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Project Proposal

• Problem description
– What is the computation and why is it important?

– Abstraction of computation: equations, graphic or pseudo-
code, no more than 1 page

• Suitability for GPU acceleration
– Amdahl’s Law: describe the inherent parallelism.  Argue that it 

is close to 100% of computation.  

– Synchronization and Communication: Discuss what data 
structures may need to be protected by synchronization, or 
communication through host.

– Copy Overhead: Discuss the data footprint and anticipated 
cost of copying to/from host memory.

• Intellectual Challenges
– Generally, what makes this computation worthy of a project?

– Point to any difficulties you anticipate at present in achieving 
high speedup
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Amdahl’s Law

• “The speedup of a program using multiple 
processors in parallel computing is limited by 
the time needed for the sequential fraction of 
the program.”

• Example
– 95% of original execution time can be sped up by 

100x on GPU

– Speed up for entire application:

3

x17
%95.5

1

%95.0%5

1

)
100

%95
%5(

1
==

+
=

+



Overview

• More Performance Considerations
– Memory Coalescing

– Occupancy

– Kernel Launch Overhead

– Instruction Performance

• Summary of Performance Considerations
– Lectures 3 and 4

• Parallel Patterns: Reduction Trees

• Parallel Patterns: Parallel Prefix Sum (Scan)
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Memory Coalescing (Part 2)

slides by

Jared Hoberock and David Tarjan

(Stanford CS 193G)
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Consider the stride of your accesses

__global__ void foo(int* input,

float3* input2)

{

int i = blockDim.x * blockIdx.x

+ threadIdx.x;

// Stride 1

int a = input[i];

// Stride 2, half the bandwidth is wasted

int b = input[2*i];

// Stride 3, 2/3 of the bandwidth wasted

float c = input2[i].x;

}
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Example: Array of Structures (AoS)

struct record

{

int key;

int value;

int flag;

};

record  *d_records;

cudaMalloc((void**)&d_records, 
...);
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Example: Structure of Arrays (SoA)
struct SoA

{

int * keys;

int * values;

int * flags;

};

SoA d_SoA_data;

cudaMalloc((void**)&d_SoA_data.keys, ...);

cudaMalloc((void**)&d_SoA_data.values, ...);

cudaMalloc((void**)&d_SoA_data.flags, ...);
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Example: SoA vs. AoS
__global__ void bar(record 

*AoS_data, SoA SoA_data)

{

int i = blockDim.x * blockIdx.x

+ threadIdx.x;

// AoS wastes bandwidth

int key = AoS_data[i].key;

// SoA efficient use of bandwidth

int key_better = SoA_data.keys[i];

}
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Memory Coalescing

• Structure of arrays is often better than 
array of structures 

– Very clear win on regular, stride 1 access 
patterns

– Unpredictable or irregular access patterns 
are case-by-case
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Occupancy

slides (mostly) by

Jared Hoberock and David Tarjan

(Stanford CS 193G)

and Joseph T. Kider Jr. (UPenn)
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Reminder: Thread Scheduling

• SM implements zero-overhead warp scheduling
– At any time, only one of the warps is executed by SM 

– Warps whose next instruction has its inputs ready for 
consumption are eligible for execution

– Eligible Warps are selected for execution on a 
prioritized scheduling policy

– All threads in a warp execute the same instruction 
when selected
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Thread Scheduling

• What happens if all warps are stalled?

– No instruction issued → performance lost

• Most common reason for stalling?

– Waiting on global memory

• If your code reads global memory every couple 

of instructions

– You should try to maximize occupancy
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Occupancy

• Thread instructions are executed 
sequentially, so executing other warps is the 
only way to hide latencies and keep cores 
busy

• Occupancy = number of warps running 
concurrently on a multiprocessor divided by 
maximum number of warps that can run 
concurrently

• Limited by resource usage:

– Registers

– Shared memory
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Resource Limits (1)

• Pool of registers and shared memory per SM
• Each thread block grabs registers & shared memory

• If one or the other is fully utilized -> no more thread 

blocks

TB 0

Registers Shared Memory

TB 1
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TB 1
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TB 1

TB 0
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Shared Memory
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Resource Limits (2)

• Can only have N thread blocks per SM
• If they’re too small, can’t fill up the SM

• Need 128 threads / block (GT200), 192 threads/ 

block (GF100)

• Higher occupancy has diminishing returns for 

hiding latency
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Grid/Block Size Heuristics

• # of blocks > # of multiprocessors
– So all multiprocessors have at least one block to 

execute

• # of blocks / # of multiprocessors > 2
– Multiple blocks can run concurrently on a 

multiprocessor

– Blocks not waiting at a __syncthreads() keep 
hardware busy

– Subject to resource availability – registers, shared 
memory

• # of blocks > 100 to scale to future devices
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Register Dependency

• Read-after-write register dependency

– Instruction’s result can be read approximately 

24 cycles later

• To completely hide latency:

– Run at least 192 threads (6 warps) per 

multiprocessor

• At least 25% occupancy for compute capability 1.0 

and 1.1

• Threads do not have to belong to the same block
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Register Pressure

• Hide latency by using more threads per 

SM

• Limiting factors:

– Number of registers per thread

• 8k/16k/… per SM, partitioned among concurrent 

threads

– Amount of shared memory

• 16kB/… per SM, partitioned among concurrent 

blocks
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How do you know what you’re using?

• Use  nvcc –Xptxas –v to get register and shared 
memory usage

nvcc -Xptxas -v acos.cu

ptxas info : Compiling entry function 'acos_main'

ptxas info : Used 4 registers, 60+56 bytes lmem, 44+40 bytes 
smem, 20 bytes cmem[1], 12 bytes cmem[14]

– The first number represents the total size of all the variables 
declared in that memory segment and the second number 
represents the amount of system allocated data. 

– Constant memory numbers include which memory banks have 
been used

• Plug those numbers into CUDA Occupancy Calculator
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How to influence how many registers 

you use

• Pass option –maxrregcount=X to nvcc

• This isn’t magic, won’t get occupancy for 

free

• Use this very carefully when you are right 

on the edge
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Optimizing Threads per Block

• Choose threads per block as multiple of 

warp size

– Avoid wasting computation on under-

populated warps

• Run as many warps as possible per SM

– Hide latency

• SMs can run up to N blocks at a time
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Occupancy != Performance

• Increasing occupancy does not 

necessarily increase performance

• BUT…

• Low-occupancy SMs cannot adequately 

hide latency
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Parameterize your Application

• Parameterization helps adaptation to different 
GPUs

• GPUs vary in many ways

– # of SMs

– Memory bandwidth

– Shared memory size

– Register file size

– Max threads per block

➢ Avoid local minima

– Try widely varying configurations
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Kernel Launch Overhead

slides by

Jared Hoberock and David Tarjan

(Stanford CS 193G)
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Kernel Launch Overhead

• Kernel launches aren’t free
– A null kernel launch will take non-trivial time

– Actual time changes with HW generations 
and driver software…

• Independent kernel launches are cheaper 
than dependent kernel launches
– Dependent launch: Some readback to the 

CPU

• Launching lots of small grids comes with 
substantial performance loss 
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Kernel Launch Overheads

• If you are reading back data to the CPU 

for control decisions, consider doing it on 

the GPU 

• Even though the GPU is slow at serial 

tasks, it can do surprising amounts of 

work before you used up kernel launch 

overhead
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Instruction Performance

slides by

Joseph T. Kider Jr. (Upenn)
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Instruction Performance

• Instruction cycles (per warp) is the sum of

– Operand read cycles

– Instruction execution cycles

– Result update cycles

• Therefore instruction throughput depends on

– Nominal instruction throughput

– Memory latency

– Memory bandwidth

• Cycle refers to the multiprocessor clock rate
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Maximizing Instruction Throughput

• Maximize use of high-bandwidth memory

– Maximize use of shared memory

– Minimize accesses to global memory
– Maximize coalescing of global memory accesses

• Optimize performance by overlapping 

memory accesses with computation

– High arithmetic intensity programs

– Many concurrent threads
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Arithmetic Instruction Throughput

• int and float add, shift, min, max and float mul, 
mad: 4 cycles per warp
– int multiply is by default 32-bit

• requires multiple cycles/warp

– use __mul24() and __umul24() intrinsics for 4-cycle 
24-bit int multiplication

• Integer division and modulo operations are costly 
– The compiler will convert literal power-of-2 divides to 

shifts
• But it may miss

– Be explicit in cases where the compiler cannot tell 
that the divisor is a power of 2
• Trick: foo % n == foo & (n-1) if n is a power of 2
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Loop Transformations

Mary Hall

CS6963 University of Utah
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Reordering Transformations

• Analyze reuse in computation

• Apply loop reordering transformations to 
improve locality based on reuse

• With any loop reordering transformation, 
always ask

– Safety? (doesn’t reverse dependences)

– Profitablity? (improves locality)

CS6963



Loop Permutation:

A Reordering Transformation

for (j=0; j<6; j++)

for (i= 0; i<3; i++)

A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)

for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j];

i

j

new traversal order!i

j

Permute the order of the loops to modify the traversal order

Which one is better for row-major storage?

CS6963 38



Safety of Permutation

• Ok to permute?

for (i= 0; i<3; i++)

for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)

for (j=1; j<6; j++)

A[i+1][j-1]=A[i][j]+B[j];

CS6963

• Intuition: Cannot permute two loops i and j in a loop nest if 

doing so reverses the direction of any dependence.
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Tiling (Blocking):

Another Loop Reordering 

Transformation

• Blocking reorders loop iterations to bring 

iterations that reuse data closer in time

J

I

J

I

CS6963 40



Tiling Example

for (j=1; j<M; j++)

for (i=1; i<N; i++)

D[i] = D[i] + B[j][i];

for (j=1; j<M; j++)

for (ii=1; ii<N; ii+=s)

for (i=ii; i<min(ii+s,N); i++)

D[i] = D[i] +B[j][i];

Strip

mine

for (ii=1; ii<N; ii+=s)

for (j=1; j<M; j++)

for (i=ii; i<min(ii+s,N); i++)

D[i] = D[i] +B[j][i];

Permute

CS6963 41



Legality of Tiling

• Tiling = strip-mine and permutation

–Strip-mine does not reorder iterations

–Permutation must be legal

OR

– strip size less than dependence 

distance

CS6963 42



A Few Words On Tiling

• Tiling can be used hierarchically to compute partial 

results on a block of data wherever there are 

capacity limitations

– Between grids if total data exceeds global memory 

capacity

– Across thread blocks if shared data exceeds shared 

memory capacity (also to partition computation across 

blocks and threads)

– Within threads if data in constant cache exceeds cache 

capacity  or data in registers exceeds register capacity or 

(as in example) data in shared memory for block still 

exceeds shared memory capacity

CS6963 43



Summary of Performance 

Considerations
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Summary of Performance 

Considerations
• Thread Execution and Divergence

• Communication Through Memory

• Instruction Level Parallelism and Thread Level 
Parallelism

• Memory Coalescing

• Shared Memory Bank Conflicts

• Parallel Reduction

• Prefetching

• Loop Unrolling and Transformations

• Occupancy 

• Kernel Launch Overhead

• Instruction Performance
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Thread Execution and Divergence

• Instructions are issued per 32 threads 
(warp)

• Divergent branches:

– Threads within a single warp take different 
paths
• if-else, ...

– Different execution paths within a warp are 
serialized

• Different warps can execute different code 
with no impact on performance
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An Example

// is this barrier divergent?

for(int offset = blockDim.x / 2;

offset > 0;

offset >>= 1)

{

...

__syncthreads();

}
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A Second Example
// what about this one?

__global__ void do_i_halt(int *input)

{

int i = ...

if(input[i])

{

...

__syncthreads();

}

}

// a divergent barrier

// hangs the machine
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Compute Capabilities

• Reminder: do not take various constants, 

such as size of shared memory etc., for 

granted since they continuously change

• Check CUDA programming guide for the 

features of the compute capability of your 

GPU
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Reduction Trees 

50© David Kirk/NVIDIA and Wen-mei W. Hwu
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Partition and Summarize

• A commonly used strategy for processing large 
input data sets
– There is no required order of processing elements in 

a data set  (associative and commutative)

– Partition the data set into smaller chunks

– Have each thread to process a chunk

– Use a reduction tree to summarize the results from 
each chunk into the final answer

• We will focus on the reduction tree step for now

• Google and Hadoop MapReduce frameworks 
are examples of this pattern

51© David Kirk/NVIDIA and Wen-mei W. Hwu
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Reduction enables other techniques

• Reduction is also needed to clean up after 
some commonly used parallelizing 
transformations

• Privatization

– Multiple threads write into an output location

– Replicate the output location so that each thread 
has a private output location

– Use a reduction tree to combine the values of 
private locations into the original output location
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What is a reduction computation

• Summarize a set of input values into one 
value using a “reduction operation”

– Max

– Min

– Sum

– Product

– Often with user defined reduction operation 
function as long as the operation
• Is associative and commutative

• Has a well-defined identity value (e.g., 0 for sum)
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A sequential reduction algorithm 

performs N operations - O(N)

• Initialize the result as an identity value for the 
reduction operation

– Smallest possible value for max reduction

– Largest possible value for min reduction

– 0 for sum reduction

– 1 for product reduction

• Scan through the input and perform the 
reduction operation between the result value 
and the current input value
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A parallel reduction tree algorithm 

performs N-1 Operations in log(N) steps
3 1 7 0 4 1 6 3

3 7 4 6

max maxmaxmax

maxmax

7 6

max

7
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A Quick Analysis

• For N input values, the reduction tree performs

– (1/2)N + (1/4)N + (1/8)N + … (1/N) = (1- (1/N))N = N-1 
operations

– In Log (N) steps – 1,000,000 input values take 20 steps
• Assuming that we have enough execution resources

– Average Parallelism (N-1)/Log(N))
• For N = 1,000,000, average parallelism is 50,000

• However, peak resource requirement is 500,000!

• This is a work-efficient parallel algorithm

– The amount of work done is comparable to sequential

– Many parallel algorithms are not work efficient

56© David Kirk/NVIDIA and Wen-mei W. Hwu
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A Sum Reduction Example

• Parallel implementation:
– Recursively halve # of threads, add two values per thread 

in each step

– Takes log(n) steps for n elements, requires n/2 threads

• Assume an in-place reduction using shared memory
– The original vector is in device global memory

– The shared memory is used to hold a partial sum vector

– Each step brings the partial sum vector closer to the sum

– The final sum will be in element 0

– Reduces global memory traffic due to partial sum values

57© David Kirk/NVIDIA and Wen-mei W. Hwu
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Vector Reduction with Branch Divergence

58

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11
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Thread 0 Thread 4Thread 1 Thread 2 Thread 3 Thread 5

Dat
a
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Some Observations

• In each iteration, two control flow paths will be sequentially 
traversed for each warp
– Threads that perform addition and threads that do not

– Threads that do not perform addition still consume execution 
resources

• No more than half of threads will be executing after the 
first step
– All odd index threads are disabled after first step

– After the 5th step, entire warps in each block will fail the if test, poor 
resource utilization but no divergence.

• This can go on for a while, up to 5 more steps (1024/32=16= 25), 
where each active warp only has one productive thread until all warps 
in a block retire 

59© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016



Thread Index Usage Matters

• In some algorithms, one can shift the index 

usage to improve the divergence behavior

– Commutative and associative operators

• Reduction satisfies this criterion
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A Better Strategy

• Always compact the partial sums into the 

first locations in the partialSum[] array

• Keep the active threads consecutive
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Thread 0

An Example of 16 threads

0 1 2 3 … 13 1514 181716 19

0+16 15+31

Thread 1 Thread 2 Thread 14 Thread 15
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A Better Reduction Kernel

for (unsigned int stride = blockDim.x/2; 

stride >= 1;  stride >>= 1) 

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}
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A Quick Analysis

• For a 1024 thread block

– No divergence in the first 5 steps

– 1024, 512, 256, 128, 64, 32 consecutive 

threads are active in each step

– The final 5 steps will still have divergence 
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Parallel Algorithm Overhead
__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;

unsigned int start = 2*blockIdx.x*blockDim.x;

partialSum[t] = input[start + t];

partialSum[blockDim+t] = input[start+ blockDim.x+t];

for (unsigned int stride = blockDim.x/2; 

stride >= 1;  stride >>= 1) 

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}
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Parallel Algorithm Overhead
__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;

unsigned int start = 2*blockIdx.x*blockDim.x;

partialSum[t] = input[start + t];

partialSum[blockDim+t] = input[start+ blockDim.x+t];

for (unsigned int stride = blockDim.x/2; 

stride >= 1;  stride >>= 1) 

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}
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Parallel Execution Overhead

• Although the number of “operations” is N, 
each operation involves much more 
complex address calculation and 
intermediate result manipulation

• If the parallel code is executed on a single-
thread hardware, it would be significantly 
slower than the code based on the original 
sequential algorithm
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Parallel Prefix Sum (Scan)
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Objectives

• Prefix Sum (Scan) algorithms

– Frequently used for parallel work assignment 
and resource allocation

– A key primitive in many parallel algorithms to 
convert serial computation into parallel 
computation

– Based on reduction tree and reverse reduction 
tree

• To learn the concept of double buffering
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(Inclusive) Prefix-Sum (Scan) 

Definition

Definition: The all-prefix-sums operation takes a binary 

associative operator ⊕, and an array of n elements

[x0, x1, …, xn-1],

and returns the array

[x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕ … ⊕ xn-1)].

Example: If ⊕ is addition, then the all-prefix-sums operation 

on the array [3  1  7   0   4    1   6   3],

would return [3  4 11 11 15 16 22 25].
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An Inclusive Scan Application 

Example
• Assume that we have a 100-inch bread to feed 10 

people

• We know how much each person wants in inches
– [3  5   2   7   28 4  3 0  8  1]

• How do we cut the bread quickly? 

• How much will be left

• Method 1: cut the sections sequentially: 3 inches 
first, 5 inches second, 2 inches third, etc. 

• Method 2: calculate Prefix scan
– [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)
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Typical Applications of Scan

• Assigning camp slots

• Assigning farmer market space

• Allocating memory to parallel threads

• Allocating memory buffer to communication channels

• Useful for many parallel algorithms:

72

• radix sort

• quicksort

• String comparison

• Lexical analysis

• Stream compaction

• Polynomial evaluation

• Solving recurrences

• Tree operations

• Histograms

• Etc.
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An Inclusive Sequential Prefix-Sum

Given a sequence [x0, x1, x2, ... ]

Calculate output [y0, y1, y2, ... ]

Such that y0 = x0

y1 = x0 + x1

y2 = x0 + x1+ x2

…

Using a recursive definition 

yi = yi − 1 + xi
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A Work Efficient C Implementation

y[0] = x[0];

for (i = 1; i < Max_i; i++) 

y[i] = y [i-1] + x[i];

Computationally efficient:

N additions needed for N elements - O(N)
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A Naïve Inclusive Parallel Scan

• Assign one thread to calculate each y element

• Have every thread to add up all x elements 

needed for the y element

y0 = x0

y1 = x0 + x1

y2 = x0 + x1+ x2

“Parallel programming is easy as long as you do 

not care about performance.”
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Parallel Inclusive Scan using 

Reduction Trees

• Calculate each output element as the 

reduction of all previous elements

– Some reduction partial sums will be shared 

among the calculation of output elements

– Based on hardware aided design by Peter 

Kogge and Harold Stone at IBM in the 1970s –

Kogge-Stone Trees
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A Slightly Better Parallel Inclusive 

Scan Algorithm

77

1. Load input from 

global memory into 

shared memory 

array T

Each thread loads one value from the input

(global memory) array  into shared memory array T.

T 3 1 7 0 4 1 6 3
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A Kogge-Stone Parallel Scan Algorithm

78

1. (previous slide)

2. Iterate log(n) 

times, stride from 1 to 

ceil(n/2.0). Threads 

stride to n-1 active: 

add pairs of elements 

that are stride

elements apart. 

• Active threads: stride to n-1 (n-stride threads)

• Thread j adds elements j and j-stride from T and writes result into 

shared memory buffer T

• Each iteration requires two syncthreads

• syncthreads(); // make sure that input is in place

• float temp = T[j] + T[j - stride];
Iteration #1

Stride = 1

T 3 4 8 7 4 5 7 9

Stride = 1

T 3 1 7 0 4 1 6 3

Thread 5
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A Kogge-Stone Parallel Scan Algorithm

• Active threads: stride to n-1 (n-stride threads)

• Thread j adds elements j and j-stride from T and writes result into 

shared memory buffer T

• Each iteration requires two syncthreads

• syncthreads(); // make sure that input is in place

• float temp = T[j] + T[j - stride];

• syncthreads(); // make sure that previous output has been 

consumed

• T[j] = temp;

Iteration #1

Stride = 1

T 3 4 8 7 4 5 7 9

Stride = 1

T 3 1 7 0 4 1 6 3
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A Kogge-Stone Parallel Scan Algorithm

T 3 4 8 7 4 5 7 9

T 3 4 11 11 12 12 11 14

Stride = 1

Stride = 2

1. …

2. Iterate log(n) 

times, stride from 1 to 

ceil(n/2.0). Threads 

stride to n-1 active: 

add pairs of elements 

that are stride

elements apart. 

Iteration #2

Stride = 2

T 3 1 7 0 4 1 6 3
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A Kogge-Stone Parallel Scan Algorithm

T 3 4 11 11 15 16 22 25

1. Load input from 

global memory to 

shared memory. 

2. Iterate log(n) 

times, stride from 1 to 

ceil(n/2.0). Threads 

stride to n-1 active: 

add pairs of elements 

that are stride

elements apart. 

3. Write output from 

shared memory to 

device memory

Iteration #3

Stride = 4

T 3 4 8 7 4 5 7 9

T 3 4 11 11 12 12 11 14

Stride = 1

Stride = 2

T 3 1 7 0 4 1 6 3

Stride = 4
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Double Buffering

• Use two copies of data T0 and T1

• Start by using T0 as input and T1 as output

• Switch input/output roles after each iteration
– Iteration 0: T0 as input and T1 as output

– Iteration 1: T1 as input and T0 and output

– Iteration 2: T0 as input and T1 as output

• This is typically implemented with two pointers, 
source and destination that swap their contents 
from one iteration to the next

• This eliminates the need for the second 
syncthreads
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1. (previous slide)

2. Iterate log(n) 

times, stride from 1 to 

ceil(n/2.0). Threads 

stride to n-1 active: 

add pairs of elements 

that are stride

elements apart. 

• Active threads: stride to n-1 (n-stride threads)

• Thread j adds elements j and j-stride from T and writes result into 

shared memory buffer T

• Each iteration requires only one syncthreads

• syncthreads(); // make sure that input is in place

• float destination[j] = source[j] + source[j - stride];

• temp = destination; destination = source; source = temp;
Iteration #1

Stride = 1

T1 3 4 8 7 4 5 7 9

Stride = 1

T0 3 1 7 0 4 1 6 3

Thread 5
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Work Efficiency Analysis

• A Kogge-Stone scan kernel executes log(n) parallel iterations

– The steps do (n-1), (n-2), (n-4),..(n- n/2) add operations each

– Total # of add operations: n * log(n)  - (n-1) → O(n*log(n)) work

• This scan algorithm is not very work efficient

– Sequential scan algorithm does n adds

– A factor of log(n) hurts: 20x for 1,000,000 elements!

– Typically used within each block, where n ≤ 1,024

• A parallel algorithm can be slow when execution resources 

are saturated due to low work efficiency

To be continued…
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