
CS 677: Parallel Programming for

Many-core Processors

Lecture 8

Instructor: Philippos Mordohai

Webpage: mordohai.github.io

E-mail: Philippos.Mordohai@stevens.edu

1

mailto:Philippos.Mordohai@stevens.edu

Outline

• Computational Thinking

– Chapter 17 in K&H, 3rd edition

2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

Objective

• To provide you with a framework based on
the techniques and best practices used by
experienced parallel programmers for

– Thinking about the problem of parallel
programming

– Addressing performance and functionality
issues in your parallel program

– Using or building useful tools and
environments

– Understanding case studies and projects

3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 4

Fundamentals of Parallel Computing

• Parallel computing requires that

– The problem can be decomposed into sub-problems

that can be safely solved at the same time

– The programmer structures the code and data to

solve these sub-problems concurrently

• The goals of parallel computing are

– To solve problems in less time, and/or

– To solve bigger problems, and/or

– To achieve better solutions

The problems must be large enough to justify parallel

computing and to exhibit exploitable concurrency.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 5

Key Parallel Programming Steps

1) To find the concurrency in the problem

2) To structure the algorithm so that concurrency

can be exploited

3) To implement the algorithm in a suitable

programming environment

4) To execute and tune the performance of the

code on a parallel system

Unfortunately, these have not been separated into

levels of abstractions that can be dealt with

independently.

Amdahl’s Law

• “The speedup of a program using multiple
processors in parallel computing is limited by
the time needed for the sequential fraction of
the program.”

• Example
– 95% of original execution time can be sped up by

100x on GPU

– Speed up for entire application:

6

x17
%95.5

1

%95.0%5

1

)
100

%95
%5(

1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 7

Challenges of Parallel Programming

• Finding and exploiting concurrency often requires looking
at the problem from a non-obvious angle
– Computational thinking

• Dependences need to be identified and managed
– The order of task execution may change the answers

• Obvious: One step feeds result to the next steps

• Subtle: numeric accuracy may be affected by ordering steps that are
logically parallel with each other

• Performance can be drastically reduced by many factors
– Overhead of parallel processing

– Load imbalance among processor elements

– Inefficient data sharing patterns

– Saturation of critical resources such as memory bandwidth

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 8

Shared Memory vs. Message Passing

• We have focused on shared memory parallel
programming
– This is what CUDA is based on

– Future massively parallel microprocessors are
expected to support shared memory at the chip
level

– This is different than global address space (single
pointer space)

• The programming considerations of message
passing model is quite different!
– See MPI (Message Passing Interface)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 9

Finding Concurrency in Problems

• Identify a decomposition of the problem into sub-
problems that can be solved simultaneously

– A task decomposition that identifies tasks for potential
concurrent execution

– A data decomposition that identifies data local to each
task

– A way of grouping tasks and ordering the groups to
satisfy temporal constraints

– An analysis on the data sharing patterns among the
concurrent tasks

– A design evaluation that assesses the quality of the
choices made in all the steps

10

Finding Concurrency – The Process

Task Decomposition

Data Decomposition

Data Sharing

Order Tasks

Decomposition Group Tasks

Dependence Analysis

Design Evaluation

This is typically an iterative process.

Opportunities exist for dependence analysis to play earlier

role in decomposition.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 11

Task Decomposition

• Many large problems can be naturally decomposed

into tasks – CUDA kernels are largely tasks

– The number of tasks used should be adjustable to the

execution resources available

– Each task must include sufficient work in order to

compensate for the overhead of managing their parallel

execution

– Tasks should maximize reuse of sequential program

code to minimize effort

“In an ideal world, the compiler would find tasks for the

programmer. Unfortunately, this almost never happens.”

- Mattson, Sanders, Massingill

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 12

Task Decomposition Example -

Square Matrix Multiplication
• P = M × N of WIDTH × WIDTH

– One natural task (sub-
problem) produces one
element of P

– All tasks can execute in
parallel in this example.

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 13

Task Decomposition Example –

Molecular Dynamics

• Simulation of motions of a large molecular system

• For each atom, there are natural tasks to calculate

– Vibrational forces

– Rotational forces

– Neighbors that must be considered in non-bonded
forces

– Non-bonded forces

– Update position and velocity

– Misc physical properties based on motions

• Some of these can go in parallel for an atom

Often there are multiple ways to decompose any given

problem.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 14

Task Ordering Example:

Molecular Dynamics

Neighbor List

Vibrational and

Rotational Forces
Non-bonded Force

Next Time Step

Update atomic positions and velocities

Complex computation

involving many atoms

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 15

Data Decomposition

• The most compute intensive parts of many

large problem manipulate a large data structure
• Similar operations are being applied to different parts of the

data structure, in a mostly independent manner

• This is what CUDA is optimized for

• The data decomposition should lead to
• Efficient data usage by tasks within the partition

• Few dependencies across the tasks that work on different

partitions

• Adjustable partitions that can be varied according to the

hardware characteristics

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 16

Task Grouping

• Sometimes natural tasks of a problem can be
grouped together to improve efficiency

– Reduced synchronization overhead – all tasks in
the group can use a barrier to wait for a common
dependence

– All tasks in the group efficiently share data loaded
into a common on-chip, shared storage (Shared
Memory)

– Grouping and merging dependent tasks into one
task reduces need for synchronization

– CUDA thread blocks are task grouping examples

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 17

Task Grouping Example -

Square Matrix Multiplication
• Tasks calculating a P sub-block

– Extensive input data sharing,
reduced memory bandwidth
using Shared Memory

– All synched in execution

PM

N

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 18

Task Ordering

• Identify the data and resources required by

a group of tasks before they can be

executed

– Find the task group that creates them

– Determine a temporal order that satisfies all

data constraints

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 19

Data Sharing

• Data sharing can be a double-edged sword

– Excessive data sharing can drastically reduce advantage of parallel

execution

– Localized sharing can improve memory bandwidth efficiency

• Efficient memory bandwidth usage can be achieved by

synchronizing the execution of task groups and

coordinating their usage of memory data

– Efficient use of on-chip, shared storage

• Read-only sharing can usually be done at much higher

efficiency than read-write sharing, which often requires

synchronization

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 20

Data Sharing Example –

Matrix Multiplication

• Each task group will finish usage of each sub-

block of N and M before moving on

– N and M sub-blocks loaded into Shared Memory

for use by all threads of a P sub-block

– Amount of on-chip Shared Memory strictly limits

the number of threads working on a P sub-block

• Read-only shared data can be more

efficiently accessed as Constant or Texture

data

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 21

Data Sharing Example –

Molecular Dynamics

• The atomic coordinates

– Read-only access by the neighbor list, bonded force,
and non-bonded force task groups

– Read-write access for the position update task group

• The force array

– Read-only access by position update group

– Accumulate access by bonded and non-bonded task
groups

• The neighbor list

– Read-only access by non-bonded force task groups

– Generated by the neighbor list task group

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 22

Key Parallel Programming Steps

1) To find the concurrency in the problem

2) To structure the algorithm to translate

concurrency into performance

3) To implement the algorithm in a suitable

programming environment

4) To execute and tune the performance of

the code on a parallel system

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 23

Algorithm

• A step by step procedure that is guaranteed to terminate,

such that each step is precisely stated and can be carried

out by a computer

– Definiteness – the notion that each step is precisely stated

– Effective computability – each step can be carried out by a computer

– Finiteness – the procedure terminates

• Multiple algorithms can be used to solve the same problem

– Some require fewer steps

– Some exhibit more parallelism

– Some have larger memory footprint than others

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 24

Choosing Algorithm Structure

Start

Organize

by Task

Organize by

Data

Organize by

Data Flow

Linear Recursive Linear Recursive

Task

Parallelism

Divide and

Conquer

Geometric

Decomposition

Recursive

Data

Regular Irregular

Pipeline Event Driven

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

Mapping a Divide and Conquer Algorithm

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements

iterations

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

26

M

N

P

Psub

BLOCK_WIDTH

WIDTHWIDTH

BLOCK_WIDTHBLOCK_WIDTH

B
L

O
C

K
_

W
ID

T
H

B
L

O
C

K
_

W
ID

T
H

B
L

O
C

K
_

S
IZ

E

W
ID

T
H

W
ID

T
H

Tiled (Stenciled) Algorithms are

Important for Geometric Decomposition

• A framework for memory
data sharing and reuse by
increasing data access
locality.
– Tiled access patterns allow

small cache/scartchpad
memories to hold on to data
for re-use.

– For matrix multiplication, a
16X16 thread block perform
2*256 = 512 float loads from
device memory for 256 *
(2*16) = 8,192 mul/add
operations.

• A convenient framework for
organizing threads (tasks)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

Increased Work per Thread for

even more locality
• Each thread computes two elements of

Pdsub

• Reduced loads from global memory (Md)

to shared memory

• Reduced instruction overhead

– More work done in each iteration

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

T
IL

E
_
W

ID
T

H
T

IL
E

_
W

ID
T

H

T
IL

E
_
W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Pdsub

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 28

Double Buffering

- a frequently used algorithm pattern

• One could double buffer the computation, getting better

instruction mix within each thread

– This is classic software pipelining in ILP compilers

Loop {

Load current tile to shared memory

syncthreads()

Compute current tile

syncthreads()

}

Load next tile from global memory

Loop {

Deposit current tile to shared memory

syncthreads()

Load next tile from global memory

Compute current tile

syncthreads()

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 29

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

T
IL

E
_

W
ID

T
H

T
IL

E
_

W
ID

T
H

T
IL

E
_

W
ID

T
H

E

W
ID

T
H

W
ID

T
H

Double Buffering

• Deposit blue tile from

register into shared memory

• Syncthreads

• Load orange tile into register

• Compute Blue tile

• Deposit orange

tile into shared

memory

• ….

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

30

(a) Direct summation

At each grid point, sum the

electrostatic potential from

all charges

(b) Cutoff summation

Electrostatic potential from

nearby charges summed;

spatially sort charges first

(c) Cutoff summation using

direct summation kernel

Spatially sort charges into

bins; adapt direct

summation to process a bin

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 31

Same scalability
among all cutoff
implementations

Scalability and Performance of different algorithms for calculating electrostatic potential map.

Cut-Off Summation Restores Data

Scalability

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012

ECE408/CS483/498AL, University of Illinois, Urbana-Champaign 32

Parallel Programming Coding Styles -

Program and Data Models

Fork/Join

Master/Worker

SPMD

Program Models

Loop Parallelism

Distributed Array

Shared Queue

Shared Data

Data Models

These are not necessarily

mutually exclusive.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012

ECE408/CS483/498AL, University of Illinois, Urbana-Champaign 33

Program Models
• SPMD (Single Program, Multiple Data)

– All PEs (Processor Elements) execute the same
program in parallel, but each has its own data

– Each PE uses a unique ID to access its portion of
data

– Different PEs can follow different paths through
the same code

– This is essentially the CUDA Grid model (also
MPI)

– SIMD is a special case - WARP

• Master/Worker (CUDA Streams)
• Loop Parallelism (OpenMP)
• Fork/Join (Posix p-threads)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012

ECE408/CS483/498AL, University of Illinois, Urbana-Champaign 34

Program Models

• SPMD (Single Program, Multiple Data)
• Master/Worker

– A Master thread sets up a pool of worker threads
and a bag of tasks

– Workers execute concurrently, removing tasks
until done

• Loop Parallelism
– Loop iterations execute in parallel
– FORTRAN do-all (truly parallel), do-across (with

dependence)

• Fork/Join
– Most general, generic way of creation of threads

OpenMP

• API that supports shared memory multiprocessing
in C, C++ and Fortran

• A master thread forks a specified number of slave
threads and the system divides a task among them

int main(int argc, char **argv) {

int a[100000];

#pragma omp parallel for

int i;

for (i = 0; i < N; i++)

a[i] = 2 * i;

return 0;

}

35

Message Passing Interface (MPI)

• Standardized, portable and language-
independent message passing system

• Supports point-to-point and collective
communication

int array[100];

int root, total_p, *receive_array;

MPI_Comm_size(comm, &total_p);

receive_array=malloc(total_p*100*sizeof(*receive_array));

MPI_Gather(array, 100, MPI_INT, receive_array, 100,

MPI_INT, root, comm);

36

Node Node Node Node

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012

ECE408/CS483/498AL, University of Illinois, Urbana-

Champaign

37

Algorithm Structures vs. Program

Models
Task

Parallel.

Divide/Con

quer

Geometric

Decomp.

Recursive

Data

Pipeline Event-

based

SPMD ☺☺☺

☺

☺☺☺ ☺☺☺

☺

☺☺ ☺☺☺ ☺☺

Loop

Parallel
☺☺☺

☺

☺☺ ☺☺☺

Master/

Worker
☺☺☺

☺

☺☺ ☺ ☺ ☺ ☺

Fork/

Join

☺☺ ☺☺☺

☺

☺☺ ☺☺☺

☺

☺☺☺

☺

Source: Mattson, et al

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012

ECE408/CS483/498AL, University of Illinois, Urbana-

Champaign

38

Program Models vs. Architectures

OpenMP MPI CUDA/

OpenCL

SPMD ☺☺☺ ☺☺☺☺ ☺☺☺☺☺

Loop

Parallel

☺☺☺☺ ☺

Master/

Slave

☺☺ ☺☺☺ ☺☺

Fork/Join ☺☺☺

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012

ECE408/CS483/498AL, University of Illinois, Urbana-Champaign 39

More on SPMD
• Dominant coding style of scalable parallel

computing
– MPI code is mostly developed in SPMD style

– A lot of OpenMP code is also in SPMD (next to
loop parallelism)

– Particularly suitable for algorithms based on task
parallelism and geometric decomposition

• Main advantage
– Tasks and their interactions visible in one piece of

source code, no need to correlated multiple
sources

SPMD is by far the most commonly used pattern for

structuring parallel programs.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012

ECE408/CS483/498AL, University of Illinois, Urbana-Champaign 40

Typical SPMD Program Phases
• Initialize

– Establish localized data structure and communication channels

• Obtain a unique identifier
– Each thread acquires a unique identifier, typically range from 0 to

N, where N is the number of threads
– Both OpenMP and CUDA have built-in support for this

• Distribute Data
– Decompose global data into chunks and localize them, or
– Share/replicate major data structure using thread ID to associate

subset of the data to threads

• Run the core computation
– More details in next slide…

• Finalize
– Reconcile global data structure, prepare for the next major

iteration

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012

ECE408/CS483/498AL, University of Illinois, Urbana-Champaign 41

Core Computation Phase

• Thread IDs are used to differentiate

behavior of threads

– Use thread ID in loop index calculations to

split loop iterations among threads

– Use thread ID or conditions based on thread

ID to branch to specific actions

Both can have very different performance results

and code complexity depending on the way they

are done.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012

ECE408/CS483/498AL, University of Illinois, Urbana-Champaign 42

A Simple Example

• Assume

– The computation being parallelized has

1,000,000 iterations.

• Sequential code:

num_steps = 1000000;

for (i=0; i< num_steps, i++) {

…

}

43

SPMD Code Version 1
• Assign a chunk of iterations to each thread

– The last thread also finishes up the remaining

iterations
//num_steps = 1000000;

…

i_start = my_id * (num_steps/num_threads);

i_end = i_start + (num_steps/num_threads);

if (my_id == (num_threads-1)) i_end = num_steps;

for (i = i_start; i < i_end; i++) {

….

}

//Reconciliation of results across threads if necessary

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012

ECE408/CS483/498AL, University of Illinois, Urbana-Champaign 44

Problems with Version 1

• The last thread executes more iterations than
others

• The number of extra iterations is up to the
total number of threads – 1

– This is not a big problem when the number of
threads is small

– When there are thousands of threads, this can
create serious load imbalance problems

• Also, the extra if statement is a typical source
of “branch divergence” in CUDA programs

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012

ECE408/CS483/498AL, University of Illinois, Urbana-Champaign 45

SPMD Code Version 2
• Assign one more iteration to some of the threads

int rem = num_steps % num_threads;
i_start = my_id * (num_steps/num_threads);

i_end = i_start + (num_steps/num_threads);

if (rem != 0) {

if (my_id < rem) {

i_start += my_id;

i_end += (my_id +1);

}

else {

i_start += rem;

i_end += rem;

}

.

Less load imbalance

More branch divergence

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012

ECE408/CS483/498AL, University of Illinois, Urbana-Champaign 46

SPMD Code Version 3

• Use cyclic distribution of iteration

num_steps = 1000000;

for (i = my_id; i < num_steps; i+= num_threads) {

….

}

Less load imbalance

Loop branch divergence in the last Warp

Data padding further eliminates divergence

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012

ECE408/CS483/498AL, University of Illinois, Urbana-Champaign 47

Comparing the Three Versions

ID=0 ID=1 ID=3ID=2

ID=0 ID=1 ID=3ID=2

ID=0 ID=1 ID=3ID=2

Version 1

Version 2

Version 3

Padded version 3 may be best

for some data access patterns

