CS 677 Parallel Programming for
Many-core Processors
Lecture 7/

Instructor: Philippos Mordohai
Webpage: mordohai.github.io
E-mail: Philippos.Mordohai@stevens.edu

mailto:Philippos.Mordohai@stevens.edu

Logistics

 Midterm: March 11

* Project proposal presentations: March 26
— Have to be approved by me by March 12

Project Proposal

* Problem description
— What is the computation and why is it important?
— Abstraction of computation: equations, graphic or pseudo-
code, no more than 1 page
 Suitability for GPU acceleration

— Amdahl’s Law: describe the inherent parallelism. Argue that it
is close to 100% of computation.

— Synchronization and Communication: Discuss what data
structures may need to be protected by synchronization, or
communication through host.

— Copy Overhead: Discuss the data footprint and anticipated
cost of copying to/from host memory.
 |ntellectual Challenges
— Generally, what makes this computation worthy of a project?

— Point to any difficulties you anticipate at present in achieving
high speedup

Midterm Reading List

Week 1: nothing

Week 2:
Week 3:
Week 4:
Week 5:
Week 6:
Week 7:

everyt
everyt
everyt
everyt

ning, exce
ning, exce
ning, exce

ning, exce

#19-60
nothing

ot #20
ot #51-57
nt #68-98

ot #1-34

Electrostatic Potential Calculation

Electrostatic potential map is used in building stable structures for
molecular dynamics simulation

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

Core Computation

Lattice point j
being evaluated

L

r;: distance
from lattice[j]
to atom|1]

A

-

atom|1]

 The contribution of atom|i] to the electrostatic
potential at lattice point j is atom([i].charge / r;

* The total potential at lattice point j is the sum of
contributions from all atoms in the system

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECEA408, University of Illinois, Urbana-Champaign

Sequential CPU Code

void cenergy(float *energygrid. dim3 grid. float gridspacing. float z. const float *atoms,
int numatoms) {
int 1,],1:
int atomarrdim = numatoms * 4

for (j=0; j<grid.y: j++) { Computes a single slice (const z)

float v = gnidspacing * (float) j:
for (1=0; 1<gnid.x; 1++) {
float x = gndspacing * (float) 1:
tloat energy = 0.0f;
for (n=0: n<atomarrdim: n+=4) { // calculate potential contribution of each atom
float dx = x - atoms[n |;
float dy = v - atoms[n+1]:
float dz = z - atoms[n+2]:
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz):
h
energygrid[grid.x*grid.y*k + grid.x*) + 1] = energy:
;
y

h

GPU Implementation

» Option 1: each thread calculates the
contribution of one atom to all grid points

— “Scatter”

* Option 2: each thread calculates the
accumulated contributions of all atoms to
one grid point
— “Gather”

* Pros/cons?

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECEA408, University of Illinois, Urbana-Champaign

Loop Transformation

* Need perfectly
nested loops

— as in MR
example

— Move
calculation of y
Into inner loop

— Pros/cons?

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECEA408, University of Illinois, Urbana-Champaign

tor (j=0: j=grid.y: j++) {
tfloat v = gridspacing * (float) j:
tor (1=0: 1=gnd.x: 1++) {
float x = gridspacing * (float) 1;
tloat energy = 0.0f;
for (n=0: n<atomarrdim: n+=4) {
float dx = x - atoms[n |:
float dy = v - atoms[n+1]:
float dz = z - atoms[n+2]:
energy += atoms[n—3] / sqrtf(dx*dx + dy*dy + dz*¥dz):
h
energygrid[grid.x*grid.y*k + grid.x¥) + 1] = energy:

j

1
]

DCS Kernel Design Overview

Grid of thread blocks EEEEE EEEE INEE (N AtOlI]iC
/ Coordinates
Charges

Thread blocks:
64-256 threads

"
/
—— i Constant Memory GPU
\[/] 1/
LA
/
N/
V

Parallel Data |[Parallel Data| Parallel Data |Parallel Data |Parallel Data| | Parallel Data
Threads compute Cache Cache Cache Cache Cache Cache
up to 8 potentials, | [Texture] ||} [[Texture} | | | Texturel-|} || Texture} || § | | exture} || | fTexture] |

skipping by half-warps

Global Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 10
ECEA408, University of Illinois, Urbana-Champaign

DCS Kernel Version 1

float curenergy = energyerid[outaddr]; ——__ Start global memory I‘xeaf:lfj.w
early. Kernel hides some of

— - c }k - . - -
tloat coorx = gridspacing * xindex; its own latency.

float coory = gridspacing * yindex;

int atomid:

float energyval=0.0f:

for (atom1d=0; atomid<numatoms: atomid++) {
float dx = coorx - atominfo[atomid].x;
float dy = coory - atominfo[atomid].y;
energyval += atominfo[atomud].w *

rsqrtf(dx*dx + dy*dy + atominfo[atomid].z);

j _______——————————“_J Only dependency on global
energygrid[outaddr]| = curenergy + energyval; memory read is at the end of
the kernel. ..
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 qsqrtf(): reciprocal square root

ECEA408, University of Illinois, Urbana-Champaign

DCS Kernel Version 1

float curenergy = energyerid[outaddr]; ——__ Start global memory I‘xeaf:lfj.w
early. Kernel hides some of

— - c }k - . - -
tloat coorx = gridspacing * xindex; its own latency.

float coory = gridspacing * yindex;

int atomid; LEVs. TLE
float energyval=0.0f:
for (atom1d=0; atomid<numatoms: atomid++) {
float dx = coorx - atominfo[atomid].x; atominfo[].z is already squared

float dy = coory - atominfo[atomid].y;
energyval += atominfo[atomud].w *
rsqrtf(dx*dx + dy*dy + atominfo[atomid].z);

j _______——————————“_J Only dependency on global
energygrid[outaddr]| = curenergy + energyval; memory read is at the end of
the kernel. ..
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 qsqrtf(): reciprocal square root

ECEA408, University of Illinois, Urbana-Champaign

Information Reuse

A

I

Distances to
Atom][1]

Atom[1]

\,(

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECEA408, University of Illinois, Urbana-Champaign

DCS kernel Version 2

...for (atomid=0; atomid<numatoms; atomid++) {
tloat dy = coory - atominfo[atomid].y;
tloat dysqpdzsq = (dy * dy) Satominfo[atomid].z:

tloat x = atominfo[atomuid].x;

Compared to non-unrolled
kernel: memory loads are
decreased by 4x, and FLOPS
per evaluation are reduced, but
register use 1s increased. ..

float dx1 = coorx1 - x;
float dx2 = coorx2 - x:
float dx3 = coorx3 - x;

float dx4 = coorx4 - x;

float charge = atominfo[atomid].w;

energyvalx1 += charge * rsqrtt(dx1*dx1 + dysqpdzsq):

energyvalx2 += charge * rsqrtf(dx2*dx2 + dysqpdzsq):

energyvalx3 += charge * rsqrtf(dx3*dx3 + dysqpdzsq):

energyvalx4 += charge * rsqrtt(dx4*dx4 + dysqpdzsq):

)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 14
ECE408, University of Illinois, Urbana-Champaign

Memory Coalescing

e Two Issues:

— Each thread calculates potentials of four
adjacent grid points

— If grid width is not multiple of tile width,
boundary management becomes complicated

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECEA408, University of Illinois, Urbana-Champaign

Memory Layout for Coalescing

S unrolled, coalesced
Unrolling increases () e)

computational tile size Grid of thread blocks: >
Thread blocks: Y
64-256 threads RS 0.0 0.1
" 4 ImEEEEEE
N

1.0 1.1
[~ \

Threads compute
up to 8 potentials,
skipping by half-warps

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECEA408, University of Illinois, Urbana-Champaign

DCS Kernel Version 3

..float coory = gridspacing * yindex;
float coorx = gridspacing * xindex;

float gridspacing coalesce = gridspacing * BLOCKSIZEX:*—:::J Points spaced for
Int atomid; l memory coalescing
for (atomid=0; atomid<numatoms; atomid++) { ‘
float dy = coory - atominfo[atomid].y:
float dyz2 = (dy * dy) + atominfo[atomid].z; ——
float dx1 = coorx - atominfo[atomid].x;
[---]
float dx8 = dx7 + gridspacing coalesce:
energyvalx1 += atominfo[atomid].w * rsqrtf(dx1*dx1 + dyz2):

———_ Reuse partial distance
components dy”2 + dz2

[...]
energyvalx8 += atominfo[atomid].w * rsqrtf(dx8*dx8 + dyz2):

h

energygrid[outaddr | += energyvalx1: R_ Global LIS 00(bLT 00
[...] occur only at the end

energygrid[outaddr+7*BLOCKSIZEX] += energyvalx7; of the kernel,

decreases register use
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 ILPvs. TLP

ECEA408, University of Illinois, Urbana-Champaign

Performance Comparison

Number of thread blocks modulo number of SMs results in ‘

40 /. N . 1 —
— SN _e——a—o——a CUDA-Unroll8clx:
5 35+ ~om . T e R fastest GPU kernel,
= . / e ;—..?.‘_‘fj___‘.;; AP e | |
E 30 I/ /¥ cUDASImple Kemel -+ 1 44x faster than CPU,
S o5 | X XX CUDA-Unroll4x Kernel] 291 GFLOPS on
O i/ # CUDA-Unroll8x Kernel GeForce 8800GTX
5 20 F R CUDA-Unroll8clx Kernel —&— | -
o F /X CUDA-Unroll8csx Kerne| — =
2 15 [/ Intel QX6700 SSE3 Kernel _
(_‘-g +i* + ._4__._.-I—+-"r"+‘++""+"++++"’""'++"'"""++"'+"'_++""""'" CIJDA_Slmple:
s 100 1 14.8x faster,
S 5] 33% of fastest
< . J l J | | | | GPU kemnel

0 100 200 300 400 500 600 700 800

Side length of 2-D potential map slice

GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,
J. Phillips. Proceedings of the IEEE, 96:879-899. 2008.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 - -
ECEA408, University of Illinois, Urbana-Champaign 18

CPU vs. CPU-GPU Comparison

Performance vs. Size

GPU
underutilized

’*/,+ xe'}(-’ |
/f“/ 'y
d ks
ra e i
.'-X-'r
e GPU fully utilized,
l ~40x faster than CPU

direct summation, CPU —+
direct summation, 1 GPU ---+--— |

w—
[.ower
1s better 100 |
3
5
2
5
g
[1¥]
5 10
i 3
&
I -
5
£
—_— 0.01
GPU mitialization 100

time: ~110ms

Accelerating molecular modeling applications with graphics processors.
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECEA408, University of Illinois, Urbana-Champaign

1000

10000
Number of atoms

100000

J. Comp. Chem., 28:2618-2640, 2007.

19

UIUC ECE 598HK

Computational Thinking for
Many-core Computing

Input Binning

Objective

* To understand how data scalability
problems in gather parallel execution
motivate input binning

* To learn basic input binning techniques

* To understand common tradeoffs in input
binning

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Scatter to Gather Transformation

out

GPU Computing Forum

However

 Input tends to be much less regular than output

— It may be difficult for each thread to efficiently locate
all inputs relevant to its output

— Or, to efficiently exclude all inputs irrelevant to its

output
* In a naive arrangement, all threads may have to

process all inputs to decide if each input is relevant

to its output

— This makes execution time scale poorly with data set
size

— Important problem when processing large data sets

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

DCS Algorithm for Electrostatic Potentials

Revisited
q/r added to the * At each grid point, sum
+ potential here + the electrostatic

potential from all atoms

Distance r — All threads read all inputs
+ + * Highly data-parallel
« But has quadratic
Atom with charge ¢ complexity
+ + + + — Number of grid points x

number of atoms
— Both proportional to volume
— Poor data scalability

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 24

Algorithm for Electrostatic Potentials
With a Cutoff

* Ignore atoms beyond a

cutoff distance, r.
1 / — Typically 8A-12A
N\ — Long-range potential may
be computed separately
+ + \\\' -l""ll + " N
. N - - « Number of atoms within
Atoms outside cutoff cutoff distance is

distance are skipped . roughly constant
+ + + + (uniform atom density)
— 200 to 700 atoms within
8A-12A cutoff sphere for

typical biomolecular
structures

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Implementation Challenge

* For each tile of grid points, we need to
identify the set of atoms that need to be
examined
— One could naively examine all atoms and only

use the ones whose distance is within the given
range

— But this examination still takes time, and brings
the time complexity right back to

« number of atoms x number of grid points

— Each thread needs to avoid examining the atoms
outside the range of its grid point(s)

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Binning
* A process that groups data to form a
chunk called bin

* Helps problem solving due to data
coarsening

* Uniform bin arrays, Variable bins, KD
Trees, ...

|| 1/”&
(

il =

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Binning for Cut-Off Potential

* Divide the simulation volume with non-
overlapping uniform cubes

» Every atom in the simulation volume falls into a
cube based on its spatial location
— Bins represent location property of atoms

 After binning, each cube has a unigque index In
the simulation space for easy parallel access

@ ®

* * « | |[®]

(a) Simulation (b) Simulation

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 volume volume ,
with eight bins

Spatial Sorting Using Binning

+ @

+ o +
®

+ +

;
X
.

-+ @+ |9 @ @

%

® - +Q + + X M
Bins far beyond the. e - -

— cutoff distance are

+ + |+ + |+ + |+
+
9
+
+
+ -F |+

.+

+ +

+ nevc]ar scanlned + + | @ +

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

e®

+1+ +1+ +|l+ +/+

Presort atoms into b/ins
by location in space

Each bin holds several
atoms

Cutoff potential only
uses bins within r,

— Yields a linear complexity
cutoff potential algorithm

29

Bin Size Considerations

« Capacity of atom bins needs to be balanced
— Too large - many dummy atoms in bins
— Too small - some atoms will not fit into bins
— Target bin capacity to cover more than 95% or atoms

« CPU places all atoms that do not fit into bins into
an overflow bin

— Use a CPU sequential algorithm to calculate their
contributions to the energy grid lattice points.

— CPU and GPU can do potential calculations in parallel

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

* Bin capacity should be big enough to contain all the

Bin Design

« Uniform sized/capacity bins allow array implementation
— And the relative offset list approach

atoms that fall into a bin

— Cut-off will screen away atoms that weren’t processed
— Performance penalty if too many are screened away

+ +

@

+ @

.+
+ @

® +

+ +

+ @
N
Ho+

\
@ +

+ o +
®

+ +

+ ot
O

+ +

@ +
+ @

’l
+ +

'/-I- .

%

+ |+ + |+ + |+

+

+

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

@ -

Bins far beyond the
cutoff distance are

+.+
® @

+ +

+ +

.+

+ +

nev?rscanned

+ +

.+

e®

+1+ +1+ +|l+ +/+

31

Going from DCS Kernel to Large
Bin Cut-off Kernel

« Adaptation of techniques from the direct Coulomb
summation kernel for a cutoff kernel

« Atoms are stored in constant memory as with DCS
kernel

« CPU loops over potential map regions that are (24A)3 in
volume (cube containing cutoff sphere)

« Large bins of atoms are appended to the constant
memory atom buffer until it is full, then GPU kernel is
launched

* Host loops over map regions reloading constant memory
and launching GPU kernels until completion

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Large Bin Design Concept

« Map regions are (24A)3 in volume

* Regions are sized large enough to provide
the GPU enough work in a single kernel
launch

— (48 lattice points)3 for lattice with 0.5A spacing

— Small bins don’t provide the GPU enough
work to utilize all SMs, to amortize constant
memory update time, or kernel launch
overhead

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Large-bin Cutoff Kernel Evaluation

* 6x speedup relative to fast CPU version

» Work-inefficient
— Coarse spatial hashing into (24A)3 bins

— Only 6.5% of the atoms a thread tests are
within the cutoff distance

» Better adaptation of the algorithm to the
GPU will gain another 2.5x

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Improving Work Efficiency

« Thread block examines atom bins Points computed by

up to the cutoff distance Bins one thread block
— Use a sphere of bins \\\~ T
— All threads in a block scan the same — 1T / T
bins and atoms 1 .
« No hardware penalty for multiple 1 I
simultaneous reads of the same address | / Cutoff \

- Simplifies fetching of data distance ——

— The sphere has to be big enough to ‘ q *length |
cover all grid point at corners Y 0~ diagonal /.

— There will be a small level of L
divergence . ‘

« Not all grid points processed by a thread KI Nl [-F
block relate to all atoms in a bin the
same way

* (A within cut-off distance of N but outside
cut-off of M)

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

The Neighborhood is a volume

d
 Calculating and
specifying all bin
indexes of the

sphere can be

guite complex

— Rough ———DF
approximations
reduce efficiency

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Neighborhood Offset List

(Pre-calculated)

* A list of relative offsets enumerating the bins
that are located within the cutoff distance for a
given location in the simulation volume

» Detection of surrounding atoms becomes
realistic for output grid points

— By visiting bins in the neighborhood offset list and
iterating over the atoms they contain

a bin in the neighborhood

1,2 i
(1 -1 (1,2) . list

cutoff distance

not included —— center (0, 0)

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 37

Performance

 O(MN’) where M and N’ are the number of
output grid points and atoms in the
neighborhood offset list, respectively

— In general, N’ is small compared to the
number of all atoms

« Works well if the distribution of atoms is
uniform

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Details on Small Bin Design

* For 0.5A lattice spacing, a Points computed by
(4A)3 cube of the potential Bins one 'h’rwd block
map is computed by each \\\ - }
thread block — - e

— 8x8x8 potential map points , l : .

— 128 threads per block [/
(4 points/thread) / Cutoff

— 34% of examined atoms ." distance
are within cutoff distance '-.‘ +c!|?’|;?r:h o

. dlagonall,’_
!

\
5 /!

4

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

More Design Considerations for the
Cutoff Kernel

* High memory throughput to atom data
essential
— Group threads together for locality
— Fetch bins of data into shared memory
— Structure atom data to allow fetching

* After taking care of memory demand,
optimize to reduce instruction count

— Loop and instruction-level optimization

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Tiling Atom Data

« Shared memory used to reduce Global

Memory bandwidth consumption

— Threads in a thread block collectively load

one bin at a time into shared memory

— Once loaded, threads scan atoms in
shared memory

— Reuse: Loaded bins used 128 times
Execution cycle of a thread block

Threads individually
compute potentials
using bin in shared mem

Collectively
load next
bin

Time

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Suspend

Data returned
from global
memory

Ready

Another thread block runs
while this one waits

Write bin to
shared
memory

Handling Overfull Bins

* |n typical use, 2.6% of atoms exceed bin
capacity

« Spatial sorting puts these into a list of extra
atoms

» Extra atoms processed by the CPU
— Computed with CPU-optimized algorithm
— Takes about 66% as long as GPU computation

— Overlapping GPU and CPU computation yields
additional speedup

— CPU performs final integration of grid data

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

CPU Grid Data

« Effect of overflow
atoms are added
to the CPU master
energygrid array

 Slice of grid point
values calculated
by GPU are added
Into the master
energygrid array
while removing the
padded elements

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Integration

0,0

0,1

1,0

11

GPU Thread Coarsening

« Each thread computes
potentials at four potential

I x and z components
map pOIntS of distance calculated
— Reuse x and z components only once
of distance calculation + o+
— Check x and z components + o+ o+

against cutoff distance . :
Cylinder test rejects

(cylinder test) points that are outside
the cutoff distance

« Exitinner loop early upon fromall four points
encountering the first + +@+
empty slot in a bin

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

GPU Thread Inner Loop

for (1 = 0; 1 < BIN DEPTH; 1++)
aq = AtomBinCache[i] .w;
1if (ag == 0) break;

Exit when an empty atom bin
entry is encountered

dx = AtomBinCache[il].x - Xx;
dz = AtomBinCache[i].z - z;
dxdz?2 = dx*dx + dz*dz;

Cylinder test if (dxdz2 > cutoff2) continue;

dy = AtomBinCachel[i].y - y;

and ote(r?tlijgl)]:f/atleijset r2 = dy*dy + dxdzZ;
P - if (r2 < cutoff2)
calculation

potenO0 += ag * rsqrtf(r2);
// Simplified example

dy = dy - 2 * grid spacing;
/* Repeat three more times */

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

45

Cutoff Summation Runtime

1000 , ,] |
' CPU-SSE3
' LargeBin <
7 00 SmallBin -
I SmallBin-Overlap &
S _
S 10 ¢
9 [B
£ 1 2 GPU cutoff with
- —_— EI
c £ CPU overlap:
'*% 0.1 12x-21x faster
o than CPU core
>
W 0.01 B
. _ 4 > .
0.001 (i . . 50k—1M atom structure size
1000 8000 64000 1e+06 8e+06

Volume of potential map (Angstroms)

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 46

Summary

» Large bins allow re-use of all-input
kernels with little code change

— But work efficiency can be very low

» Use of small-sized bins require more
sophisticated kernel code to traverse list

of small bins
— Much higher work efficiency
— Small bins also serve as tiles for locality

 CPU processes overflow atoms from
fixed capacity bins

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

