
CS 677: Parallel Programming for
Many-core Processors

Lecture 2

Instructor: Philippos Mordohai

1

Overview

• Simple encryption example
• Blocks, threads and warps
• CUDA memory types
• Matrix Multiplication using Shared Memory
• Thread Execution and Divergence
• Atomics

2

Encryption Example
include <iostream>

using namespace std;

__global__ void cuda_encrypt(char* m, int m_len, int shift)

{

for (int i = 0; i < m_len; i++)

m[i] = (((m[i] -'a') + shift) % 26) + 'a';

}

3
Courtesy of Werner Backes

int main()

{

char message[255];

int message_len, shift;

char* dev_message;

cin >> message;

cin >> shift;

cout << "plaintext: " << message << endl;

message_len = strlen(message);

cudaMalloc(&dev_message, message_len+1);

cudaMemcpy(dev_message, message, message_len+1,
cudaMemcpyHostToDevice);

cuda_encrypt<<<1,1>>>(dev_message, message_len, shift);

cudaMemcpy(message, dev_message, message_len+1,
cudaMemcpyDeviceToHost);

cout << "ciphertext: " << message << endl;

return 0;

}
4

Compilation and Execution
• Compile the example program hello world.cu using

the CUDA compiler nvcc.
– nvcc -I. hello_world.cu -o hello_world
– The option -I is used to add an include path
– nvcc --help outputs all available compiler options

• Output:
– Execute ./hello_world

helloworld
3
plaintext: helloworld
ciphertext: khoorzruog

5

Parallel Encryption Example
include <iostream>

using namespace std;

__global__ void cuda_encrypt(char* m, int m_len, int shift)

{

int tid = blockIdx.x * blockDim.x + threadIdx.x;

if (tid < m_len)

m[tid] = (((m[tid] -'a') + shift) % 26) + 'a';

}

6

int main()

{

char message[255];

int message_len, shift;

char* dev_message;

cin >> message;

cin >> shift;

cout << "plaintext: " << message << endl;

message_len = strlen(message);

cudaMalloc(&dev_message, message_len+1);

cudaMemcpy(dev_message, message, message_len+1,
cudaMemcpyHostToDevice);

cuda_encrypt<<<(message_len/32)+1,32>>>(dev_message, message_len,
shift);

cudaMemcpy(message, dev_message, message_len+1,
cudaMemcpyDeviceToHost);

cout << "ciphertext: " << message << endl;

return 0;

}
7

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign 8

Block IDs and Thread IDs

• Each thread uses IDs to
decide what data to work on
– Block ID: 1D, 2D or 3D
– Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when
processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign 9

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

ty 2
1
0

TILE_WIDTH-1

by

2

1

0

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Matrix Multiplication Using
Multiple Blocks
• Break-up Pd into tiles
• Each block calculates one

tile
– Each thread calculates one

element
– Block size equal to tile size

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

P1,0P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2P1,2

P3,1P2,1

P0,3 P2,3 P3,3P1,3

Block(0,0) Block(1,0)

Block(1,1)Block(0,1)

TILE_WIDTH = 2

A Small Example

10

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

Pd1,0

A Small Example: Multiplication

Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

11

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

Revised Matrix Multiplication
Kernel using Multiple Blocks

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column index of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}

12

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

// Setup the execution configuration
dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH);
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

// Launch the device computation threads
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Revised Step 5: Kernel Invocation
(Host-side Code)

13

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

14

CUDA Thread Block
• All threads in a block execute the same

kernel program (SPMD)
• Programmer declares block:

– Block size 1 to 512 concurrent threads
– Block shape 1D, 2D, or 3D
– Block dimensions in threads

• Threads have thread id numbers within block
– Thread program uses thread id to select work

and address shared data

• Threads in the same block share data and
synchronize while doing their share of the
work

• Threads in different blocks cannot cooperate
– Each block can execute in any order relative

to other blocs!

CUDA Thread Block

Thread Id #:
0 1 2 3 … m

Thread program

Courtesy: John Nickolls,
NVIDIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

15

Transparent Scalability
• Hardware is free to assign blocks to any

processor at any time
– A kernel scales across any number of

parallel processors
Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to other blocks.

time

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

16

G80 Example: Executing Thread Blocks

• Threads are assigned to Streaming
Multiprocessors in block granularity
– Up to 8 blocks to each SM as

resource allows
– SM in G80 can take up to 768 threads

• Could be 256 (threads/block) * 3
blocks

• Or 128 (threads/block) * 6 blocks, etc.

• Threads run concurrently
– SM maintains thread/block id #s
– SM manages/schedules thread

execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

G80 Example: Thread Scheduling

• Each Block is executed as
32-thread Warps
– An implementation decision,

not part of the CUDA
programming model

– Warps are scheduling units
in SM

• If 3 blocks are assigned to an
SM and each block has 256
threads, how many Warps are
there in an SM?
– Each Block is divided into

256/32 = 8 Warps
– There are 8 * 3 = 24 Warps

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1
Streaming Multiprocessor

Shared Memory

…
t0 t1 t2 … t31

…Block 1 Warps

17

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

18

G80 Example: Thread Scheduling (Cont.)

• SM implements zero-overhead warp scheduling
– Warps whose next instruction has its operands ready

for consumption are eligible for execution
– Eligible Warps are selected for execution on a

prioritized scheduling policy
– All threads in a warp execute the same instruction

when selected

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

G80 Block Granularity Considerations

• For Matrix Multiplication using multiple blocks, should I
use 8X8, 16X16 or 32X32 blocks?

– For 8X8, we have 64 threads per Block. Since each SM can take
up to 768 threads, there are 12 Blocks. However, each SM can
only take up to 8 Blocks, only 512 threads will go into each SM!

– For 16X16, we have 256 threads per Block. Since each SM can
take up to 768 threads, it can take up to 3 Blocks and achieve full
capacity unless other resource considerations overrule.

– For 32X32, we have 1024 threads per Block. Not even one can fit
into an SM!

19

Technical Specifications per Compute Capability

20Source: Wikipedia

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

21

More Details of API Features

21

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

22

Application Programming Interface

• The API is an extension to the C programming
language

• It consists of:
– Language extensions

• To target portions of the code for execution on the device
– A runtime library split into:

• A common component providing built-in vector types and a
subset of the C runtime library in both host and device
code

• A host component to control and access one or more
devices from the host

• A device component providing device-specific functions

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

23

Language Extensions:
Built-in Variables

• dim3 gridDim;
– Dimensions of the grid in blocks

• dim3 blockDim;
– Dimensions of the block in threads

• dim3 blockIdx;
– Block index within the grid

• dim3 threadIdx;
– Thread index within the block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

24

Common Runtime Component:
Mathematical Functions

• pow, sqrt, cbrt, hypot
• exp, exp2, expm1
• log, log2, log10, log1p
• sin, cos, tan, asin, acos, atan, atan2
• sinh, cosh, tanh, asinh, acosh, atanh
• ceil, floor, trunc, round
• Etc.

– When executed on the host, a given function
uses the C runtime implementation if
available

– These functions are only supported for
scalar types, not vector types

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

25

Device Runtime Component:
Mathematical Functions

• Some mathematical functions (e.g.
sin(x)) have a less accurate, but faster
device-only version (e.g. __sin(x))
– __pow
– __log, __log2, __log10
– __exp
– __sin, __cos, __tan

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

26

Host Runtime Component
• Provides functions to deal with:

– Device management (including multi-device systems)
– Memory management
– Error handling

• Initializes the first time a runtime function is called

• A host thread can invoke device code on only one
device
– Multiple host threads required to run on multiple

devices

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

27

Device Runtime Component:
Synchronization Function

• void __syncthreads();

• Synchronizes all threads in a block
• Once all threads have reached this point,

execution resumes normally
• Used to avoid RAW / WAR / WAW hazards

when accessing shared or global memory
• Allowed in conditional constructs only if the

conditional is uniform across the entire
thread block

CUDA Memories

28

Hardware Implementation of CUDA
Memories

• Each thread can:
– Read/write per-thread

registers
– Read/write per-thread

local memory
– Read/write per-block

shared memory
– Read/write per-grid

global memory
– Read/only per-grid

constant memory

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

29

CUDA Variable Type Qualifiers

• “automatic” scalar variables without
qualifier reside in a register
– compiler will spill to thread local memory

• “automatic” array variables without
qualifier reside in thread local memory

Variable declaration Memory Scope Lifetime
int var; register thread thread
int array_var[10]; local thread thread

__shared__ int shared_var; shared block block
__device__ int global_var; global grid application
__constant__ int constant_var; constant grid application

30

CUDA Variable Type Performance

• scalar variables reside in fast, on-chip registers
• shared variables reside in fast, on-chip memories
• thread-local arrays & global variables reside in

uncached off-chip memory
– Cache is now available, but there is still a significant drop

off in speed
• constant variables reside in cached off-chip memory

Variable declaration Memory Penalty
int var; register 1x
int array_var[10]; local 100x

__shared__ int shared_var; shared 1x
__device__ int global_var; global 100x
__constant__ int constant_var; constant 1x

31

CUDA Variable Type Scale

• 100Ks per-thread variables, R/W by 1 thread
• 100s shared variables, each R/W by 100s of

threads
• 1 global variable is R/W by 100Ks threads
• 1 constant variable is readable by 100Ks

threads

Variable declaration Instances Visibility
int var; 100,000s 1
int array_var[10]; 100,000s 1

__shared__ int shared_var; 100s 100s
__device__ int global_var; 1 100,000s
__constant__ int constant_var; 1 100,000s

32

Where to declare variables?

Can host
access it?

Outside of
any function

In the
kernel

Yes No

__constant__ int constant_var;

__device__ int global_var;

int var;

int array_var[10];

__shared__ int shared_var;
33

Example – thread-local variables
// Ten Nearest Neighbors application
__global__ void ten_nn(float2 *result, float2 *ps, float2 *qs,

size_t num_qs)
{

// p goes in a register
float2 p = ps[threadIdx.x];

// per-thread heap goes in off-chip memory
float2 heap[10];

// read through num_qs points, maintaining
// the nearest 10 qs to p in the heap
...
// write out the contents of heap to result
...

}

34

Example – shared variables
// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] – input[i-1]
__global__ void adj_diff_naive(int *result, int *input)
{

// compute this thread’s global index
unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

if(i > 0)
{

int x_i = input[i];
int x_i_minus_one = input[i-1];

result[i] = x_i – x_i_minus_one;
}

}

35

Example – shared variables
// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] – input[i-1]
__global__ void adj_diff_naive(int *result, int *input)
{

// compute this thread’s global index
unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

if(i > 0)
{

// what are the bandwidth requirements of this kernel?
int x_i = input[i];
int x_i_minus_one = input[i-1];

result[i] = x_i – x_i_minus_one;
}

}

Two loads

36

Example – shared variables
// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] – input[i-1]
__global__ void adj_diff_naive(int *result, int *input)
{

// compute this thread’s global index
unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

if(i > 0)
{

// How many times does this kernel load input[i]?
int x_i = input[i];
int x_i_minus_one = input[i-1];

result[i] = x_i – x_i_minus_one;
}

}

// once by thread i

// again by thread i+1

37

Example – shared variables
// optimized version of adjacent difference
__global__ void adj_diff(int *result, int *input)
{
// shorthand for threadIdx.x
int tx = threadIdx.x;
// allocate a __shared__ array, one element per thread
__shared__ int s_data[BLOCK_SIZE];
// each thread reads one element to s_data
unsigned int i = blockDim.x * blockIdx.x + tx;
s_data[tx] = input[i];

// avoid race condition: ensure all loads
// complete before continuing
__syncthreads();
...

38

Example – shared variables

...

if(tx > 0)

result[i] = s_data[tx] – s_data[tx–1];

else if(i > 0)

{

// handle thread block boundary

result[i] = s_data[tx] – input[i-1];

}

}

39

Example – shared variables
// when the size of the array isn’t known at compile time...

__global__ void adj_diff(int *result, int *input)

{

// use extern to indicate a __shared__ array will be

// allocated dynamically at kernel launch time

extern __shared__ int s_data[];

...

}

// pass the size of the per-block array, in bytes, as the third

// argument to the triple chevrons

adj_diff<<<num_blocks, block_size, block_size * sizeof(int)>>>(r,i);

40

• Only one extern shared array can be declared
• See CUDA programming guide for work-around

About Pointers – Outdated but Useful
• Yes, you can use them!
• You can point to any memory space:
__device__ int my_global_variable;
__constant__ int my_constant_variable = 13;

__global__ void foo(void)
{
__shared__ int my_shared_variable;

int *ptr_to_global = &my_global_variable;
const int *ptr_to_constant = &my_constant_variable;
int *ptr_to_shared = &my_shared_variable;
...
*ptr_to_global = *ptr_to_shared;

}

41

About Pointers – Outdated but Useful

• Pointers aren’t typed on memory space
– __shared__ int *ptr;

– Where does ptr point?
– ptr is a __shared__ pointer variable, not a

pointer to a __shared__ variable!

42

Don’t confuse the compiler!
__device__ int my_global_variable;

__global__ void foo(int *input)

{

__shared__ int my_shared_variable;

int *ptr = 0;

if(input[threadIdx.x] % 2)

ptr = &my_global_variable;

else

ptr = &my_shared_variable;

// where does ptr point?

}
43

Advice
• Prefer dereferencing pointers in simple,

regular access patterns
• Avoid propagating pointers
• Avoid pointers to pointers

– The GPU would rather not pointer chase
– Linked lists will not perform well

• Pay attention to compiler warning messages
– Warning: Cannot tell what pointer
points to, assuming global memory
space

– Crash waiting to happen

44

Unified Virtual Address Space

• The location of any memory on the host or on any
of the devices which use the unified address
space, can be determined from the value of the
pointer using cudaPointerGetAttributes()

• When copying, the cudaMemcpyKind parameter
of cudaMemcpy*() can be set to
cudaMemcpyDefault to determine locations
from the pointers. This also works for host pointers
not allocated through CUDA, as long as the
current device uses unified addressing.

45

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

46

Matrix Multiplication using
Shared Memory

46

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

47

Review: Matrix Multiplication
Kernel using Multiple Blocks

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

48

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

How about performance on GPU?
• All threads access global memory

for their input matrix elements
– Two memory accesses (8 bytes)

per floating point multiply-add
– 4B/s of memory

bandwidth/FLOPS
– 4*346.5 = 1386 GB/s required to

achieve peak FLOP rating
– 86.4 GB/s limits the code at 21.6

GFLOPS
• The actual code runs at about 15

GFLOPS
• Need to drastically cut down

memory accesses to get closer to
the peak 346.5 GFLOPS (on G80 –
ignore specific numbers)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

Idea: Use Shared Memory to reuse global
memory data

• Each input element is
read by Width threads

• Load each element into
Shared Memory and
have several threads
use the local version to
reduce the memory
bandwidth
– Tiled algorithms

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

Tiled Multiply

• Break up the execution of
the kernel into phases so
that the data accesses in
each phase is focused on
one subset (tile) of Md and
Nd

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H
T

IL
E

_W
ID

T
H

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

51

Pd1,0

A Small Example

Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

52

Every Md and Nd Element is used exactly
twice in generating a 2X2 tile of P

P0,0

thread0,0

P1,0

thread1,0

P0,1

thread0,1

P1,1

thread1,1

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3

Access
order

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

53

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

Breaking Md and Nd into Tiles
• Break up the inner

product loop of each
thread into phases

• At the beginning of each
phase, load the Md and
Nd elements that
everyone needs during
the phase into shared
memory

• Everyone accesses the
Md and Nd elements from
shared memory during
the phase

Work for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

SM

SM

54
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ECE498al, 2007-2012

Work for Block (0,0)

SM

SM

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ECE498al, 2007-2012 55

Work for Block (0,0)

SM

SM

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ECE498al, 2007-2012 56

N1,0

Work for Block (0,0)

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,1

SM

57© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ECE498al, 2007-2012

Work for Block (0,0)

SM

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

SM

58© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ECE498al, 2007-2012

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

59

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1. __shared __float Mds[TILE_WIDTH][TILE_WIDTH];
2. __shared __float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of Md and Nd tiles into shared memory
9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10. Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];
11. __syncthreads();

12. for (int k = 0; k < TILE_WIDTH; ++k)
13. Pvalue += Mds[ty][k] * Nds[k][tx];
14. __syncthreads();

}
15. Pd[Row*Width + Col] = Pvalue;
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

CUDA Code – Kernel Execution
Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width / TILE_WIDTH,

Width / TILE_WIDTH);

60

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

First-order Size Considerations

• Each thread block should have many threads
– TILE_WIDTH of 16 gives 16*16 = 256 threads

• There should be many thread blocks
– A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks
– TILE_WIDTH of 16 gives each SM 3 blocks, 768 threads (full

capacity)

• Each thread block performs 2*256 = 512 float loads from
global memory for 256 * (2*16) = 8,192 mul/add
operations (lines 9-14)
– Memory bandwidth no longer a limiting factor

61

Tiled Multiply

• Each block computes one
square sub-matrix Pdsub of
size TILE_WIDTH

• Each thread computes one
element of Pdsub

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H
T

IL
E

_W
ID

T
H

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

m

kbx

by

k

m

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

63

Shared Memory and Threading
• Each SM in G80 has 16KB shared memory

– SM size is implementation-dependent!
– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of

shared memory.
– The SM can potentially have up to 8 Thread Blocks actively executing

• This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per
block)

• The threading model limits the number of thread blocks to 3 so shared
memory is not the limiting factor here

– The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared
memory usage per thread block, allowing only up to two thread blocks
active at the same time

• Using 16x16 tiling, we reduce the accesses to the global memory by
a factor of 16
– The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 GFLOPS

• Each SM in Fermi has 16KB or 48KB shared memory
– Configurable vs L1 cache, total 64KB

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

64

Tiling Size Effects
G

F
LO

P
S

0

10

20

30

40

50

60

70

80

90

100

til
ed

on
ly

til
ed

 &
un

ro
lle

d

til
ed

on
ly

til
ed

 &
un

ro
lle

d

til
ed

on
ly

til
ed

 &
un

ro
lle

d

til
ed

on
ly

til
ed

 &
un

ro
lle

d

not tiled 4x4 tiles 8x8 tiles 12x12 tiles 16x16 tiles

Memory Resources as Limit to
Parallelism

• Effective use of different memory resources
reduces the number of accesses to global memory

• These resources are finite!
• The more memory locations each thread requires
 the fewer threads an SM can accommodate
 what if each thread required 22 registers and
each block had 256 threads?

Resource Per GT200 SM Full Occupancy on
GT200

Registers 16384 <= 16384 / 768 threads
= 21 per thread

__shared__ Memory 16KB <= 16KB / 8 blocks
= 2KB per block

65

Final Thoughts on Memory

• Effective use of CUDA memory hierarchy decreases
bandwidth consumption to increase throughput

• Use __shared__ memory to eliminate redundant
loads from global memory
– Use __syncthreads barriers to protect __shared__

data
– Use atomics if access patterns are sparse or unpredictable

• Optimization comes with a development cost
• Memory resources ultimately limit parallelism

66

Thread Execution and
Divergence

67

Scheduling Blocks onto SMs

• HW Schedules thread blocks onto available SMs
• No guarantee of ordering among thread blocks
• HW will schedule thread blocks as soon as a previous thread block

finishes
68

Mapping of Thread Blocks

• Each thread block is mapped to one or more warps
• The hardware schedules each warp independently

Thread Block N (128
threads)

TB N W1
TB N W2
TB N W3
TB N W4

69

70

Thread Scheduling Example
• SM implements zero-overhead warp scheduling

– At any time, only one of the warps is executed by SM
– Warps whose next instruction has its inputs ready for

consumption are eligible for execution
– Eligible warps are selected for execution on a

prioritized scheduling policy
– All threads in a warp execute the same instruction

when selected

Control Flow Divergence
• What happens if you have the following code?

if(foo(threadIdx.x))
{
do_A();

}
else
{
do_B();

}

71

Control Flow Divergence

From Fung et al. MICRO ‘07

Branch

Path A

Path B

Branch

Path A

Path B

72

Control Flow Divergence
• Nested branches

if(foo(threadIdx.x))
{
if(bar(threadIdx.x))
do_A();

else
do_B();

}
else
do_C();

73

Control Flow Divergence

BranchBranch

Path A

Path C

Branch

Path B

74

Control Flow Divergence
• You don’t have to worry about divergence for

correctness (*)
• You might have to think about it for

performance
– Depends on your branch conditions

* Mostly true, except corner cases (for example
intra-warp locks)

75

Control Flow Divergence
• Performance drops off with the degree of divergence

switch(threadIdx.x % N)
{
case 0:
...

case 1:
...

}

76

Divergence

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18

Pe
rf

or
m

an
ce

Divergence
77

Atomics

78

The Problem

• How do you do global communication?
• Finish a grid and start a new one

79

Global Communication
• Finish a kernel and start a new one
• All writes from all threads complete before

a kernel finishes
step1<<<grid1,blk1>>>(...);
// The system ensures that all
// writes from step1 complete.
step2<<<grid2,blk2>>>(...);

80

Global Communication

• Would need to decompose kernels into
before and after parts

81

Race Conditions

• Or, write to a predefined memory location
– Race condition! Updates can be lost

82

Race Conditions
threadId:0 threadId:1917

// vector[0] was equal to 0
vector[0] += 5; vector[0] += 1;
... ...
a = vector[0]; a = vector[0];

• What is the value of a in thread 0?
• What is the value of a in thread 1917?

83

Race Conditions

• Thread 0 could have finished execution
before 1917 started

• Or the other way around
• Or both are executing at the same time

• Answer: not defined by the programming
model, can be arbitrary

• CUDA provides atomic operations to deal
with this problem

84

Atomics
• An atomic operation guarantees that only a

single thread has access to a piece of
memory while an operation completes

• The name atomic comes from the fact that it
is uninterruptable

• No dropped data, but ordering is still arbitrary
• Different types of atomic instructions
• atomic{Add, Sub, Exch, Min, Max,
Inc, Dec, CAS, And, Or, Xor}

• More types in newer architectures

85

Compare and Swap
int compare_and_swap(int* register,

int oldval, int newval)
{

int old_reg_val = *register;
if(old_reg_val == oldval)

*register = newval;

return old_reg_val;
}

• Most general type of atomic

• Can emulate all others with CAS

86

Example: Histogram
// Determine frequency of colors in a picture
// colors have already been converted into ints
// Each thread looks at one pixel and increments
// a counter atomically

__global__ void histogram(int* color,
int* buckets)

{
int i = threadIdx.x

+ blockDim.x * blockIdx.x;
int c = colors[i];
atomicAdd(&buckets[c], 1);

}

87

Example: Workqueue
// For algorithms where the amount of work per item
// is highly non-uniform, it often makes sense
// to continuously grab work from a queue

__global__
void workq(int* work_q, int* q_counter,

int* output, int queue_max)
{

int i = threadIdx.x + blockDim.x * blockIdx.x;
int q_index = atomicInc(q_counter, queue_max);
int result = do_work(work_q[q_index]);
output[i] = result;

}

88

Atomics

• Atomics are slower than normal load/store
• You can have the whole machine queuing

on a single location in memory

89

Example: Global Min/Max (Naive)
// If you require the maximum across all threads
// in a grid, you could do it with a single global
// maximum value, but it will be VERY slow

__global__
void global_max(int* values, int* gl_max)
{

int i = threadIdx.x
+ blockDim.x * blockIdx.x;

int val = values[i];
atomicMax(gl_max,val);

}

90

Example: Global Min/Max (Better)
// introduce intermediate maximum results, so that
// most threads do not try to update the global max
__global__
void global_max(int* values, int* max,

int *regional_maxes,
int num_regions)

{
// i and val as before …
int region = i % num_regions;
if(atomicMax(®_max[region],val) < val)
{

atomicMax(max,val);
}

}

91

Global Min/Max

• Single value causes serial bottleneck
• Create hierarchy of values for more

parallelism
• Performance will still be slow, so use

judiciously

92

Atomics - Summary
• Can’t use normal load/store for inter-thread

communication because of race conditions

• Use atomic instructions for sparse and/or
unpredictable global communication

• Decompose data (very limited use of single
global sum/max/min/etc.) for more parallelism

93

	CS 677: Parallel Programming for Many-core Processors �Lecture 2
	Overview
	Encryption Example
	Slide Number 4
	Compilation and Execution
	Parallel Encryption Example
	Slide Number 7
	Block IDs and Thread IDs
	Matrix Multiplication Using Multiple Blocks
	A Small Example
	A Small Example: Multiplication
	Revised Matrix Multiplication Kernel using Multiple Blocks
	Revised Step 5: Kernel Invocation�(Host-side Code)
	CUDA Thread Block
	Transparent Scalability
	G80 Example: Executing Thread Blocks
	G80 Example: Thread Scheduling
	G80 Example: Thread Scheduling (Cont.)
	G80 Block Granularity Considerations
	Technical Specifications per Compute Capability
	More Details of API Features
	Application Programming Interface
	Language Extensions:�Built-in Variables
	Common Runtime Component:�Mathematical Functions
	Device Runtime Component:�Mathematical Functions
	Host Runtime Component
	Device Runtime Component:�Synchronization Function
	CUDA Memories
	Hardware Implementation of CUDA Memories
	CUDA Variable Type Qualifiers
	CUDA Variable Type Performance
	CUDA Variable Type Scale
	Where to declare variables?
	Example – thread-local variables
	Example – shared variables
	Example – shared variables
	Example – shared variables
	Example – shared variables
	Example – shared variables
	Example – shared variables
	About Pointers – Outdated but Useful
	About Pointers – Outdated but Useful
	Don’t confuse the compiler!
	Advice
	Unified Virtual Address Space
	Matrix Multiplication using �Shared Memory
	Review: Matrix Multiplication Kernel using Multiple Blocks
	How about performance on GPU?
	Idea: Use Shared Memory to reuse global memory data
	Tiled Multiply
	A Small Example
	Every Md and Nd Element is used exactly twice in generating a 2X2 tile of P
	Breaking Md and Nd into Tiles
	Work for Block (0,0)
	Work for Block (0,0)
	Work for Block (0,0)
	Work for Block (0,0)
	Work for Block (0,0)
	Tiled Matrix Multiplication Kernel
	CUDA Code – Kernel Execution Configuration
	First-order Size Considerations
	Tiled Multiply
	Shared Memory and Threading
	Tiling Size Effects
	Memory Resources as Limit to Parallelism
	Final Thoughts on Memory
	Thread Execution and Divergence
	Scheduling Blocks onto SMs
	Mapping of Thread Blocks
	Thread Scheduling Example
	Control Flow Divergence
	Control Flow Divergence
	Control Flow Divergence
	Control Flow Divergence
	Control Flow Divergence
	Control Flow Divergence
	Divergence
	Atomics
	The Problem
	Global Communication
	Global Communication
	Race Conditions
	Race Conditions
	Race Conditions
	Atomics
	Compare and Swap
	Example: Histogram
	Example: Workqueue
	Atomics
	Example: Global Min/Max (Naive)
	Example: Global Min/Max (Better)
	Global Min/Max
	Atomics - Summary

