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ABSTRACT
This paper presents and evaluates a relative localization

scheme for a heterogeneous team of low-cost mobile robots. An
error-state, complementary Kalman Filter was developed to fuse
analytically-derived uncertainty of stereoscopic pose measure-
ments of an aerial robot, made by a ground robot, with the iner-
tial/visual proprioceptive measurements of both robots. Results
show that the sources of error, image quantization, asynchronous
sensors, and a non-stationary bias, were sufficiently modeled to
estimate the pose of the aerial robot. In both simulation and ex-
periments, we demonstrate the proposed methodology with a het-
erogeneous robot team, consisting of a UAV and a UGV tasked
with collaboratively localizing themselves while avoiding obsta-
cles in an unknown environment. The team is able to identify a
goal location and obstacles in the environment and plan a path
for the UGV to the goal location. The results demonstrate local-
ization accuracies of 2cm to 4cm, on average, while the robots
operate at a distance from each-other between 1m and 4m.

Supplemental Material
This paper is accompanied by a video of the robot po-

sition and the IMU perceived position: https://youtu.
be/RNa_ndlBlSU. The source code used for these exper-
iments can be downloaded here: https://github.com/
benjaminabruzzo/idetc2019_code.

1 Introduction

In the growing body of research on collaborative robotics
a variety of application spaces are investigated, including aerial
exploration and navigation, SLAM, manipulation, infrastructure
inspection and maintenance, heterogeneous teams, and disaster
response. A major challenge facing teams is the task of local-
izing relative to other team members in a reliable manner which
allows them to share knowledge or measurements about the envi-
ronment. Common solutions to this challenge fall into one of two
types: 1) registering fixed landmarks, jointly observable by team-
mates when measured from different perspectives [1–8], or 2)
directly observing teammates to calculate relative poses [9–15].
For example, Schmuck and Chli [7] focus on mapping an out-
door area using a single UAV over four distinct flight paths. The
four flight paths were used to simulate four distinct ‘vehicles’ by
replaying the captured data synchronously on a ground station to
aggregate the observations of the UAVs, merge maps, and man-
age loop closures. By supplying the optimized information back
to the UAVs, the simulated UAVs can use the provided informa-
tion to better localize from the collective key frames. In [6] two
UAVs, each equipped with a single camera, aim to maximize the
overlap of their forward facing cameras to enable the estimation
of the essential matrix. From the essential matrix, relative po-
sition and orientation can be extracted and used to maintain a
formation between the two vehicles.

In the previous two cases, the jointly observable features in
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FIGURE 1: Heterogeneous team in unknown environment with an obstacle.

the environment are used as the reference to relatively localize
the UAVs. Alternatively, Dias et al. [11] and Teixeira et al. [15]
approached pose estimation by directly observing nearby UAVs
using on-board monocular cameras. In [11], illuminated spheres
were affixed to three UAVs to aid in detection and pose estima-
tion. Vehicle identification was accomplished through a unique
flashing frequency of one of the affixed markers on each UAV. In
flight, one UAV was able to maintain a relative pose to the other
two stationary UAVs. In contrast, Teixeira et al. [15] use colored
LEDs with spherical diffusers in a known constellation to aid in
detection of a dependent UAV by a supervisor UAV. Both meth-
ods use the perspective 3-point (P3P) algorithm to calculate the
pose estimates from the observed markers. In all four of these ex-
amples, each team was composed of homogeneous UAVs which
are limited by power, computation, and lifting capacity.

Several authors have attempted to address the limitations of
UAV teams by implementing a heterogeneous air-ground team.
Such a configuration provides complementary capabilities; the
additional UGVs can operate for much longer periods, carry sig-
nificantly more cargo, or even have an attached manipulator. For
example, the authors in [16] sought to minimize the total explo-
ration time of a UAV-UGV team with a strong focus on the tra-
jectory planning aspect of collaboration. By combining terrain
classes with a 2.5D elevation map generated by the UAV to plan
a feasible path for the UGV, which was then executed by a hu-
man pilot. Their work led to progress in collaborative robotics,
but the fact that the UGV is manually operated highlights that
the problem is not completely solved. Our work aims to make
an additional step towards collaborative, full automation. In sim-
ilar works, a UAV was used to explore and unknown environ-
ment to generate a feature based map which was then aligned
to a similar map created by a ground vehicle configured with
a point-cloud generating sensor (RGBD [2], LiDAR [3], laser
scanner [4], monocular camera [5], or a camera and scanner [1]).
After the resulting maps were aligned, the robots could calcu-

late relative pose between vehicles. In all six of these publica-
tions, the robots continued to operate independently even after
the maps were explored or aligned. The benefit of using the en-
vironment to indirectly localize is the freedom of motion away
from any field of view constraints. However, this freedom comes
at the cost of localization ambiguity and introduces a require-
ment for the team to carry compatible sensors with the ability
to measure the same features. Measurements from these sensors
are then used to align maps generated from the different perspec-
tives, but will fail entirely if the observed regions never overlap.

A solution which avoids map alignment involves one robot
observing another to then calculate the relative pose directly.
For example, in both [13] and [14] a UAV conducted an explo-
ration trajectory to create a map of the environment, and then re-
turned to hover above the UGV. The UGV in the system carried
a vertically-oriented, 2D fiducial marker to enable simple detec-
tion and tracking by the UAV while the UGV was in motion.
While in motion, the UAV continued to estimate its own pose
and thus could provide pose estimates to the UGV to assist while
moving through the environment. Other authors in [11], [12]
and [15] avoid the need for the large, oriented 2D markers which
are only observable from a specific perspective used in [10], [13],
and [14] by equipping robots with active, light-emitting markers,
which are then used P3P for fast visual pose estimation.

For relative pose determination we have developed a method
most similar to [17], in which a UAV carries spherical diffusers
covering uniquely-colored LEDs to aid in visual detection. These
markers are observed by a stereoscopic camera system that esti-
mates the 6DOF pose of the UAV. This is different than in [12],
which used non-diffused LEDs as the identifying markers. LEDs
are both small and directional, which imposes constraints on
viewing direction and filtering images to reduce noise. Using
colored spheres instead of LEDs enables a wider range of view-
ing perspectives as well as a larger physical feature to detect.
While the authors in [17] fix the location of cameras to be used
as an alternative to a motion capture system, we have mounted
the cameras onto the UGV to enable a mobile solution to local-
ization.

In our team, the UGV is completely reliant on the UAV for
the map of obstacles and goal locations, whereas the UAV is
reliant on the UGV for position relative to a global reference
frame. This interdependence differs from the map-alignment
style works presented earlier. Robots in our team do not mu-
tually observe the same features or landmarks, therefore, such
techniques would not be applicable. As the UGV moves, it con-
tinues to provide position information to the UAV, while the UAV
ensures there are no obstacles in the path of the UGV. Finally,
we have developed a complementary Kalman filter to simultane-
ously update the pose estimates of the UGV and UAV by com-
bining the high-frequency proprioceptive sensors on each robot
with the low-frequency relative pose measurements of the stereo-
scopic cameras.
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FIGURE 2: Circle detection of spherical markers for triangulation.

The main contribution of this work is the presentation and
evaluation of a novel relative localization scheme using low-cost,
heterogeneous, mobile robots which are able to share environ-
mental observations and pose estimates while navigating in an
unknown environment without requiring correspondences of mu-
tually visible features or landmarks. While we focus on visual
perception, the results of this work are not limited to computer
vision; application of these methods could easily be extended to
other combination of robots or sensors.

2 System Overview and Approach
As mentioned previously, we propose a collaborative lo-

calization scheme for low-accuracy, low-cost robots. Figure 1
shows an example configuration of such a team. Specifically,
there is a UGV which carries a calibrated and software-rectified
stereoscopic camera system with an upward tilt. This allows
the UGV to directly observe the second member of the team, a
UAV. To simplify recognition and tracking of the UAV, uniquely-
colored, illuminated, spherical markers are attached to it. The
UAV is equipped with an IMU to maintain stability while in
flight and a calibrated, downward-facing camera to observe the
environment. However, it lacks a sensor to provide localization
relative to an external reference frame. In this configuration, nei-
ther vehicle is able to directly observe the same aspects of the
environment.

2.1 Stereoscopic Measurements
To localize the UAV, the cameras on the UGV convert the

RGB color images into YUV color coordinates, which are then
thresholded to screen for the different colored markers. Morpho-
logical processing, specifically, erosion and dilation, are applied
to reduce background noise and generate clean boolean images
corresponding to each marker color. Minimum radius circles are

circumscribed around the resulting blobs to determine marker
centroids. Figure 2 shows the resulting boolean image of a de-
tected marker and the circle fit around the marker.

Marker occlusion is rare due to the viewing angle of the
UGV, but even in the presence of partial occlusion the circle
finding process still matches a circle by circumscribing the color
matched pixels, see Figure 2. Since the center of a 3D sphere
projects to the center of a 2D circle in images, fitting circles to
detected blobs allows us to assume the center of the circle lies on
a ray through the actual center of the marker. Beyond simple im-
age discretization, circle finding enables sub-pixel determination
of the marker center.

Using triangulation, the 3D position of an ideal point marker
in the camera frame, cam

m ppp, can be calculated as shown in Equa-
tion (1). We assume that the UGV-mounted stereoscopic cameras
are calibrated and rectified, which leaves image quantization as
the predominant source of error when determining the 3D posi-
tion of a point by stereoscopic triangulation [18]. Because the
images are fully rectified (in software), yL = yR = y, thus the Ja-
cobian of the triangulation equations is Equation (2). In both
Equations (1) and (2), xL, xR, yL, and yR are the left and right
pixel coordinates of the point marker’s projection onto the image
plane, d = xR − xL is the disparity between two corresponding
pixel coordinates in the left and right images, b is the baseline be-
tween cameras, and f is the focal length of the cameras. Once the
3D positions of the markers are known, computing the body axes
and heading angle of the UAV is trivial using vector operations.
These values are calculated in the frame of the stereoscopic cam-
eras, which are then be transformed into the UGV frame prior to
inclusion in further pose estimates.

cam
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2.2 Complementary Kalman Filters for UAV and UGV
To simplify the propagation of uncertainty from image to

vehicle coordinate systems, we approximate the non-Gaussian
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errors in measured image coordinates as Gaussian, as in [19].
Image uncertainties are propagated linearly to the 3D triangula-
tion calculations. In general, the output covariance matrix, Σo, of
a function, g, is given by:

Σo = JgΣiJT
g , (3)

where Σi is the covariance of the input and Jg is the Jacobian of
g. We use this first-order method of uncertainty propagation to
derive error covariance matrices from the triangulation error of
image features to 3D position covariances of the active markers.
These marker positions and covariances are then used to derive
the position and heading angle of the UAV and the covariances
of those values.

Complementary filtering is a method for combining redun-
dant measurements and is most useful in situations where the
spectral properties of the measurements are different [20], [21].
This is beneficial to the configuration of our team where both ve-
hicles have an inertial/odometric sensor package which indepen-
dently operate at much higher frequencies than the stereoscopic
cameras and also at different rates from each other. The Comple-
mentary Kalman Filter (CKF) that we have developed is an indi-
rect filter that estimates the errors in the vehicle states. This fil-
ter operates on the error-state vector between the estimated pose
computed by the high-rate, body-centered inertial sensors and
the low-rate relative measurements of the stereoscopic cameras.
In general, this type of configuration limits the need to develop
highly detailed dynamical models and decreases the frequency
that the filter needs to update [22].

For our system, we assume that the firmware maintains the
flight stability of the UAV and that our filter will only be used
for higher level navigation and communication of detected ob-
stacles to the map for the UGV. The stability controller of the
UAV manages the roll and pitch angles freeing our filter from
estimating those two states. Thus, the filter is only concerned
with the three Cartesian coordinates (x, y, z), and the heading
angle (ψ). The UAV firmware also provides a lateral velocity
measurement through a combination of the on-board IMU mea-
surements in conjunction with optical-flow odometry from the
downward-facing camera as well as an altimeter for altitude mea-
surements. As part of the IMU, the gyroscopic compass gener-
ates the directly-measured heading value, but has a slow walking-
bias term (β ) which is included in the augmented state vector,

uav ppp =
[

uavx uavy uavz uavψ β
]T . Lastly, the operational dynam-

ics of the UAV maintain slow angular rates with regard to head-
ing, so higher order terms are neglected.

The stereoscopic cameras provide a direct measurement of
the pose of the UAV in the UGV frame, ugv

uav ppps, which is trans-
formed into the global frame, g ppps, using the most recent esti-
mates of the UGV position, g

uav ppps, and corresponding rotation

matrix, g
uavRRR. In the time between the camera measurements, the

estimated states of the vehicles, g
uav p̂pp and g

ugv p̂pp, are updated di-
rectly with the time integration of the high-frequency sensors.
Without the external reference, the errors of the high-frequency
inertial/odometric sensors accumulate and the resulting pose es-
timates diverge from the actual states of the vehicles.

When a new camera based relative measurement is calcu-
lated, first the estimated relative pose between the vehicles, ∆ p̂,
is computed from the most recently estimated position of both
vehicles:

∆ p̂pp =
( g

uav p̂pp− g
ugv p̂pp

)
. (4)

The measurement error vector, δ p̃pp, is the difference between
these two measurements:

δ p̃pp = g ppps −∆ p̂pp (5)

Because the slowest sensor contributing to the filter is the stereo-
scopic measurements, the filter is only updated when each new
stereoscopic measurement is made. At each update the optimal
error state estimate, δ p̂ppk+1, is computed by Equation 6,

δ p̂ppk+1 = FFF ·δ p̂ppk +KKKk ·δ p̃pp. (6)

Where FFF is the matrix of the error state dynamics, and KKKk is
the Kalman gain calculated in the standard fashion [21]. The
optimal error state estimate is used to proportionally update the
estimated states for both vehicles. This estimate is updated at
the time of each new image in real time at the frame-rate of the
stereoscopic cameras (in our experiments, this occurs at approx-
imately 10 Hz).

Similar to the UAV states, the UGV states estimated by the
filter are the two 2D planar Cartesian coordinates and the head-
ing angle, ugv ppp =

[ g
ugvx g

ugvy g
ugvψ

]T . Vehicle-level wheel odome-
try is used to generate the high-rate kinematic trajectory between
stereoscopic updates. The simplicity of the vehicle models is one
of the benefits from the complementary filtering approach [22].
Additionally, between updates of the CKF, the measurements
from the high-frequency sensors are used to compute the most
up-to-date estimates of vehicle poses in the relative and global
frames. These estimates can be sequentially applied to transform
measurements made in the UAV camera frame to the UGV or
global frames as necessary.

2.3 UAV Control
The logic used for autonomous control is designed to drive

the velocity of the UAV to zero and the estimated global
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FIGURE 3: Simulation and experiment trajectories of UAV controlled by static UGV. Red diamonds are the goal poses for the UAV and the gray solid lines are the
ground truth measurements from the Vicon motion capture system. The blue dashed lines are the estimated trajectory of the UAV in simulation and the black dashed lines
are the estimated trajectories from an experiment. Note: the simulation data are offset from the experiment data for clarity.

pose of the UAV, g
uav p̂pp, to the desired global pose, g

uav pppd =[ g
uavxd

g
uavyd

g
uavzd

g
uavψd

]T . The controller is shown in Equation
(7), where uavUUU is the control vector in the body frame, Kp and
Kv are experimentally determined, constant gains applied to the
pose and velocity errors, and uav

gRRR(ψ̂) is the rotation matrix re-
quired to convert from the global frame to the UAV body using
the most recent estimate of uavψ . A purely proportional control
law would allow the UAV to overshoot the desired position due
to the lateral dynamics of the UAV, which tends to allow ‘slip-
ping’ when the UAV is completely horizontal. This is due to the
inertia of the UAV, which would only be counter-acted by tilting
the UAV to stop the lateral velocity. For this reason the UAV con-
trol logic includes terms that drive the lateral velocities to zero
but does not include angular or altitude velocities. While this is a
simplistic controller, UAV modeling and control is not the main
focus of this work, and a wide variety of control schemes could
be implemented instead, e.g. [23, 24].

uavUUU = Kp · uav
gRRR(ψ̂) · ( g

uav pppd − g
uav p̂pp)−Kv ·

uav[ẋ
ẏ

]
(7)

3 Accuracy of Relative Measurements
In physical experiments, vehicle position and orientation

ground truth are measured by a Vicon motion capture sys-
tem. A Parrot AR.Drone 2.0, which costs $300, is used as the
aerial robot. Stability of the UAV is firmware-controlled by the
manufacturer-developed Extended Kalman Filter autopilot using
the on-board IMU [25]. Sensor measurements are communicated
via a WiFi connection between the UAV and the UGV using the
SDK provided by the Parrot organization and the ROS wrapper
developed by Simon Fraser University [26]. We assume any la-
tency from networking and communication is small and will not

contribute significantly to the errors of the system.
The ground vehicle is a modified version of the low-cost

“Tortoisebot” developed at Stevens Institute of Technology [27]
and costs under $2500. On the UGV, the Robot Operating Sys-
tem (ROS) is used as the coordination framework for fusing sen-
sors and estimated poses. The pair of cameras carried by the
UGV are PointGrey Chameleon cameras (1288x964) with Fuji-
non 70o FOV lenses. The cameras are separated by a baseline
of 15 centimeters and they are calibrated using the ROS cam-
era calibration package. Both the AR.Drone and the Turtlebot
were modeled in Gazebo to simulate this configuration using the
same ROS/C++ software developed on the actual robots.

TABLE 1: Magnitude of position and yaw errors of the UAV estimates from
the simulation and experiment shown in Figure 3

UAV error x [m] y [m] z [m] ψ [deg]

Simulated:
mean 0.018 0.015 0.014 0.5
max 0.042 0.039 0.039 3.6

Experimental:
mean 0.019 0.008 0.010 0.6
max 0.078 0.028 0.045 4.0

To demonstrate the closed loop performance of the team, we
conducted experiments with the UAV in flight while a station-
ary UGV provides position and orientation localization. After
lifting off, the UAV was guided through a series of way-points,
exercising changes in position and yaw angle. This experiment
was designed to assess whether the CKF will accurately estimate
the states of the UAV. This type of experiment will also show
if the control law for the UAV will suitably guide the UAV to
poses prescribed by the UGV. Lastly, we want to determine if
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the simulation of the UAV accurately depicts reality based on the
assumptions made in developing the team and our approach.

For each iteration of this experiment, the UAV lifted off from
a location in front of the UGV and was guided by the UGV
through a set of way-points while the UGV remained station-
ary. Throughout the experiment, both vehicles were observed by
the Vicon motion capture system, though these data were only
used to provide the ground-truth of the landmarks’ and robots’
positions. An example of the measured and estimated states of
the UAV is shown in Figure 3. These plots show that the UAV
controller will converge on the goal location within a few sec-
onds. The average and maximum errors of the estimated UAV
pose for both experiments are compiled in Table 1. In both sim-
ulation and experiment, the errors are largest in the x direction
due to triangulation from stereoscopic measurements, which are
least accurate along the optical axis of the cameras. The errors in
Table 1 reflect a strong agreement between simulation and real
experiments.

4 Cooperative Maneuvers
Based on the results of the relative measurement experi-

ments described in Section 3, a new set of experiments were de-
signed with both robots moving in order to showcase cooperative
maneuvers for the robot team. The environment for these exper-
iments included a physical obstacle between the UGV starting
and goal locations. To simplify detection of obstacles and goal
locations, two fiducial landmarks [28, 29] were placed on top of
the barricade while the third was placed on the opposite side of
the barricade from the UGV to provide a goal location. Addition-
ally, these landmarks were chosen to be specifically unobservable
by the UGV, forcing the UGV to rely upon the UAV to provide in-
formation about the environment. This configuration highlights
the complementary nature of a heterogeneous UAV-UGV team,
especially with regard to the perspective of each robot relative to
the environment.

For planning, we used the standard ROS move base package.
Using a well known and accepted method allowed us to focus
on the relative localization and cooperative nature of the team.
The global planner used by the UGV was the default navfn plan-
ner based on the Dijkstra algorithm for computing the naviga-
tion function. The cost map for the planning algorithm was con-
structed using the locations of the fiducial landmarks as observed
by the UAV. Finally, obstacle avoidance was implemented using
the Dynamic Window Approach local planner of the move base
package. Figure 4 is a snapshot of an experiment at the moment
when the UAV has already created the map and the UGV has
charted a path but has not yet started moving. Figure 5 shows the
estimated path of the UGV overlaid with the actual path of the
UGV during trial 5.

Table 2 presents a compilation of five trials of this experi-
ment, both in simulation and in the laboratory. The errors re-

UAV

Obstacles

Planned
Path

UGV

Cost
Map

Goal
Location

FIGURE 4: Still frame from experiment at the moment that a plan for the
UGV has been computed but before the UGV begins to move. The inset shows
the planned trajectory of the UGV around the obstacles.

ported in Table 2 are the differences calculated between the esti-
mated position and orientation of each vehicle and the pose data
from the Vicon motion capture system. Each row corresponds to
a distinct trial and for each trial the average and maximum errors
of the estimated position of each vehicle is reported. The maxi-
mum and average across all trials is included in the final row of
the table. The trials were conducted on two different days, and
each trajectory and obstacle configuration is shown in Figure 6.
For each trial, the simulation is configured to match the initial
configuration of the corresponding physical experiment with re-
gard to initial poses of vehicles and obstacles.

In Figure 6, the trajectory in trial 4 appears to have an
anomalous path compared to the other trials; this is due to the ini-
tial conditions and the path optimization. In this trial, the UGV
moved closer to the obstacles, and as a result the recalculated
minimum cost path diverged from the other trials. Additionally,
in both Trials 1 and 4 the maximum error of the UAV position
is significantly higher than that of the other trials. In these two
cases, during the experiment, the UAV was briefly outside the
field of view of the UGV, causing the estimate to drift, after the
UAV returned to the FOV of the UGV, the errors recovered. This
can be seen by the comparability of the average errors across all
trials for the UAV position. At the conclusion of each trial, the
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TABLE 2: Position and yaw errors of the simulated and actual UAV and UGV pose estimates from collaborative experiments.

Simulation Experimental
UAV error UGV error UAV error UGV error

Trial RMS [m] ψ [deg] RMS [m] ψ [deg] RMS [m] ψ [deg] RMS [m] ψ [deg]

1: mean 0.051 1.3 0.027 1.3 0.162 2.9 0.047 1.0
max 0.117 3.9 0.050 2.7 0.823 9.5 0.082 3.8

2: mean 0.041 1.2 0.019 1.0 0.066 2.5 0.043 1.2
max 0.086 2.7 0.045 2.3 0.177 16.9 0.075 3.7

3: mean 0.034 1.0 0.015 0.8 0.120 1.6 0.022 1.7
max 0.083 3.3 0.028 1.7 0.254 5.0 0.054 7.4

4: mean 0.034 0.9 0.013 0.6 0.194 1.0 0.022 1.0
max 0.198 4.7 0.057 4.3 1.069 7.7 0.039 3.8

5: mean 0.023 0.9 0.010 0.5 0.104 0.7 0.013 0.9
max 0.066 2.5 0.018 0.9 0.223 3.2 0.023 4.6

Mean : mean 0.036 0.2 0.016 0.1 0.130 0.2 0.030 0.2
max 0.198 2.5 0.057 0.9 1.069 3.2 0.082 4.6
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FIGURE 5: (Top) UGV estimated and actual trajectory for trial 5. Coordinates
are relative to the UGV’s starting orientation. The dashed circles represent the
circumscribed physical footprint of the UGV and the goal landmark.(Bottom)
Error of UGV estimate as a function of distance traveled.

error of the UGV position is approximately 2% or less of the
distance traveled.

While our experiment includes specific fixed landmarks, it
is not necessary to instrument the environment for the approach
that we have presented. These fiducial markers were included
to simplify loop closure and to provide a physical object that
could be measured by the Vicon motion capture system, pro-
viding ground-truth for computing errors in measurements and a
physically measurable goal location. Our results verify that this
methodology enables a UAV and a UGV to navigate an unknown
environment.
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FIGURE 6: Trajectories of UGV for trials 1-5. The dashed circles circum-
scribe the physical footprint of the robot and the goal landmark. Note: obstacle
colors correspond to the color of the trial in which they are present.

To assess the range of distances in which the system was
actually operational, we compared the theoretical maximum de-
tection range of the UAV by the UGV’s camera system as well
as an empirically determined maximum threshold through simu-
lation and experiments. For a camera with a focal length of 1080
pixels, observing a 40 mm sphere, and image processing with a
closing operation using a 7 pixel diameter kernel, the theoretical
maximum range to detect the sphere is 6.17 meters. This range is
not achieved in our simulations nor experiments however, largely
due to the lighting conditions, shading on the edges of the spher-
ical markers, and the thresholds applied to convert images from
the YUV space to a boolean image. In simulation, detection of
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TABLE 3: Magnitude of position errors of the simulated UGV during trials of increasing distance between vehicles.

UGV RMS Errors UGV RMS Errors
Range [m] Mean [m] Max [m] Range [m] Mean [m] Max [m]

1.3 0.013 0.032 2.8 0.015 0.025
1.7 0.014 0.032 2.9 0.010 0.032
2.0 0.015 0.029 3.4 0.010 0.023
2.3 0.014 0.027 3.9 0.011 0.029

TABLE 4: RMSE of vehicles over entire trajectory.

UGV Errors UAV Errors
Ref Dist [m] RMS [cm] RMS [o] Dist [m] RMS [cm] RMS [o]

[2] (Map alignment) 7.7 3.8 - 23 1.2 -
[4] (Map alignment) ∼5 7.5 1.5 - - -

[17] (RGB Binocular) - - - 3 12.7 2.0
Experimental 4.1 3.0 0.2 14.7 13 0.2

Simulated 4.1 1.6 0.2 15.2 3.6 0.2

the UAV markers fails at an approximate upper limit of 5.25 me-
ters. In the laboratory experiments, detection of markers is lim-
ited by an upper bound of approximately 5.6 meters. Similarly,
the theoretically minimum distance where all three markers are
within the FOV of the stereo camera system is 0.45 meters. How-
ever, at such close ranges (approximately one body length of the
UAV), it is not practical to maintain the UAV within the FOV of
the cameras. In practice, an achievable and functional minimum
distance for the UAV is approximately 1 meter.

With these limits in mind, we conducted a number of sim-
ulated trials for the exploration experiment from Section 4 to
provide evidence of the robustness of this methodology to dif-
ferent stand-off distances between UAV and UGV while in mo-
tion. For 8 different distances within the operational range, we
iterated simulated trails of the same configuration as the experi-
ments in Section 4. The results of these trials are shown in Table
3. Regardless of distance between vehicles, the error of the po-
sition estimate for the UGV remained comparable to the errors
reported in the previous section. From these results, we conclude
that this methodology is robust enough to successfully localize
both vehicles while the UGV navigates to the goal location. This
experiment was not attempted in the laboratory due to the space
limitations of the motion capture system.

For comparison, the root mean square error (RMSE) of the
vehicles in our experiments are listed along side the results of
similar experiments in Table 4. For both UGVs and UAVs, the

total distance traveled by either UGV or UAV is listed first fol-
lowed by the position and orientation errors. The data for the
first three rows was collected from the presented results of the
cited publications, the bottom two rows of the table correspond
to the experimental and simulated results of our work. With re-
gard to UGV pose performance, ours are comparable to existing
results, with slightly better performance in terms of orientation.
For localizing the UAV, the map alignment process from [2] out
performed the RGB method presented here, however, the perfor-
mance was comparable between our results and those presented
in [17].

5 Conclusion
We have presented and evaluated a novel relative localiza-

tion scheme for low-cost, heterogeneous, mobile robots with
non-overlapping sensing perspectives. An error-state, com-
plementary Kalman Filter was developed to fuse analytically-
derived uncertainty of stereoscopic pose measurements of an
aerial robot, made by a ground robot, with the inertial/visual
proprioceptive measurements of the aerial robot. Analysis of
simulated and experimental results verified the validity of the er-
ror models as well as the ability of the Kalman Filter to track
the states of both vehicles. The robot team was both simulated
and physically developed to test the expected error sources and
evaluate the performance in the presence of errors for combined
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navigation. The effective operation of this team is limited to an
approximate inter-robot range between 1 and 5 meters due to the
resolution of the cameras equipped by the UGV. This maximum
of this range could be increased with more expensive cameras or
by lenses with a more narrow field of view, though reducing the
field of view would increase the minimum effective limit.
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