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Outline

• Computational Thinking

– Chapter 17 in K&H, 3rd edition
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Objective

• To provide you with a framework based on 
the techniques and best practices used by 
experienced parallel programmers for

– Thinking about the problem of parallel 
programming

– Addressing performance and functionality 
issues in your parallel program

– Using or building useful tools and 
environments

– Understanding case studies and projects
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Fundamentals of Parallel Computing 

• Parallel computing requires that

– The problem can be decomposed into sub-problems 

that can be safely solved at the same time

– The programmer structures the code and data to 

solve these sub-problems concurrently

• The goals of parallel computing  are

– To solve problems in less time, and/or

– To solve bigger problems, and/or

– To achieve better solutions

The problems must be large enough to justify parallel 

computing and to exhibit exploitable concurrency.
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Key Parallel Programming Steps

1) To find the concurrency in the problem

2) To structure the algorithm so that concurrency 

can be exploited

3) To implement the algorithm in a suitable 

programming environment

4) To execute and tune the performance of the 

code on a parallel system

Unfortunately, these have not been separated into 

levels of abstractions that can be dealt with 

independently.



Amdahl’s Law

• “The speedup of a program using multiple 
processors in parallel computing is limited by 
the time needed for the sequential fraction of 
the program.”

• Example
– 95% of original execution time can be sped up by 

100x on GPU

– Speed up for entire application:
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Challenges of Parallel Programming

• Finding and exploiting concurrency often requires looking 
at the problem from a non-obvious angle
– Computational thinking

• Dependences need to be identified and managed
– The order of task execution may change the answers

• Obvious: One step feeds result to the next steps

• Subtle: numeric accuracy may be affected by ordering steps that are 
logically parallel with each other

• Performance can be drastically reduced by many factors
– Overhead of parallel processing

– Load imbalance among processor elements

– Inefficient data sharing patterns

– Saturation of critical resources such as memory bandwidth
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Shared Memory vs. Message Passing

• We have focused on shared memory parallel 
programming
– This is what CUDA is based on

– Future massively parallel microprocessors are 
expected to support shared memory at the chip 
level

– This is different than global address space (single 
pointer space)

• The programming considerations of message 
passing model is quite different!
– See MPI (Message Passing Interface)
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Finding Concurrency in Problems 

• Identify a decomposition of the problem into sub-
problems that can be solved simultaneously

– A task decomposition that identifies tasks for potential 
concurrent execution

– A data decomposition that identifies data local to each 
task

– A way of grouping tasks and ordering the groups to 
satisfy temporal constraints

– An analysis on the data sharing patterns among the 
concurrent tasks

– A design evaluation that assesses the quality of the 
choices made in all the steps
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Finding Concurrency – The Process

Task Decomposition

Data Decomposition

Data Sharing

Order Tasks

Decomposition Group Tasks

Dependence Analysis

Design Evaluation

This is typically an iterative process.

Opportunities exist for dependence analysis to play earlier 

role in decomposition. 
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Task Decomposition

• Many large problems can be naturally decomposed 

into tasks – CUDA kernels are largely tasks

– The number of tasks used should be adjustable to the 

execution resources available

– Each task must include sufficient work in order to 

compensate for the overhead of managing their parallel 

execution

– Tasks should maximize reuse of sequential program 

code to minimize effort

“In an ideal world, the compiler would find tasks for the 

programmer. Unfortunately, this almost never happens.”

- Mattson, Sanders, Massingill
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Task Decomposition Example -

Square Matrix Multiplication
• P = M × N of WIDTH × WIDTH

– One natural task (sub-
problem) produces one 
element of P

– All tasks can execute in 
parallel in this example.
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Task Decomposition Example –

Molecular Dynamics

• Simulation of motions of a large molecular system

• For each atom, there are natural tasks to calculate

– Vibrational forces

– Rotational forces

– Neighbors that must be considered in non-bonded 
forces

– Non-bonded forces

– Update position and velocity

– Misc physical properties based on motions

• Some of these can go in parallel for an atom

Often there are multiple ways to decompose any given 

problem.
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Task Ordering Example:

Molecular Dynamics

Neighbor List

Vibrational and 

Rotational Forces
Non-bonded Force

Next Time Step

Update atomic positions and velocities

Complex computation 

involving many atoms
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Data Decomposition

• The most compute intensive parts of many 

large problem manipulate a large data structure
• Similar operations are being applied to different parts of the 

data structure, in a mostly independent manner

• This is what CUDA is optimized for

• The data decomposition should lead to 
• Efficient data usage by tasks within the partition

• Few dependencies across the tasks that work on different 

partitions

• Adjustable partitions that can be varied according to the 

hardware characteristics
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Task Grouping

• Sometimes natural tasks of a problem can be 
grouped together to improve efficiency

– Reduced synchronization overhead – all tasks in 
the group can use a barrier to wait for a common 
dependence

– All tasks in the group efficiently share data loaded 
into a common on-chip, shared storage (Shared 
Memory)

– Grouping and merging dependent tasks into one 
task reduces need for synchronization

– CUDA thread blocks are task grouping examples
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Task Grouping Example -

Square Matrix Multiplication
• Tasks calculating a P sub-block

– Extensive input data sharing, 
reduced memory bandwidth 
using Shared Memory

– All synched in execution
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Task Ordering

• Identify the data and resources required by 

a group of tasks before they can be 

executed 

– Find the task group that creates them

– Determine a temporal order that satisfies all 

data constraints
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Data Sharing

• Data sharing can be a double-edged sword

– Excessive data sharing can drastically reduce advantage of parallel 

execution

– Localized sharing can improve memory bandwidth efficiency

• Efficient memory bandwidth usage can be achieved by 

synchronizing the execution of task groups and 

coordinating their usage of memory data

– Efficient use of on-chip, shared storage

• Read-only sharing can usually be done at much higher 

efficiency than read-write sharing, which often requires 

synchronization
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Data Sharing Example –

Matrix Multiplication

• Each task group will finish usage of each sub-

block of N and M before moving on

– N and M sub-blocks loaded into Shared Memory 

for use by all threads of a P sub-block

– Amount of on-chip Shared Memory strictly limits 

the number of threads working on a P sub-block

• Read-only shared data can be more 

efficiently accessed as Constant or Texture 

data
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Data Sharing Example –

Molecular Dynamics

• The atomic coordinates

– Read-only access by the neighbor list, bonded force, 
and non-bonded force task groups

– Read-write access for the position update task group

• The force array

– Read-only access by position update group

– Accumulate access by bonded and non-bonded task 
groups

• The neighbor list

– Read-only access by non-bonded force task groups

– Generated by the neighbor list task group
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Key Parallel Programming Steps

1) To find the concurrency in the problem

2) To structure the algorithm to translate 

concurrency into performance

3) To implement the algorithm in a suitable 

programming environment

4) To execute and tune the performance of 

the code on a parallel system
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Algorithm

• A step by step procedure that is guaranteed to terminate, 

such that each step is precisely stated and can be carried 

out by a computer

– Definiteness – the notion that each step is precisely stated

– Effective computability – each step can be carried out by a computer

– Finiteness – the procedure terminates

• Multiple algorithms can be used to solve the same problem

– Some require fewer steps

– Some exhibit more parallelism

– Some have larger memory footprint than others
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Choosing Algorithm Structure

Start

Organize 

by Task

Organize by 

Data

Organize by 

Data Flow

Linear Recursive Linear Recursive

Task

Parallelism

Divide and

Conquer

Geometric

Decomposition

Recursive

Data

Regular Irregular

Pipeline Event Driven
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Mapping a Divide and Conquer Algorithm

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements 

iterations

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10
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Tiled (Stenciled) Algorithms are 

Important for Geometric Decomposition 

• A framework for memory 
data sharing and reuse by 
increasing data access 
locality.
– Tiled access patterns allow 

small cache/scartchpad
memories to hold on to data 
for re-use.

– For matrix multiplication, a 
16X16 thread block perform 
2*256 = 512 float loads from 
device memory for 256 * 
(2*16) = 8,192 mul/add 
operations. 

• A convenient framework for 
organizing threads (tasks)
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Increased Work per Thread for 

even more locality
• Each thread computes two elements of 

Pdsub

• Reduced loads from global memory (Md) 

to shared memory

• Reduced instruction overhead

– More work done in each iteration
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Double Buffering 

- a frequently used algorithm pattern

• One could double buffer the computation, getting better 

instruction mix within each thread

– This is classic software pipelining in ILP compilers

Loop {

Load current tile to shared memory

syncthreads()

Compute current tile

syncthreads()

}

Load next tile from global memory

Loop {

Deposit current tile to shared memory

syncthreads()

Load next tile from global memory

Compute current tile

syncthreads()

}
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Double Buffering

• Deposit blue tile from 

register into shared memory

• Syncthreads

• Load orange tile into register

• Compute Blue tile

• Deposit orange 

tile into shared 

memory

• ….
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(a) Direct summation

At each grid point, sum the

electrostatic potential from

all charges

(b) Cutoff summation

Electrostatic potential from

nearby charges summed;

spatially sort charges first

(c) Cutoff summation using

direct summation kernel

Spatially sort charges into

bins; adapt direct

summation to process a bin
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Same scalability
among all cutoff
implementations

Scalability and Performance of different algorithms for calculating electrostatic potential map.

Cut-Off Summation Restores Data 

Scalability
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Parallel Programming Coding Styles -

Program and Data Models

Fork/Join

Master/Worker

SPMD

Program Models

Loop Parallelism

Distributed Array

Shared Queue

Shared Data

Data Models

These are not necessarily 

mutually exclusive.
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Program Models
• SPMD (Single Program, Multiple Data)

– All PEs (Processor Elements) execute the same 
program in parallel, but each has its own data

– Each PE uses a unique ID to access its portion of 
data

– Different PEs can follow different paths through 
the same code

– This is essentially the CUDA Grid model (also 
MPI)

– SIMD is a special case - WARP

• Master/Worker (CUDA Streams)
• Loop Parallelism (OpenMP)
• Fork/Join (Posix p-threads)
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Program Models

• SPMD (Single Program, Multiple Data)
• Master/Worker

– A Master thread sets up a pool of worker threads 
and a bag of tasks

– Workers execute concurrently, removing tasks 
until done

• Loop Parallelism
– Loop iterations execute in parallel
– FORTRAN do-all (truly parallel),  do-across (with 

dependence)

• Fork/Join
– Most general, generic way of creation of threads 



OpenMP

• API that supports shared memory multiprocessing 
in C, C++ and Fortran

• A master thread forks a specified number of slave 
threads and the system divides a task among them

int main(int argc, char **argv) {

int a[100000];

#pragma omp parallel for

int i;

for (i = 0; i < N; i++)

a[i] = 2 * i;

return 0;

}

35



Message Passing Interface (MPI)

• Standardized, portable and language-
independent message passing system

• Supports point-to-point and collective 
communication

int array[100];

int root, total_p, *receive_array;

MPI_Comm_size(comm, &total_p);

receive_array=malloc(total_p*100*sizeof(*receive_array));

MPI_Gather(array, 100, MPI_INT, receive_array, 100, 

MPI_INT, root, comm);

36
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Algorithm Structures vs. Program 

Models
Task 

Parallel.

Divide/Con

quer

Geometric 

Decomp.

Recursive 

Data

Pipeline Event-

based

SPMD ☺☺☺

☺

☺☺☺ ☺☺☺

☺

☺☺ ☺☺☺ ☺☺

Loop 

Parallel
☺☺☺

☺

☺☺ ☺☺☺

Master/

Worker
☺☺☺

☺

☺☺ ☺ ☺ ☺ ☺

Fork/

Join

☺☺ ☺☺☺

☺

☺☺ ☺☺☺

☺

☺☺☺

☺

Source: Mattson, et al
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Program Models vs. Architectures

OpenMP MPI CUDA/

OpenCL

SPMD ☺☺☺ ☺☺☺☺ ☺☺☺☺☺

Loop 

Parallel

☺☺☺☺ ☺

Master/

Slave

☺☺ ☺☺☺ ☺☺

Fork/Join ☺☺☺
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More on SPMD
• Dominant coding style of scalable parallel 

computing
– MPI code is mostly developed in SPMD style

– A lot of OpenMP code is also in SPMD (next to 
loop parallelism)

– Particularly suitable for algorithms based on task 
parallelism and geometric decomposition

• Main advantage
– Tasks and their interactions visible in one piece of 

source code, no need to correlated multiple 
sources

SPMD is by far the most commonly used pattern for 

structuring parallel programs. 
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Typical SPMD Program Phases
• Initialize

– Establish localized data structure and communication channels

• Obtain a unique identifier
– Each thread acquires a unique identifier, typically range from 0 to 

N, where N is the number of threads
– Both OpenMP and CUDA have built-in support for this

• Distribute Data
– Decompose global data into chunks and localize them, or
– Share/replicate major data structure using thread ID to associate 

subset of the data to threads

• Run the core computation
– More details in next slide…

• Finalize
– Reconcile global data structure, prepare for the next major 

iteration
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Core Computation Phase

• Thread IDs are used to differentiate 

behavior of threads

– Use thread ID in loop index calculations to 

split loop iterations among threads

– Use thread ID or conditions based on thread 

ID to branch to specific actions

Both can have very different performance results 

and code complexity depending on the way they 

are done.
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A Simple Example

• Assume

– The computation being parallelized has 

1,000,000 iterations.

• Sequential code:

num_steps = 1000000;

for (i=0; i< num_steps, i++) {

…

}
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SPMD Code Version 1
• Assign a chunk of iterations to each thread

– The last thread also finishes up the remaining 

iterations
//num_steps = 1000000;

…

i_start = my_id * (num_steps/num_threads);

i_end = i_start + (num_steps/num_threads);

if (my_id == (num_threads-1))  i_end = num_steps;

for (i = i_start; i < i_end; i++) {

….

}

//Reconciliation of results across threads if necessary
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Problems with Version 1

• The last thread executes more iterations than 
others

• The number of extra iterations is up to the 
total number of threads – 1

– This is not a big problem when the number of 
threads is small

– When there are thousands of threads, this can 
create serious load imbalance problems

• Also, the extra if statement is a typical source 
of “branch divergence” in CUDA programs
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SPMD Code Version 2
• Assign one more iteration to some of the threads

int rem = num_steps % num_threads;
i_start = my_id * (num_steps/num_threads);

i_end = i_start + (num_steps/num_threads);

if (rem != 0) {

if (my_id < rem) {

i_start += my_id;

i_end += (my_id +1);

}

else {

i_start += rem;

i_end += rem;

}

.

Less load imbalance

More branch divergence
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SPMD Code Version 3

• Use cyclic distribution of iteration 

num_steps  = 1000000;

for (i = my_id; i < num_steps; i+= num_threads) {

….

}

Less load imbalance

Loop branch divergence in the last Warp

Data padding further eliminates divergence
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Comparing the Three Versions

ID=0 ID=1 ID=3ID=2

ID=0 ID=1 ID=3ID=2

ID=0 ID=1 ID=3ID=2

Version 1

Version 2

Version 3

Padded version 3 may be best

for some data access patterns


