
CS 677: Parallel Programming for 

Many-core Processors 

Lecture 7

Instructor: Philippos Mordohai

Webpage: mordohai.github.io

E-mail: Philippos.Mordohai@stevens.edu
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Logistics

• Midterm: March 11

• Project proposal presentations: March 26

– Have to be approved by me by March 12
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Project Proposal

• Problem description
– What is the computation and why is it important?

– Abstraction of computation: equations, graphic or pseudo-
code, no more than 1 page

• Suitability for GPU acceleration
– Amdahl’s Law: describe the inherent parallelism.  Argue that it 

is close to 100% of computation.  

– Synchronization and Communication: Discuss what data 
structures may need to be protected by synchronization, or 
communication through host.

– Copy Overhead: Discuss the data footprint and anticipated 
cost of copying to/from host memory.

• Intellectual Challenges
– Generally, what makes this computation worthy of a project?

– Point to any difficulties you anticipate at present in achieving 
high speedup
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Midterm Reading List

• Week 1: nothing

• Week 2: everything, except #20

• Week 3: everything, except #51-57

• Week 4: everything, except #68-98

• Week 5: everything, except #1-34

• Week 6: #19-60

• Week 7: nothing
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© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign
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Electrostatic potential map is used in building stable structures for 

molecular dynamics simulation

Electrostatic Potential Calculation
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•The contribution of atom[i] to the electrostatic 

potential at lattice point j is atom[i].charge / rij

•The total potential at lattice point j is the sum of 

contributions from all atoms in the system

Core Computation

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign
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Sequential CPU Code
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Computes a single slice (const z)



GPU Implementation

• Option 1: each thread calculates the 

contribution of one atom to all grid points

– “Scatter”

• Option 2: each thread calculates the 

accumulated contributions of all atoms to 

one grid point

– “Gather”

• Pros/cons?
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Loop Transformation

• Need perfectly 

nested loops

– as in MRI 

example

– Move 

calculation of y 

into inner loop

– Pros/cons?
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DCS Kernel Design Overview

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign
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DCS Kernel Version 1

qsqrtf(): reciprocal square root© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign
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DCS Kernel Version 1

qsqrtf(): reciprocal square root

ILP vs. TLP

atominfo[].z is already squared

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign
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Information Reuse

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign
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DCS kernel Version 2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign



Memory Coalescing

• Two issues:

– Each thread calculates potentials of four 

adjacent grid points

– If grid width is not multiple of tile width, 

boundary management becomes complicated
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Memory Layout for Coalescing

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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DCS Kernel Version 3

ILP vs. TLP© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign
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Performance Comparison

18
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CPU vs. CPU-GPU Comparison

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign



UIUC ECE 598HK

Computational Thinking for 

Many-core Computing

Input Binning
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Objective

• To understand how data scalability 

problems in gather parallel execution 

motivate input binning

• To learn basic input binning techniques

• To understand common tradeoffs in input 

binning 
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Scatter to Gather Transformation

Thread 1 Thread 2 …
in

out

Thread 1 Thread 2

…

in

out

GPU Computing Forum



However

• Input tends to be much less regular than output

– It may be difficult for each thread to efficiently locate 
all inputs relevant to its output

– Or, to efficiently exclude all inputs irrelevant to its 
output

• In a naïve arrangement, all threads may have to 
process all inputs to decide if each input is relevant 
to its output

– This makes execution time scale poorly with data set 
size

– Important problem when processing large data sets
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DCS Algorithm for Electrostatic Potentials

Revisited

• At each grid point, sum 

the electrostatic 

potential from all atoms

– All threads read all inputs

• Highly data-parallel

• But has quadratic 

complexity
– Number of grid points 

number of atoms

– Both proportional to volume

– Poor data scalability
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Algorithm for Electrostatic Potentials

With a Cutoff

• Ignore atoms beyond a 

cutoff distance, rc

– Typically 8Å–12Å

– Long-range potential may 

be computed separately

• Number of atoms within 

cutoff distance is 

roughly constant 

(uniform atom density)

– 200 to 700 atoms within 

8Å–12Å cutoff sphere for 

typical biomolecular 

structures
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Implementation Challenge

• For each tile of grid points, we need to 
identify the set of atoms that need to be 
examined

– One could naively examine all atoms and only 
use the ones whose distance is within the given 
range 

– But this examination still takes time, and brings 
the time complexity right back to 
• number of atoms × number of grid points

– Each thread needs to avoid examining the atoms 
outside the range of its grid point(s)
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Binning

• A process that groups data to form a 

chunk called bin

• Helps problem solving due to data 

coarsening

• Uniform bin arrays, Variable bins, KD 

Trees, …
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Binning for Cut-Off Potential

• Divide the simulation volume with non-

overlapping uniform cubes

• Every atom in the simulation volume falls into a 

cube based on its spatial location

– Bins represent location property of atoms

• After binning, each cube has a unique index in 

the simulation space for easy parallel access
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Spatial Sorting Using Binning

• Presort atoms into bins
by location in space

• Each bin holds several 

atoms

• Cutoff potential only 

uses bins within rc

– Yields a linear complexity 

cutoff potential algorithm
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Bin Size Considerations

• Capacity of atom bins needs to be balanced

– Too large – many dummy atoms in bins

– Too small – some atoms will not fit into bins

– Target bin capacity to cover more than 95% or atoms

• CPU  places all atoms that do not fit into bins into 
an overflow bin

– Use a CPU sequential algorithm to calculate their 
contributions to the energy grid lattice points.

– CPU and GPU can do potential calculations in parallel
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Bin Design
• Uniform sized/capacity bins allow array implementation

– And the relative offset list approach

• Bin capacity should be big enough to contain all the 

atoms that fall into a bin

– Cut-off will screen away atoms that weren’t processed

– Performance penalty if too many are screened away

31©Wen-mei W. Hwu and David Kirk/NVIDIA 2010



Going from DCS Kernel to Large 

Bin Cut-off Kernel

• Adaptation of techniques from the direct Coulomb 

summation kernel for a cutoff kernel

• Atoms are stored in constant memory as with DCS 

kernel

• CPU loops over potential map regions that are (24Å)3 in 

volume (cube containing cutoff sphere)

• Large bins of atoms are appended to the constant 

memory atom buffer until it is full, then GPU kernel is 

launched

• Host loops over map regions reloading constant memory 

and launching GPU kernels until completion

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana, 

Illinois, August 2-5, 2010
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Large Bin Design Concept

• Map regions are (24Å)3 in volume

• Regions are sized large enough to provide 

the GPU enough work in a single kernel 

launch

– (48 lattice points)3 for lattice with 0.5Å spacing

– Small bins don’t provide the GPU enough 

work to utilize all SMs, to amortize constant 

memory update time, or kernel launch 

overhead

33©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana, 

Illinois, August 2-5, 2010
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Large-bin Cutoff Kernel Evaluation 

• 6 speedup relative to fast CPU version

• Work-inefficient

– Coarse spatial hashing into (24Å)3 bins

– Only 6.5% of the atoms a thread tests are 

within the cutoff distance

• Better adaptation of the algorithm to the 

GPU will gain another 2.5
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©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Improving Work Efficiency

• Thread block examines atom bins 
up to the cutoff distance
– Use a sphere of bins

– All threads in a block scan the same 
bins and atoms
• No hardware penalty for multiple 

simultaneous reads of the same address

• Simplifies fetching of data

– The sphere has to be big enough to 
cover all grid point at corners

– There will be a small level of  
divergence
• Not all grid points processed by a thread 

block relate to all atoms in a bin the 
same way

• (A within cut-off distance of N but outside 
cut-off of M)

35
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The Neighborhood is a volume

• Calculating and 

specifying all bin 

indexes of the 

sphere can be 

quite complex

– Rough 

approximations 

reduce efficiency
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Neighborhood Offset List

(Pre-calculated)
• A list of relative offsets enumerating the bins 

that are located within the cutoff distance for a 
given location in the simulation volume

• Detection of surrounding atoms becomes 
realistic for output grid points

– By visiting bins in the neighborhood offset list and 
iterating over the atoms they contain

center (0, 0)

(1, 2)

not included

cutoff distance

(-1, -1)

a bin in the neighborhood 

list
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Performance

• O(MN’) where M and N’ are the number of 

output grid points and atoms in the 

neighborhood offset list, respectively

– In general, N’ is small compared to the 

number of all atoms

• Works well if the distribution of atoms is 

uniform

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 38



Details on Small Bin Design

• For 0.5Å lattice spacing, a 
(4Å)3 cube of the potential 
map is computed by each 
thread block
– 888 potential map points

– 128 threads per block 
(4 points/thread)

– 34% of examined atoms 
are within cutoff distance

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 39



More Design Considerations for the 

Cutoff Kernel

• High memory throughput to atom data 

essential

– Group threads together for locality

– Fetch bins of data into shared memory

– Structure atom data to allow fetching

• After taking care of memory demand, 

optimize to reduce instruction count

– Loop and instruction-level optimization
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Another thread block runs

while this one waits

Tiling Atom Data

• Shared memory used to reduce Global 
Memory bandwidth consumption
– Threads in a thread block collectively load 

one bin at a time into shared memory

– Once loaded, threads scan atoms in 
shared memory

– Reuse: Loaded bins used 128 times

Threads individually

compute potentials

using bin in shared mem

Collectively

load next

bin

Write bin to

shared

memoryS
u
s
p
e
n
d

Data returned 

from global 

memory R
e
a
d
y

Time

Execution cycle of a thread block
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Handling Overfull Bins

• In typical use, 2.6% of atoms exceed bin 
capacity

• Spatial sorting puts these into a list of extra 
atoms

• Extra atoms processed by the CPU

– Computed with CPU-optimized algorithm

– Takes about 66% as long as GPU computation

– Overlapping GPU and CPU computation yields 
additional speedup

– CPU performs final integration of grid data
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CPU Grid Data Integration

• Effect of overflow 
atoms are added 
to the CPU master 
energygrid array

• Slice of grid point 
values calculated 
by GPU are added 
into the master 
energygrid array 
while removing the 
padded elements 

0,0 0,1

1,0 1,1

…

… …

…

…
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GPU Thread Coarsening

• Each thread computes 

potentials at four potential 

map points

– Reuse x and z components 

of distance calculation

– Check x and z components 

against cutoff distance

(cylinder test)

• Exit inner loop early upon 

encountering the first 

empty slot in a bin
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GPU Thread Inner Loop
for (i = 0;  i < BIN_DEPTH;  i++) {

aq = AtomBinCache[i].w;

if (aq == 0) break;

dx = AtomBinCache[i].x - x;

dz = AtomBinCache[i].z - z;

dxdz2 = dx*dx + dz*dz;

if (dxdz2 > cutoff2) continue;

dy = AtomBinCache[i].y - y;

r2 = dy*dy + dxdz2;

if (r2 < cutoff2)

poten0 += aq * rsqrtf(r2);  

// Simplified example

dy = dy - 2 * grid_spacing;

/* Repeat three more times */

}

Exit when an empty atom bin 

entry is encountered

Cylinder test

Cutoff test

and potential value 

calculation
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Cutoff Summation Runtime

50k–1M atom structure size

GPU cutoff with 

CPU overlap:

12x-21x faster 

than CPU core
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Summary

• Large bins allow re-use of all-input 
kernels with little code change
– But work efficiency can be very low

• Use of small-sized bins require more 
sophisticated kernel code to traverse list 
of small bins
– Much higher work efficiency

– Small bins also serve as tiles for locality

• CPU processes overflow atoms from 
fixed capacity bins
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