
CS 677: Parallel Programming for

Many-core Processors

Lecture 4

Instructor: Philippos Mordohai

Webpage: www.cs.stevens.edu/~mordohai

E-mail: Philippos.Mordohai@stevens.edu

1

mailto:Philippos.Mordohai@stevens.edu

Project Proposal

• Problem description
– What is the computation and why is it important?

– Abstraction of computation: equations, graphic or pseudo-
code, no more than 1 page

• Suitability for GPU acceleration
– Amdahl’s Law: describe the inherent parallelism. Argue that it

is close to 100% of computation.

– Synchronization and Communication: Discuss what data
structures may need to be protected by synchronization, or
communication through host.

– Copy Overhead: Discuss the data footprint and anticipated
cost of copying to/from host memory.

• Intellectual Challenges
– Generally, what makes this computation worthy of a project?

– Point to any difficulties you anticipate at present in achieving
high speedup

2

Amdahl’s Law

• “The speedup of a program using multiple
processors in parallel computing is limited by
the time needed for the sequential fraction of
the program.”

• Example
– 95% of original execution time can be sped up by

100x on GPU

– Speed up for entire application:

3

x17
%95.5

1

%95.0%5

1

)
100

%95
%5(

1
==

+
=

+

Overview

• More Performance Considerations
– Memory Coalescing

– Occupancy

– Kernel Launch Overhead

– Instruction Performance

• Summary of Performance Considerations
– Lectures 3 and 4

• Parallel Patterns: Reduction Trees

• Parallel Patterns: Parallel Prefix Sum (Scan)

4

Memory Coalescing (Part 2)

slides by

Jared Hoberock and David Tarjan

(Stanford CS 193G)

5

Consider the stride of your accesses

__global__ void foo(int* input,

float3* input2)

{

int i = blockDim.x * blockIdx.x

+ threadIdx.x;

// Stride 1

int a = input[i];

// Stride 2, half the bandwidth is wasted

int b = input[2*i];

// Stride 3, 2/3 of the bandwidth wasted

float c = input2[i].x;

}

6

Example: Array of Structures (AoS)

struct record

{

int key;

int value;

int flag;

};

record *d_records;

cudaMalloc((void**)&d_records,
...);

7

Example: Structure of Arrays (SoA)
struct SoA

{

int * keys;

int * values;

int * flags;

};

SoA d_SoA_data;

cudaMalloc((void**)&d_SoA_data.keys, ...);

cudaMalloc((void**)&d_SoA_data.values, ...);

cudaMalloc((void**)&d_SoA_data.flags, ...);

8

Example: SoA vs. AoS
__global__ void bar(record

*AoS_data, SoA SoA_data)

{

int i = blockDim.x * blockIdx.x

+ threadIdx.x;

// AoS wastes bandwidth

int key = AoS_data[i].key;

// SoA efficient use of bandwidth

int key_better = SoA_data.keys[i];

}

9

Memory Coalescing

• Structure of arrays is often better than
array of structures

– Very clear win on regular, stride 1 access
patterns

– Unpredictable or irregular access patterns
are case-by-case

10

Occupancy

slides (mostly) by

Jared Hoberock and David Tarjan

(Stanford CS 193G)

and Joseph T. Kider Jr. (UPenn)

11

12

Reminder: Thread Scheduling

• SM implements zero-overhead warp scheduling
– At any time, only one of the warps is executed by SM

– Warps whose next instruction has its inputs ready for
consumption are eligible for execution

– Eligible Warps are selected for execution on a
prioritized scheduling policy

– All threads in a warp execute the same instruction
when selected

TB1

W1

TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

Thread Scheduling

• What happens if all warps are stalled?

– No instruction issued → performance lost

• Most common reason for stalling?

– Waiting on global memory

• If your code reads global memory every couple

of instructions

– You should try to maximize occupancy

13

Occupancy

• Thread instructions are executed
sequentially, so executing other warps is the
only way to hide latencies and keep cores
busy

• Occupancy = number of warps running
concurrently on a multiprocessor divided by
maximum number of warps that can run
concurrently

• Limited by resource usage:

– Registers

– Shared memory

14

Resource Limits (1)

• Pool of registers and shared memory per SM
• Each thread block grabs registers & shared memory

• If one or the other is fully utilized -> no more thread

blocks

TB 0

Registers Shared Memory

TB 1

TB 2

TB 0

TB 1

TB 2

TB 0

Registers

TB 1

TB 0

TB 1

Shared Memory

15

Resource Limits (2)

• Can only have N thread blocks per SM
• If they’re too small, can’t fill up the SM

• Need 128 threads / block (GT200), 192 threads/

block (GF100)

• Higher occupancy has diminishing returns for

hiding latency

16

Grid/Block Size Heuristics

• # of blocks > # of multiprocessors
– So all multiprocessors have at least one block to

execute

• # of blocks / # of multiprocessors > 2
– Multiple blocks can run concurrently on a

multiprocessor

– Blocks not waiting at a __syncthreads() keep
hardware busy

– Subject to resource availability – registers, shared
memory

• # of blocks > 100 to scale to future devices

17

Register Dependency

• Read-after-write register dependency

– Instruction’s result can be read approximately

24 cycles later

• To completely hide latency:

– Run at least 192 threads (6 warps) per

multiprocessor

• At least 25% occupancy for compute capability 1.0

and 1.1

• Threads do not have to belong to the same block

18

Register Pressure

• Hide latency by using more threads per

SM

• Limiting factors:

– Number of registers per thread

• 8k/16k/… per SM, partitioned among concurrent

threads

– Amount of shared memory

• 16kB/… per SM, partitioned among concurrent

blocks

19

How do you know what you’re using?

• Use nvcc –Xptxas –v to get register and shared
memory usage

nvcc -Xptxas -v acos.cu

ptxas info : Compiling entry function 'acos_main'

ptxas info : Used 4 registers, 60+56 bytes lmem, 44+40 bytes
smem, 20 bytes cmem[1], 12 bytes cmem[14]

– The first number represents the total size of all the variables
declared in that memory segment and the second number
represents the amount of system allocated data.

– Constant memory numbers include which memory banks have
been used

• Plug those numbers into CUDA Occupancy Calculator

20

How to influence how many registers

you use

• Pass option –maxrregcount=X to nvcc

• This isn’t magic, won’t get occupancy for

free

• Use this very carefully when you are right

on the edge

25

Optimizing Threads per Block

• Choose threads per block as multiple of

warp size

– Avoid wasting computation on under-

populated warps

• Run as many warps as possible per SM

– Hide latency

• SMs can run up to N blocks at a time

26

Occupancy != Performance

• Increasing occupancy does not

necessarily increase performance

• BUT…

• Low-occupancy SMs cannot adequately

hide latency

27

Parameterize your Application

• Parameterization helps adaptation to different
GPUs

• GPUs vary in many ways

– # of SMs

– Memory bandwidth

– Shared memory size

– Register file size

– Max threads per block

➢ Avoid local minima

– Try widely varying configurations

28

Kernel Launch Overhead

slides by

Jared Hoberock and David Tarjan

(Stanford CS 193G)

29

Kernel Launch Overhead

• Kernel launches aren’t free
– A null kernel launch will take non-trivial time

– Actual time changes with HW generations
and driver software…

• Independent kernel launches are cheaper
than dependent kernel launches
– Dependent launch: Some readback to the

CPU

• Launching lots of small grids comes with
substantial performance loss

30

Kernel Launch Overheads

• If you are reading back data to the CPU

for control decisions, consider doing it on

the GPU

• Even though the GPU is slow at serial

tasks, it can do surprising amounts of

work before you used up kernel launch

overhead

31

Instruction Performance

slides by

Joseph T. Kider Jr. (Upenn)

32

Instruction Performance

• Instruction cycles (per warp) is the sum of

– Operand read cycles

– Instruction execution cycles

– Result update cycles

• Therefore instruction throughput depends on

– Nominal instruction throughput

– Memory latency

– Memory bandwidth

• Cycle refers to the multiprocessor clock rate

33

Maximizing Instruction Throughput

• Maximize use of high-bandwidth memory

– Maximize use of shared memory

– Minimize accesses to global memory
– Maximize coalescing of global memory accesses

• Optimize performance by overlapping

memory accesses with computation

– High arithmetic intensity programs

– Many concurrent threads

34

Arithmetic Instruction Throughput

• int and float add, shift, min, max and float mul,
mad: 4 cycles per warp
– int multiply is by default 32-bit

• requires multiple cycles/warp

– use __mul24() and __umul24() intrinsics for 4-cycle
24-bit int multiplication

• Integer division and modulo operations are costly
– The compiler will convert literal power-of-2 divides to

shifts
• But it may miss

– Be explicit in cases where the compiler cannot tell
that the divisor is a power of 2
• Trick: foo % n == foo & (n-1) if n is a power of 2

35

Loop Transformations

Mary Hall

CS6963 University of Utah

36

37

Reordering Transformations

• Analyze reuse in computation

• Apply loop reordering transformations to
improve locality based on reuse

• With any loop reordering transformation,
always ask

– Safety? (doesn’t reverse dependences)

– Profitablity? (improves locality)

CS6963

Loop Permutation:

A Reordering Transformation

for (j=0; j<6; j++)

for (i= 0; i<3; i++)

A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)

for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j];

i

j

new traversal order!i

j

Permute the order of the loops to modify the traversal order

Which one is better for row-major storage?

CS6963 38

Safety of Permutation

• Ok to permute?

for (i= 0; i<3; i++)

for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)

for (j=1; j<6; j++)

A[i+1][j-1]=A[i][j]+B[j];

CS6963

• Intuition: Cannot permute two loops i and j in a loop nest if

doing so reverses the direction of any dependence.

39

Tiling (Blocking):

Another Loop Reordering

Transformation

• Blocking reorders loop iterations to bring

iterations that reuse data closer in time

J

I

J

I

CS6963 40

Tiling Example

for (j=1; j<M; j++)

for (i=1; i<N; i++)

D[i] = D[i] + B[j][i];

for (j=1; j<M; j++)

for (ii=1; ii<N; ii+=s)

for (i=ii; i<min(ii+s,N); i++)

D[i] = D[i] +B[j][i];

Strip

mine

for (ii=1; ii<N; ii+=s)

for (j=1; j<M; j++)

for (i=ii; i<min(ii+s,N); i++)

D[i] = D[i] +B[j][i];

Permute

CS6963 41

Legality of Tiling

• Tiling = strip-mine and permutation

–Strip-mine does not reorder iterations

–Permutation must be legal

OR

– strip size less than dependence

distance

CS6963 42

A Few Words On Tiling

• Tiling can be used hierarchically to compute partial

results on a block of data wherever there are

capacity limitations

– Between grids if total data exceeds global memory

capacity

– Across thread blocks if shared data exceeds shared

memory capacity (also to partition computation across

blocks and threads)

– Within threads if data in constant cache exceeds cache

capacity or data in registers exceeds register capacity or

(as in example) data in shared memory for block still

exceeds shared memory capacity

CS6963 43

Summary of Performance

Considerations

44

Summary of Performance

Considerations
• Thread Execution and Divergence

• Communication Through Memory

• Instruction Level Parallelism and Thread Level
Parallelism

• Memory Coalescing

• Shared Memory Bank Conflicts

• Parallel Reduction

• Prefetching

• Loop Unrolling and Transformations

• Occupancy

• Kernel Launch Overhead

• Instruction Performance

45

Thread Execution and Divergence

• Instructions are issued per 32 threads
(warp)

• Divergent branches:

– Threads within a single warp take different
paths
• if-else, ...

– Different execution paths within a warp are
serialized

• Different warps can execute different code
with no impact on performance

46

An Example

// is this barrier divergent?

for(int offset = blockDim.x / 2;

offset > 0;

offset >>= 1)

{

...

__syncthreads();

}

47

A Second Example
// what about this one?

__global__ void do_i_halt(int *input)

{

int i = ...

if(input[i])

{

...

__syncthreads();

}

}

// a divergent barrier

// hangs the machine

48

Compute Capabilities

• Reminder: do not take various constants,

such as size of shared memory etc., for

granted since they continuously change

• Check CUDA programming guide for the

features of the compute capability of your

GPU

49

Reduction Trees

50© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Partition and Summarize

• A commonly used strategy for processing large
input data sets
– There is no required order of processing elements in

a data set (associative and commutative)

– Partition the data set into smaller chunks

– Have each thread to process a chunk

– Use a reduction tree to summarize the results from
each chunk into the final answer

• We will focus on the reduction tree step for now

• Google and Hadoop MapReduce frameworks
are examples of this pattern

51© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Reduction enables other techniques

• Reduction is also needed to clean up after
some commonly used parallelizing
transformations

• Privatization

– Multiple threads write into an output location

– Replicate the output location so that each thread
has a private output location

– Use a reduction tree to combine the values of
private locations into the original output location

52© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

What is a reduction computation

• Summarize a set of input values into one
value using a “reduction operation”

– Max

– Min

– Sum

– Product

– Often with user defined reduction operation
function as long as the operation
• Is associative and commutative

• Has a well-defined identity value (e.g., 0 for sum)

53© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A sequential reduction algorithm

performs N operations - O(N)

• Initialize the result as an identity value for the
reduction operation

– Smallest possible value for max reduction

– Largest possible value for min reduction

– 0 for sum reduction

– 1 for product reduction

• Scan through the input and perform the
reduction operation between the result value
and the current input value

54© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A parallel reduction tree algorithm

performs N-1 Operations in log(N) steps
3 1 7 0 4 1 6 3

3 7 4 6

max maxmaxmax

maxmax

7 6

max

7
55© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Quick Analysis

• For N input values, the reduction tree performs

– (1/2)N + (1/4)N + (1/8)N + … (1/N) = (1- (1/N))N = N-1
operations

– In Log (N) steps – 1,000,000 input values take 20 steps
• Assuming that we have enough execution resources

– Average Parallelism (N-1)/Log(N))
• For N = 1,000,000, average parallelism is 50,000

• However, peak resource requirement is 500,000!

• This is a work-efficient parallel algorithm

– The amount of work done is comparable to sequential

– Many parallel algorithms are not work efficient

56© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Sum Reduction Example

• Parallel implementation:
– Recursively halve # of threads, add two values per thread

in each step

– Takes log(n) steps for n elements, requires n/2 threads

• Assume an in-place reduction using shared memory
– The original vector is in device global memory

– The shared memory is used to hold a partial sum vector

– Each step brings the partial sum vector closer to the sum

– The final sum will be in element 0

– Reduces global memory traffic due to partial sum values

57© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Vector Reduction with Branch Divergence

58

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Partial Sum elements

steps

Thread 0 Thread 4Thread 1 Thread 2 Thread 3 Thread 5

Dat
a

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Some Observations

• In each iteration, two control flow paths will be sequentially
traversed for each warp
– Threads that perform addition and threads that do not

– Threads that do not perform addition still consume execution
resources

• No more than half of threads will be executing after the
first step
– All odd index threads are disabled after first step

– After the 5th step, entire warps in each block will fail the if test, poor
resource utilization but no divergence.

• This can go on for a while, up to 5 more steps (1024/32=16= 25),
where each active warp only has one productive thread until all warps
in a block retire

59© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Thread Index Usage Matters

• In some algorithms, one can shift the index

usage to improve the divergence behavior

– Commutative and associative operators

• Reduction satisfies this criterion

60© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Better Strategy

• Always compact the partial sums into the

first locations in the partialSum[] array

• Keep the active threads consecutive

61© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Thread 0

An Example of 16 threads

0 1 2 3 … 13 1514 181716 19

0+16 15+31

Thread 1 Thread 2 Thread 14 Thread 15

62© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Better Reduction Kernel

for (unsigned int stride = blockDim.x/2;

stride >= 1; stride >>= 1)

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}

63© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Quick Analysis

• For a 1024 thread block

– No divergence in the first 5 steps

– 1024, 512, 256, 128, 64, 32 consecutive

threads are active in each step

– The final 5 steps will still have divergence

64© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Parallel Algorithm Overhead
__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;

unsigned int start = 2*blockIdx.x*blockDim.x;

partialSum[t] = input[start + t];

partialSum[blockDim+t] = input[start+ blockDim.x+t];

for (unsigned int stride = blockDim.x/2;

stride >= 1; stride >>= 1)

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}

65© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Parallel Algorithm Overhead
__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;

unsigned int start = 2*blockIdx.x*blockDim.x;

partialSum[t] = input[start + t];

partialSum[blockDim+t] = input[start+ blockDim.x+t];

for (unsigned int stride = blockDim.x/2;

stride >= 1; stride >>= 1)

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}

66© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Parallel Execution Overhead

• Although the number of “operations” is N,
each operation involves much more
complex address calculation and
intermediate result manipulation

• If the parallel code is executed on a single-
thread hardware, it would be significantly
slower than the code based on the original
sequential algorithm

67© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Parallel Prefix Sum (Scan)

68© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Objectives

• Prefix Sum (Scan) algorithms

– Frequently used for parallel work assignment
and resource allocation

– A key primitive in many parallel algorithms to
convert serial computation into parallel
computation

– Based on reduction tree and reverse reduction
tree

• To learn the concept of double buffering

69© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

(Inclusive) Prefix-Sum (Scan)

Definition

Definition: The all-prefix-sums operation takes a binary

associative operator ⊕, and an array of n elements

[x0, x1, …, xn-1],

and returns the array

[x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕ … ⊕ xn-1)].

Example: If ⊕ is addition, then the all-prefix-sums operation

on the array [3 1 7 0 4 1 6 3],

would return [3 4 11 11 15 16 22 25].

70© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

An Inclusive Scan Application

Example
• Assume that we have a 100-inch bread to feed 10

people

• We know how much each person wants in inches
– [3 5 2 7 28 4 3 0 8 1]

• How do we cut the bread quickly?

• How much will be left

• Method 1: cut the sections sequentially: 3 inches
first, 5 inches second, 2 inches third, etc.

• Method 2: calculate Prefix scan
– [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)

71© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Typical Applications of Scan

• Assigning camp slots

• Assigning farmer market space

• Allocating memory to parallel threads

• Allocating memory buffer to communication channels

• Useful for many parallel algorithms:

72

• radix sort

• quicksort

• String comparison

• Lexical analysis

• Stream compaction

• Polynomial evaluation

• Solving recurrences

• Tree operations

• Histograms

• Etc.

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

An Inclusive Sequential Prefix-Sum

Given a sequence [x0, x1, x2, ...]

Calculate output [y0, y1, y2, ...]

Such that y0 = x0

y1 = x0 + x1

y2 = x0 + x1+ x2

…

Using a recursive definition

yi = yi − 1 + xi

73© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Work Efficient C Implementation

y[0] = x[0];

for (i = 1; i < Max_i; i++)

y[i] = y [i-1] + x[i];

Computationally efficient:

N additions needed for N elements - O(N)

74© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Naïve Inclusive Parallel Scan

• Assign one thread to calculate each y element

• Have every thread to add up all x elements

needed for the y element

y0 = x0

y1 = x0 + x1

y2 = x0 + x1+ x2

“Parallel programming is easy as long as you do

not care about performance.”

75© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Parallel Inclusive Scan using

Reduction Trees

• Calculate each output element as the

reduction of all previous elements

– Some reduction partial sums will be shared

among the calculation of output elements

– Based on hardware aided design by Peter

Kogge and Harold Stone at IBM in the 1970s –

Kogge-Stone Trees

76© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Slightly Better Parallel Inclusive

Scan Algorithm

77

1. Load input from

global memory into

shared memory

array T

Each thread loads one value from the input

(global memory) array into shared memory array T.

T 3 1 7 0 4 1 6 3

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Kogge-Stone Parallel Scan Algorithm

78

1. (previous slide)

2. Iterate log(n)

times, stride from 1 to

ceil(n/2.0). Threads

stride to n-1 active:

add pairs of elements

that are stride

elements apart.

• Active threads: stride to n-1 (n-stride threads)

• Thread j adds elements j and j-stride from T and writes result into

shared memory buffer T

• Each iteration requires two syncthreads

• syncthreads(); // make sure that input is in place

• float temp = T[j] + T[j - stride];
Iteration #1

Stride = 1

T 3 4 8 7 4 5 7 9

Stride = 1

T 3 1 7 0 4 1 6 3

Thread 5

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

79

A Kogge-Stone Parallel Scan Algorithm

• Active threads: stride to n-1 (n-stride threads)

• Thread j adds elements j and j-stride from T and writes result into

shared memory buffer T

• Each iteration requires two syncthreads

• syncthreads(); // make sure that input is in place

• float temp = T[j] + T[j - stride];

• syncthreads(); // make sure that previous output has been

consumed

• T[j] = temp;

Iteration #1

Stride = 1

T 3 4 8 7 4 5 7 9

Stride = 1

T 3 1 7 0 4 1 6 3

80

A Kogge-Stone Parallel Scan Algorithm

T 3 4 8 7 4 5 7 9

T 3 4 11 11 12 12 11 14

Stride = 1

Stride = 2

1. …

2. Iterate log(n)

times, stride from 1 to

ceil(n/2.0). Threads

stride to n-1 active:

add pairs of elements

that are stride

elements apart.

Iteration #2

Stride = 2

T 3 1 7 0 4 1 6 3

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

81

A Kogge-Stone Parallel Scan Algorithm

T 3 4 11 11 15 16 22 25

1. Load input from

global memory to

shared memory.

2. Iterate log(n)

times, stride from 1 to

ceil(n/2.0). Threads

stride to n-1 active:

add pairs of elements

that are stride

elements apart.

3. Write output from

shared memory to

device memory

Iteration #3

Stride = 4

T 3 4 8 7 4 5 7 9

T 3 4 11 11 12 12 11 14

Stride = 1

Stride = 2

T 3 1 7 0 4 1 6 3

Stride = 4

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Double Buffering

• Use two copies of data T0 and T1

• Start by using T0 as input and T1 as output

• Switch input/output roles after each iteration
– Iteration 0: T0 as input and T1 as output

– Iteration 1: T1 as input and T0 and output

– Iteration 2: T0 as input and T1 as output

• This is typically implemented with two pointers,
source and destination that swap their contents
from one iteration to the next

• This eliminates the need for the second
syncthreads

82© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Double-Buffered

Kogge-Stone Parallel Scan Algorithm

83

1. (previous slide)

2. Iterate log(n)

times, stride from 1 to

ceil(n/2.0). Threads

stride to n-1 active:

add pairs of elements

that are stride

elements apart.

• Active threads: stride to n-1 (n-stride threads)

• Thread j adds elements j and j-stride from T and writes result into

shared memory buffer T

• Each iteration requires only one syncthreads

• syncthreads(); // make sure that input is in place

• float destination[j] = source[j] + source[j - stride];

• temp = destination; destination = source; source = temp;
Iteration #1

Stride = 1

T1 3 4 8 7 4 5 7 9

Stride = 1

T0 3 1 7 0 4 1 6 3

Thread 5

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Work Efficiency Analysis

• A Kogge-Stone scan kernel executes log(n) parallel iterations

– The steps do (n-1), (n-2), (n-4),..(n- n/2) add operations each

– Total # of add operations: n * log(n) - (n-1) → O(n*log(n)) work

• This scan algorithm is not very work efficient

– Sequential scan algorithm does n adds

– A factor of log(n) hurts: 20x for 1,000,000 elements!

– Typically used within each block, where n ≤ 1,024

• A parallel algorithm can be slow when execution resources

are saturated due to low work efficiency

To be continued…
84© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

