disparity op-
timization to generate improved, dense disparity maps [31].
Spyropoulos et al. [39, 40] train a random forest on the cost
volume to detect ground control points, which are favored
during MRF-based disparity optimization. Park and Yoon
[29] use the predictions of a random forest to modulate the
data term of each pixel in SGM-based optimization. Poggi
and Mattoccia [30] learn a confidence measure that takes

into account multi-scale features and is used to weigh cost
aggregation in SGM in order to reduce artifacts. Seki and
Pollefeys [35] use a CNN trained on patches of the left and
right disparity maps of a stereo pair to predict confidence
which in turn adjusts the regularization parameters of SGM.
The same authors [36] extended the approach by considering
the signed disparity differences between neighboring pixels.
Cost Volume Optimization. Shaked and Wolf [37] (see
above for cost computation) replace the winner-take-all dis-
parity selection after SGM optimization with a CNN that
operates on the optimized cost volume to predict dispar-
ity and confidence by combining a reflective loss with a
weighted cross-entropy loss. Confidence is used for further
post-processing.
Disparity Map Refinement. Poggi et al. [31] conclude
that the disparity map itself contains the most valuable in-
formation for confidence estimation, and, therefore, for de-
tecting and correcting errors. This observation explains the
effectiveness of disparity refinement methods, which treat
the initial disparity generation process as a black box.

A disparity refinement approach, named DRR which
stands for detect, replace, refine, was recently presented
by Gidaris and Komodakis [10]. It decomposes label im-
provement in a detection, a replacement and a refinement
step based on the hypothesis that hard mistakes should be
replaced, while soft mistakes can be corrected by refinement.
The authors show that further improvements can be achieved
if the network is applied in a cascade of two blocks. Ye et al.
[46] extend [10] by using the best and second best disparity
maps from an improved MC-CNN-style pipeline as inputs
and adding more operations, such as two replacement subnet-
works, and achieve high accuracy on the Middlebury 2014
benchmark. We take a different approach by not separating
the tasks and allowing the branches of the network to learn
their roles.
End-to-end Approaches. Mayer et al. [24] introduced the
first end-to-end system for estimating disparity maps. They
propose DispNet, which is similar to FlowNet [8], and Disp-
NetC which includes an explicit correlation layer that leads
to higher matching accuracy. Knöbelreiter et al. [20] were
able to train a hybrid CNN-CRF model end-to-end using a
subgradient approximation. Unlike related approaches, the
CNNs are relatively shallow and the CRF is 4-connected.
Slossberg et al. [38] took a similar approach with a fully
connected CRF, that makes its integration into an end-to-
end system more straightforward, and hand-crafted pairwise
potentials.

Kendall et al. [17] developed GC-Net, an end-to-end
pipeline that includes 3D convolutional layers that regress
disparity from a cost volume generated by residual blocks
that extract patch representations from the images. The de-
sign comprises differentiable components that correspond to
the steps of conventional stereo pipelines, takes into account



Figure 2. An abstract representation of RecResNet.

context due to the 3D convolutions, and achieves state-of-
the-art accuracy on the KITTI benchmarks.

Pang et al. [27] proposed a cascade residual learning ap-
proach that comprises two cascaded networks that are trained
end-to-end. The first network is similar to DispNet [24] but
outputs full-resolution disparity maps. The second network,
which is more relevant to our work, refines these disparity
maps via residual learning with explicit supervision at each
scale of the residual network. As in [10], the authors argue
that residual learning is an easier problem than estimating
disparity for certain pixels directly.

3. Method
Our focus is on dense labeling correction. Given an initial

state of labels Yinit and optionally the inputs X to the label
generator function G, we wish to learn a function F that can
be used to predict more accurate labels. In this paper, X is
the left image of a stereo pair, Y is the disparity map and G
is a stereo matching algorithm that we treat as a black box.
Our method can be extended to incorporate the right image
of the stereo set. However, the right image does not provide
any information for occluded regions, which are the most
problematic areas when high accuracy stereo algorithms
are used as inputs. Moreover, as presented, the proposed
architecture is applicable to other label refinement problems
formulated as either regression or classification.

3.1. RecResNet

Recurrent neural networks (RNN) have been applied with
great success to problems involving sequential data process-
ing like natural language processing [5, 12, 26, 32, 34]. An

RNN can be drawn as a computational graph that contains
cycles. Unfolding the graph converts the RNN to a directed
acyclic graph similar to a feed-forward network but with an
important difference, the parameters of the hidden layers
inside the loop are shared across the network.

In our design we create a recurrent connection only from
the output at one time step to the hidden units at the next
time step. The core architecture, that is repeated over time,
contains a main branch and two auxiliary branches (see
Fig. 2). Each time a down-sampling step is performed the
network creates a branch which operates at that scale, and
produces a residual output at the original scale. Our network
performs three down-sampling steps, each reducing the size
of the input by a factor of two. We denote the residual
outputs as Rs where s is equal to the down-sampling and
up-sampling rate. The output of the network is then the
residual combination of the input labels at time step t and
the residuals generated from each branch.

Yt = F (Yt−1 +R2 +R4 +R8) (1)

where R2, R4 and R8 are the residuals computed with s
equal to 2, 4 and 8, respectively. With F , we denote the
last block of convolutional layers. A visualization of this
procedure is depicted in Fig. 3.

3.2. Architectural Design

The core architecture of RecResNet (see Fig. 2 ) begins
by separately convolving Yinit and X and concatenating the
learned features. We proceed by down-sampling by a factor
of two using strided convolution and pass the resulting fea-
tures to a semi-dense convolution block (s-block). Our semi-



Step Layer Kernel Stride Channels Input Step Layer Kernel Stride Channels Input
Main branch
σ1.1 conv 5x5 1 32 Yt First branch

σ1.2 conv 5x5 1 32 X σ1.1 conv 5x5 1/2 32 σ5
σ2 conv 5x5 2 32 ( σ1.1,σ1.2 ) σ1.2 sdb 3x3 1 96 (σ1.1,σ2 )
σ3 sdb 3x3 1 96 conv2 σ1.3 conv 5x5 1/2 32 σ1.2
σ4 conv 5x5 2 64 σ3 σ1.4 sdb 3x3 1 96 (σ1.3,σ1.1,σ1.2 )
σ5 sdb 3x3 1 192 σ4 σ1.5 conv 1x1 1 1 σ1.4

σ6 conv 5x5 2 128 σ5 Second branch

σ7 sdb 3x3 1 384 σ6 σ2.1 conv 5x5 1/2 32 σ3
σ8 conv 5x5 1/2 128 σ7 σ2.2 sdb 3x3 1 96 (σ2.1,σ1.1,σ1.2 )
σ9 sdb 3x3 1 256 (σ8,σ4 ) σ2.3 conv 1x1 1 1 σ2.2

σ10 conv 5x5 1/2 64 σ9 Output

σ11 sdb 3x3 1 192 (σ9,σ2 ) σ15 sdb 3x3 1 130 (Yt + σ14 + σ1.5 + σ2.3 )

σ12 conv 5x5 1/2 32 σ11 σ16 conv 1x1 1 1 σ15

σ13 sdb 3x3 1 160 (σ12,σ1.1,σ1.2 )
σ14 conv 1x1 1 1 σ13

Table 1. Detailed representation of our core architecture. Down-sampling and up-sampling is performed by the layers with a stride of 2 and
1/2 respectively. sdb mean semi-dense block and (.,.) stands for concatenation.

dense convolution block is similar to the densely connected
convolution block proposed by [15]. We only concatenate
features every two convolutional layers, thus the term semi-
dense block. The feature growth factor of our semi-dense
block is two and the following convolutional layer performs
feature reduction. After each down-sampling step we create
a branch in the network. Each branch performs transpose
(also called fractionally-strided) convolution [1] followed by
semi-dense blocks and produces a single channel output at
the same scale as the initial input. A combination of the input
Yt and the estimated residuals is performed and the result is
processed by another semi-dense block which is followed by
the final output layer. Table 1 lists the specifications of each
layer in our proposed architecture. Every convolution layer,
except for the output layers, is followed by a ReLu activation
function. Dropout is used only in the down-sampling layers.

ResNet. Instead of performing a residual combination at
each step σ and feeding it to the next layer, our architecture

Yinit R8 Yinit +R8 R4

Yinit +R8 +R4 R2 Yinit +R8 +R4 +R2 Y1

Figure 3. Visualization of the multi-scale residual corrections as
applied by the network on the first iteration. The disparity values
are positive. To visualize the residuals, we offset the real values,
such that the minimum negative value equals zero. Notice that R8,
which is the coarsest scale, applies corrections to larger areas.

generates multiple residual corrections and applies them to
the input labels Yt−1 in one step. This formulation is more
powerful than the conventional approach, since the network
is not forced to learn the optimal residual correction in a
single step. For example, let pwrong be an initial predic-
tion that needs to be replaced, a single residual output must
learn the correction c that needs to be applied to pwrong

such that pwrong + c = pcorrect. This might be feasible in
a discrete scenario where the label space is small, but if we
consider a continuous label space, in a regression task like
ours, learning the correction c gets extremely hard. With our
formulation the network can use a residual output to negate
pwrong, a second one to predict a new label and the third
residual output can either be zero or act as a refinement com-
ponent. In fact because we do not restrict any of the branches
of the network to a specific task, any residual output can po-
tentially play any of the aforementioned roles. The only
restriction we introduce to the network is the loss function
L, which minimizes the mean absolute difference from the
ground truth Eq. (2). Essentially, this dictates that the linear
combination of all the residuals and the input labels reduces
the end-point-error of the final prediction.

L = |Ygt − Ypred| (2)

This objective forces the residual layers to only agree to the
same value v ± ε ≈ 0 when the residual correction is close
to zero, meaning that either the network does not change the
value of the initial prediction, or slightly refines it.

3.3. Advantages of recurrent formulation

The most important advantage of our approach is the
ability of the network to learn the mapping between the



initial labels Yinit, the intermediate labels Yt and the final
prediction Yfinal jointly. During training, back-propagation
through time (BPTT) [45] updates the parameters of the
network in a single pass, accumulating gradients from all
recurrences of the network. Regular back-propagation and
back-propagation through time are not different after the
gradient contribution at each time step has been computed.
Although the parameters are shared across time steps, to
compute the contribution of the gradients we need to save
intermediate results after each time step and operate on the
fully unfolded computational graph, increasing the space
complexity to O(τ), where τ is the number of time steps.

∇WL =
∑
t

J(h(t))(∇h(t)L)h(t−1)T (3)

∇bL =
∑
t

J(h(t))∇h(t)L (4)

Equations (3) and (4) show a simple computation of the gra-
dients of the weights W and biases b, in a recurrent network.
We denote the Jacobian matrix as J , the hidden units as h and
the time step as t. The exact formulation is more complex
since it must account for skip connections. For more details
about how gradients are computed in a recurrent network we
refer readers to [45] and [11].

Due to parameter sharing, the recurrent network is able to
capture long range interactions through time which in turn
strengthens its statistical properties. The closest alternative
to a recurrent formulation would be an iterative end-to-end
approach, that performs back-propagation immediately after
each time step output. However, such a training approach
performs poorly in practice. More complicated techniques
of training an iterative network, without the need to store
intermediate gradients, have been proposed by [44, 21] with
good performance during inference. However, the training
process is disconnected since parts of the network have to
be trained independently. Another alternative formulation is
a cascade network [10]. However the space complexity of a
cascade network is proportional to the number of time steps
during training and deployment.

On the other hand, the recurrent formulation has a more
holistic view of the refinement process and the number of
parameters during inference is equal to the number of pa-
rameters of the core network, which makes it practical for
deployment.

4. Experimental Evaluation
In this section we present an evaluation of the proposed

architecture on the task of dense disparity map enhancement.

4.1. Implementation details

For our implementation we use the Tensorflow [2] frame-
work on an NVIDIA Titan X GPU. We use MC-CNN-acrt

[48] or Content-CNN [23] as our initial label generator G,
which is treated as a black box. The input to our method is
the left disparity map generated by G and the corresponding
left image.

Our experiments are conducted on three datasets.The syn-
thetic driving sequence from the Freiburg dataset [24], which
we will refer to as synthetic, and two real world datasets,
KITTI 2012 and 2015 [9, 25]. From the available sequences
of the synthetic dataset we used the forward clean-pass
15mm focal length slow subset, which consists of 800 stereo
frames with dense left and right ground truth disparity maps.
Each of the KITTI datasets contains about 400 stereo pairs,
split evenly into a training and a test set. Sparse ground truth
covering approximately 30% of all pixels concentrated in
the lower part of the images is captured by LIDAR and is
publicly available only for the training sets.

As described in Section 3, we pose the problem of dis-
parity correction as a regression task. with the loss function
specified in Eq. (2). To give the network larger reward when
it corrects non-occludes pixels, we double the weights of the
non-occluded pixels in the loss function. This is enabled by
the occluded and non-occluded ground truth disparity maps
provided with the KITTI data. For the synthetic dataset it
is trivial to compute occlusion masks since left and right
disparity maps are provided.

We use the Adam optimizer [19] with an initial learning
rate of 10−4. Exponential decay is applied to the learning
rate every 2000 training steps with a decay factor of 0.96.
The mini-batch size is set to 1, mainly to reduce the memory
requirements of loading more images on the GPU mem-
ory at each training step. At the beginning of each epoch
we randomly shuffle the training samples to avoid having
sequences of images which are very similar. This is very
important when training on the synthetic dataset since the
800 frames are sequential. We experimented with two and
three recurrences over the network. To increase the num-
ber of time steps we can randomly crop the input images
during training. The smallest patch size that can be fed to
our network is 48× 48, but we prefer to use larger patches.
For the three time step network, we where able to only use
cropped patches of size 256 × 256, while for the two time
step network we used full and cropped sized images. Our
experiments showed that using full or cropped sized images
did not affect the performance of the network

We use two different strategies to train our models. For
ablation studies, we split the three datasets to training and val-
idation sets. From the synthetic dataset we used 150 frames
for validation and the rest for training. We used a similar
split for the KITTI 2012 and 2015 training sets, using the last
40 frames for validation and the rest for fine-tuning. We con-
ducted experiments using two baselines methods, MC-CNN-
acrt architecture including all optimization and filtering
operations, and the raw cost estimated by Content-CNN,



Left View Initial time step 1 time step 2 time step 3 error map

Figure 4. Qualitative results of our method RecResNet on the validation set of the KITTI 2012 and 2015 datasets. The first two rows are
results for KITTI 2015. The first row shows the result when MC-CNN-acrt is used as the initial label generator G and the second row shows
the final results when Content-CNN is used as the initial label generator G. The last row shows qualitative results on KITTI 2012 when the
label generator function is MC-CNN-acrt.

Method Steps Initial t-step 1 t-step 2 t-step 3
C-CNN+RRN 2 8.44% 4.93% 3.87% -
C-CNN+RRN 3 8.44% 5.12% 3.71% 3.46%

MC-CNN+RNN 2 3.63% 3.06% 3.15% -
MC-CNN+RNN 3 3.63% 3.07% 2.98% 3.04%

Table 2. Average error on the KITTI 2015 validation set for 2 and 3
time steps (t-step). Our method is able to improve MC-CNN-acrt
and Content-CNN results by 18% and 59% respectively.

also used by [10]. We chose these two methods as our initial
label generators G, to evaluate our method on both smooth
very accurate inputs (MC-CNN-acrt) and somewhat more
noisy inputs, but with less systematic errors (C-CNN). We
trained RecResNet with two and three time steps and report
our results on Table 2. We use the official script provided by
the KITTI benchmark to evaluate all results.

The most important observation from our ablation stud-
ies, is that our method can produce approximately equivalent
final estimates given as input disparity maps estimated by
similar algorithms but with different levels of smoothness
due to optimization and post-processing. More precisely
our improvement on Content-CNN is of the order of 59%,
which is on par with the 62% improvement reported by DRR.
The improvement on MC-CNN-acrt is 18% since the initial
disparity maps are more accurate. We also observe that
adding one more recurrence leads to further improvements.
Moreover, earlier time steps, in the three time step architec-
ture make smaller improvements, but eventually the network
reaches higher performance. This means that the network is
able to capture long-range interactions and becomes more
conservative, rather than greedy, in earlier time steps. This
is an essential differentiation between the recurrent and al-
ternative formulation, since the network does not learn to
apply the best solution at each time step, which might hurt
the overall performance, but tries to optimize the refinement
process in a way that the final time steps can produce a better
estimate.

In order to submit to the KITTI benchmarks, we pre-train
our model on the synthetic dataset using both KITTI 2012
and 2015 as validation datasets. We use early stopping [11]
to determine the number of epochs. After pre-training, we

train on the entire training set of each benchmark, using the
other dataset as an imperfect validation set. We terminate the
training process when no further improvement is evident on
the validation set. More precisely, to prepare for a submis-
sion to the KITTI 2012 benchmark, we trained the version of
RecResNet with two time steps on the KITTI 2012 training
set, using the KITTI 2015 training set for validation, and sub-
mitted to the KITTI 2012 benchmark. The same procedure
was followed for the submission to KITTI 2015 benchmark.

The pre-training process takes approximately 24 hours.
Then on average another 10 hours are required for the model
to be fine tuned for the target dataset. Figures 4 and 5 show
qualitative results for each time step of the process on all
synthetic, KITTI 2012 and KITTI 2015 datasets. We can
clearly observe that despite the fact that MC-CNN-acrt starts
from a much better initial accuracy state, it is much harder
to improve, since the errors tend to appear in structured
patterns rather than noisy label predictions which is the case
of Content-CNN.

The three datasets we used look very similar at first glance.
There are, however, intrinsic details that can affect the per-
formance of any learning method, especially methods like
ours which act as the final stage of the stereo pipeline. The
most important difference is how each dataset treats the
windshields of the cars. KITTI 2012 does not provide any
estimate for these areas. The synthetic dataset assigns the
label of the background to them, while KITTI 2015 assigns
the label of the foreground. Although it might not seem as
a big difference, this small annotation change affects the
consistency of the training process and forces us to use both
KITTI datasets as validation sets during pre-training. More-
over, we approach the KITTI 2015 training process with
caution, since the network must re-learn that the windshield
labels must now be assigned to the foreground. Since we
also want to use the entire KITTI 2015 training set to train
our model, this leaves us with only KITTI 2012 training
dataset to validate our training process. Because of this in-
consistency, we need to not only rely on quantitative results
but also on qualitative ones, to ensure that the network does
indeed account for this change.



Left View Initial time step 1 time step 2 time step 3 error map

Figure 5. Qualitative comparison on the outputs of RecResNet during pre-training, using MC-CNN-acrt (rows 1 and 3) and Content-CNN
(rows 2 and 4) on two different frames selected from the validation set of the synthetic dataset. On the first frame we observe that RecResNet
is able to eliminate large noisy erroneous regions and converge to a similar output when compared with MC-CNN-acrt. On the second frame,
we observe that RecResNet is able to handle large erroneous regions better when the initial labels are noisy rather than smooth.

KITTI 12 KITTI 15
Method Out-Noc Out-All Out-Noc Out-All Description

PSMNet* [6] 1.49% 1.89% 2.14% 2.32% End-to-end
CRL [27] - - 2.32% 2.48% End-to-end

GC-NET [17] 1.77% 2.30% 2.61% 2.86% End-to-end
LRCR* [16] - - 2.55% 3.03% Component
RecResNet 2.21% 2.94% 2.75% 3.10% Component
DRR [10] - - 2.76% 3.16% Component

L-ResMatch [37] 2.27% 3.40% 2.91% 3.42% Component
Displets v2 [13] 2.37% 3.09% 3.09% 3.43% Semantic

PBCP[35] 2.36% 3.45% 3.17% 3.61% Component
SGM-Net [36] 2.29% 3.50% 3.09% 3.66% Component
MC-CNN [48] 2.61% 3.84% 3.33% 3.89% Baseline

Table 3. Top published methods on KITTI 2012 and 2015 at the
time of submission. The table is sorted based on KITTI 2015 main
metric.

Finally, to evaluate our method, we compare it to the
state of the art published methods on the KITTI 2012 and
2015 leaderboards (Table 3). We divide these methods into
two categories: end-to-end and component. The end-to-end
category includes three complete stereo learning pipelines
[17, 27], while the component category includes improve-
ments or components integrated to the baseline method (MC-
CNN), or to a closely related method. Our method belongs
to the component category and outperforms all other compo-
nent methods on KITTI 2012, and ranks second, behind the
soon-to-be published method LRCR.

The top-performing published methods are GC-NET [17]
and CRL [27], both of which are complete end-to-end stereo
pipelines. Our method lags a little behind them in accuracy.
It should be noted that RecResNet outperforms DRR [10],
which is a cascade method, while using a smaller network
and significantly less data (DRR is trained on the whole
synthetic dataset of [24] which contains 34k stereo images),
and advances the state of the art for disparity map refine-

ment, admittedly by a slim margin. For completeness, we
also include the recently published methods PSMNet [6] and
LRCR [16]. LRCR is a competing method to RecResNet,
which incorporates the right image and the cost-volume to re-
fine the estimate of L-ResMatch [37]. However, while using
more information and a stronger baseline method as input
from both RecResNet and DRR, the reported improvement
is marginal, which is a strong indicator that our approach of
using only the left image of the stereo pair is sufficient.

5. Conclusions

In this paper, we present RecResNet, which, to the best
of our knowledge, is the first recurrent network to be applied
to the problem of stereo matching. We believe that our re-
current, multi-scale, residual design enables RecResNet to
make substantial improvements to the input disparity maps.
Clearly, it is much harder to improve very accurate inputs
than noisy ones. We have shown large error rate reduction on
disparity maps produced by the accurate MC-CNN architec-
ture [49], in the order of 18% on the KITTI 2012 benchmark
and 20% on KITTI 2015 when all pixels with ground truth
are considered.

Our future work will focus on integrating RecResNet
into an end-to-end stereo matching pipeline and on applying
this architecture on other pixel-wise labeling problems. Our
code and trained models can be downloaded from https:
//github.com/kbatsos/RecResNet.
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