
CS 677: Parallel Programming for

Many-core Processors

Lecture 7

Instructor: Philippos Mordohai

Webpage: mordohai.github.io

E-mail: Philippos.Mordohai@stevens.edu

1

mailto:Philippos.Mordohai@stevens.edu

Logistics

• Midterm: March 11

• Project proposal presentations: March 26

– Have to be approved by me by March 12

2

Project Proposal

• Problem description
– What is the computation and why is it important?

– Abstraction of computation: equations, graphic or pseudo-
code, no more than 1 page

• Suitability for GPU acceleration
– Amdahl’s Law: describe the inherent parallelism. Argue that it

is close to 100% of computation.

– Synchronization and Communication: Discuss what data
structures may need to be protected by synchronization, or
communication through host.

– Copy Overhead: Discuss the data footprint and anticipated
cost of copying to/from host memory.

• Intellectual Challenges
– Generally, what makes this computation worthy of a project?

– Point to any difficulties you anticipate at present in achieving
high speedup

3

Midterm Reading List

• Week 1: nothing

• Week 2: everything, except #20

• Week 3: everything, except #51-57

• Week 4: everything, except #68-98

• Week 5: everything, except #1-34

• Week 6: #19-60

• Week 7: nothing

4

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

5

Electrostatic potential map is used in building stable structures for

molecular dynamics simulation

Electrostatic Potential Calculation

6

•The contribution of atom[i] to the electrostatic

potential at lattice point j is atom[i].charge / rij

•The total potential at lattice point j is the sum of

contributions from all atoms in the system

Core Computation

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 7

Sequential CPU Code

7

Computes a single slice (const z)

GPU Implementation

• Option 1: each thread calculates the

contribution of one atom to all grid points

– “Scatter”

• Option 2: each thread calculates the

accumulated contributions of all atoms to

one grid point

– “Gather”

• Pros/cons?

8© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

Loop Transformation

• Need perfectly

nested loops

– as in MRI

example

– Move

calculation of y

into inner loop

– Pros/cons?

9© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

10

DCS Kernel Design Overview

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

11

DCS Kernel Version 1

qsqrtf(): reciprocal square root© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

12

DCS Kernel Version 1

qsqrtf(): reciprocal square root

ILP vs. TLP

atominfo[].z is already squared

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

13

Information Reuse

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

14

DCS kernel Version 2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

Memory Coalescing

• Two issues:

– Each thread calculates potentials of four

adjacent grid points

– If grid width is not multiple of tile width,

boundary management becomes complicated

15© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

16

Memory Layout for Coalescing

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

DCS Kernel Version 3

ILP vs. TLP© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

18

Performance Comparison

18
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

19

CPU vs. CPU-GPU Comparison

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

UIUC ECE 598HK

Computational Thinking for

Many-core Computing

Input Binning

20

Objective

• To understand how data scalability

problems in gather parallel execution

motivate input binning

• To learn basic input binning techniques

• To understand common tradeoffs in input

binning

21©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Scatter to Gather Transformation

Thread 1 Thread 2 …
in

out

Thread 1 Thread 2

…

in

out

GPU Computing Forum

However

• Input tends to be much less regular than output

– It may be difficult for each thread to efficiently locate
all inputs relevant to its output

– Or, to efficiently exclude all inputs irrelevant to its
output

• In a naïve arrangement, all threads may have to
process all inputs to decide if each input is relevant
to its output

– This makes execution time scale poorly with data set
size

– Important problem when processing large data sets

23©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

DCS Algorithm for Electrostatic Potentials

Revisited

• At each grid point, sum

the electrostatic

potential from all atoms

– All threads read all inputs

• Highly data-parallel

• But has quadratic

complexity
– Number of grid points 

number of atoms

– Both proportional to volume

– Poor data scalability

24
©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Algorithm for Electrostatic Potentials

With a Cutoff

• Ignore atoms beyond a

cutoff distance, rc

– Typically 8Å–12Å

– Long-range potential may

be computed separately

• Number of atoms within

cutoff distance is

roughly constant

(uniform atom density)

– 200 to 700 atoms within

8Å–12Å cutoff sphere for

typical biomolecular

structures

25
©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Implementation Challenge

• For each tile of grid points, we need to
identify the set of atoms that need to be
examined

– One could naively examine all atoms and only
use the ones whose distance is within the given
range

– But this examination still takes time, and brings
the time complexity right back to
• number of atoms × number of grid points

– Each thread needs to avoid examining the atoms
outside the range of its grid point(s)

26©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Binning

• A process that groups data to form a

chunk called bin

• Helps problem solving due to data

coarsening

• Uniform bin arrays, Variable bins, KD

Trees, …

27©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Binning for Cut-Off Potential

• Divide the simulation volume with non-

overlapping uniform cubes

• Every atom in the simulation volume falls into a

cube based on its spatial location

– Bins represent location property of atoms

• After binning, each cube has a unique index in

the simulation space for easy parallel access

28©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Spatial Sorting Using Binning

• Presort atoms into bins
by location in space

• Each bin holds several

atoms

• Cutoff potential only

uses bins within rc

– Yields a linear complexity

cutoff potential algorithm

29
©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Bin Size Considerations

• Capacity of atom bins needs to be balanced

– Too large – many dummy atoms in bins

– Too small – some atoms will not fit into bins

– Target bin capacity to cover more than 95% or atoms

• CPU places all atoms that do not fit into bins into
an overflow bin

– Use a CPU sequential algorithm to calculate their
contributions to the energy grid lattice points.

– CPU and GPU can do potential calculations in parallel

30©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Bin Design
• Uniform sized/capacity bins allow array implementation

– And the relative offset list approach

• Bin capacity should be big enough to contain all the

atoms that fall into a bin

– Cut-off will screen away atoms that weren’t processed

– Performance penalty if too many are screened away

31©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Going from DCS Kernel to Large

Bin Cut-off Kernel

• Adaptation of techniques from the direct Coulomb

summation kernel for a cutoff kernel

• Atoms are stored in constant memory as with DCS

kernel

• CPU loops over potential map regions that are (24Å)3 in

volume (cube containing cutoff sphere)

• Large bins of atoms are appended to the constant

memory atom buffer until it is full, then GPU kernel is

launched

• Host loops over map regions reloading constant memory

and launching GPU kernels until completion

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

32

Large Bin Design Concept

• Map regions are (24Å)3 in volume

• Regions are sized large enough to provide

the GPU enough work in a single kernel

launch

– (48 lattice points)3 for lattice with 0.5Å spacing

– Small bins don’t provide the GPU enough

work to utilize all SMs, to amortize constant

memory update time, or kernel launch

overhead

33©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,

Illinois, August 2-5, 2010

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Large-bin Cutoff Kernel Evaluation

• 6 speedup relative to fast CPU version

• Work-inefficient

– Coarse spatial hashing into (24Å)3 bins

– Only 6.5% of the atoms a thread tests are

within the cutoff distance

• Better adaptation of the algorithm to the

GPU will gain another 2.5

34

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Improving Work Efficiency

• Thread block examines atom bins
up to the cutoff distance
– Use a sphere of bins

– All threads in a block scan the same
bins and atoms
• No hardware penalty for multiple

simultaneous reads of the same address

• Simplifies fetching of data

– The sphere has to be big enough to
cover all grid point at corners

– There will be a small level of
divergence
• Not all grid points processed by a thread

block relate to all atoms in a bin the
same way

• (A within cut-off distance of N but outside
cut-off of M)

35

M

N

A

The Neighborhood is a volume

• Calculating and

specifying all bin

indexes of the

sphere can be

quite complex

– Rough

approximations

reduce efficiency

36©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Neighborhood Offset List

(Pre-calculated)
• A list of relative offsets enumerating the bins

that are located within the cutoff distance for a
given location in the simulation volume

• Detection of surrounding atoms becomes
realistic for output grid points

– By visiting bins in the neighborhood offset list and
iterating over the atoms they contain

center (0, 0)

(1, 2)

not included

cutoff distance

(-1, -1)

a bin in the neighborhood

list

37©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Performance

• O(MN’) where M and N’ are the number of

output grid points and atoms in the

neighborhood offset list, respectively

– In general, N’ is small compared to the

number of all atoms

• Works well if the distribution of atoms is

uniform

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 38

Details on Small Bin Design

• For 0.5Å lattice spacing, a
(4Å)3 cube of the potential
map is computed by each
thread block
– 888 potential map points

– 128 threads per block
(4 points/thread)

– 34% of examined atoms
are within cutoff distance

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 39

More Design Considerations for the

Cutoff Kernel

• High memory throughput to atom data

essential

– Group threads together for locality

– Fetch bins of data into shared memory

– Structure atom data to allow fetching

• After taking care of memory demand,

optimize to reduce instruction count

– Loop and instruction-level optimization

40©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Another thread block runs

while this one waits

Tiling Atom Data

• Shared memory used to reduce Global
Memory bandwidth consumption
– Threads in a thread block collectively load

one bin at a time into shared memory

– Once loaded, threads scan atoms in
shared memory

– Reuse: Loaded bins used 128 times

Threads individually

compute potentials

using bin in shared mem

Collectively

load next

bin

Write bin to

shared

memoryS
u
s
p
e
n
d

Data returned

from global

memory R
e
a
d
y

Time

Execution cycle of a thread block

41©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Handling Overfull Bins

• In typical use, 2.6% of atoms exceed bin
capacity

• Spatial sorting puts these into a list of extra
atoms

• Extra atoms processed by the CPU

– Computed with CPU-optimized algorithm

– Takes about 66% as long as GPU computation

– Overlapping GPU and CPU computation yields
additional speedup

– CPU performs final integration of grid data

42©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

CPU Grid Data Integration

• Effect of overflow
atoms are added
to the CPU master
energygrid array

• Slice of grid point
values calculated
by GPU are added
into the master
energygrid array
while removing the
padded elements

0,0 0,1

1,0 1,1

…

… …

…

…

43©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

GPU Thread Coarsening

• Each thread computes

potentials at four potential

map points

– Reuse x and z components

of distance calculation

– Check x and z components

against cutoff distance

(cylinder test)

• Exit inner loop early upon

encountering the first

empty slot in a bin

44©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

GPU Thread Inner Loop
for (i = 0; i < BIN_DEPTH; i++) {

aq = AtomBinCache[i].w;

if (aq == 0) break;

dx = AtomBinCache[i].x - x;

dz = AtomBinCache[i].z - z;

dxdz2 = dx*dx + dz*dz;

if (dxdz2 > cutoff2) continue;

dy = AtomBinCache[i].y - y;

r2 = dy*dy + dxdz2;

if (r2 < cutoff2)

poten0 += aq * rsqrtf(r2);

// Simplified example

dy = dy - 2 * grid_spacing;

/* Repeat three more times */

}

Exit when an empty atom bin

entry is encountered

Cylinder test

Cutoff test

and potential value

calculation

45©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Cutoff Summation Runtime

50k–1M atom structure size

GPU cutoff with

CPU overlap:

12x-21x faster

than CPU core

46©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Summary

• Large bins allow re-use of all-input
kernels with little code change
– But work efficiency can be very low

• Use of small-sized bins require more
sophisticated kernel code to traverse list
of small bins
– Much higher work efficiency

– Small bins also serve as tiles for locality

• CPU processes overflow atoms from
fixed capacity bins

47©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

