
CS 677: Parallel Programming for 

Many-core Processors 

Lecture 6

Instructor: Philippos Mordohai

Webpage: mordohai.github.io

E-mail: Philippos.Mordohai@stevens.edu
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Homework Assignment 3

• Apply Sobel filter on (grayscale) images 
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Homework Assignment 4: CPU Version

for (i = 1; i < ImageNRows ‐ 1; i++)

for (j = 1; j < ImageNCols ‐1; j++)
{

sum1 = u[i‐1][j+1] ‐ u[i‐1][j‐1]
+ 2 * u[i][j+1] ‐ 2 * u[i][j‐1]
+ u[i+1][j+1] ‐ u[i+1][j‐1];

sum2 = u[i‐1][j‐1] + 2 * u[i‐1][j] 
+ u[i‐1][j+1] - u[i+1][j‐1] 
‐ 2 * u[i+1][j] ‐ u[i+1][j+1];

magnitude = sum1*sum1 + sum2*sum2;

if (magnitude > THRESHOLD)

e[i][j] = 255;

else

e[i][j] = 0;

}
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Homework Assignment 4

• Compute magnitude of filter response Gx
2+ Gy

2 and output:
– 0 if magnitude below threshold

– 255 if magnitude above threshold

– 0 pixel is within 1 pixel of image border
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Example Output
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Open Questions

• Memory bandwidth

• 1D vs. 2D block structure

– Fetching of pixels at block boundaries

• I prefer solutions without padding, but you 

can pad for a 10% penalty

• Solutions using global memory only will 

receive little credit
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The PPM Image Format

• PPM is a very simple format

• Each image file consists of a header 

followed by all the pixel data

• Header
P6

# comment 1

# comment 2

.

#comment n

rows columns maxvalue

pixels

P3 means ASCII file

P6 means binary (most 

practical)

See filereading code 

in homework zip file
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Reading the Header

fp = fopen(filename, "rb");

…

int num = fread(chars, sizeof(char), 1000, fp);  

if (chars[0] != 'P' || chars[1] != '6')     

{      

fprintf(stderr, “ERROR  file '%s' does not 

start with \"P6\"  I am expecting a binary 

PPM file\n", filename);      

return NULL;    

}

check for “P6” 

in first line
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Reading the Header (cont)

unsigned int width, height, maxvalue;  

char *ptr = chars+3; // P 6 newline  

if (*ptr == '#') // comment line!     

{      

ptr = 1 + strstr(ptr, "\n");    

}  

num = sscanf(ptr, "%d\n%d\n%d",  

&width, &height, &maxvalue);  

fprintf(stderr, "read %d things   width %d  height %d  

maxval %d\n", num, width, height, maxvalue);    

*xsize = width;  

*ysize = height;  

*maxval = maxvalue;

skip over comments by

looking for # in first 

column
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Reading the Data

// allocate buffer to read the rest of the file into  

int bufsize =  3 * width * height * sizeof(unsigned char);  

if ((*maxval) > 255) bufsize *= 2;  

unsigned char *buf = (unsigned char *)malloc( bufsize );

…

long numread = fread(buf, sizeof(char), bufsize, fp);

…

int pixels = (*xsize) * (*ysize);  

for (int i=0; i<pixels; i++) 

pic[i] = (int) buf[3*i];  // red channel   

return pic; // success
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Application Case Study –

Advanced MRI Reconstruction
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Objective

• To learn about computational thinking 

skills through a concrete example

– Problem formulation

– Designing implementations to steer around 

limitations

– Validating results

– Understanding the impact of your 

improvements
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Overview

• Magnetic resonance imaging

• Non-Cartesian Scanner Trajectory

• Least-squares (LS) reconstruction 
algorithm

• Optimizing the LS reconstruction on the 
G80

– Overcoming bottlenecks

– Performance tuning

• Summary
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Reconstructing MR Images

Cartesian Scan Data Spiral Scan Data

Gridding

FFT LS

Cartesian scan data + FFT: 

Slow scan, fast reconstruction, images may be poor

kx

ky

kx

ky

kx

ky
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FFT LS

Spiral scan data + Gridding + FFT: 

Fast scan, fast reconstruction, better images

kx

ky

kx

kykx

ky

1 Based on Fig 1 of Lustig et al, Fast Spiral Fourier Transform for Iterative MR Image Reconstruction, IEEE Int’l Symp. 

on Biomedical Imaging, 2004

Reconstructing MR Images

Cartesian Scan Data Spiral Scan Data

Gridding1
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FFT Least-Squares (LS)

Spiral scan data + LS

Superior images at expense of significantly more computation

kx

ky

kx

ky kx

ky

Reconstructing MR Images

Cartesian Scan Data Spiral Scan Data

Gridding
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An Exciting Revolution - Sodium Map of the 

Brain

• Images of sodium in the brain
– Very large number of samples for increased SNR

– Requires high-quality reconstruction

• Enables study of brain-cell viability before anatomic 
changes occur in stroke and cancer treatment – within 
days!

Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago
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Least-Squares Reconstruction

dFWWFF HHH  )(

Compute Q for FHF

Acquire Data

Compute FHd

Find ρ

• FHF depends only on scanner 
configuration

• WHW incorporates prior information, 
such as anatomical constraints

• FHd depends on scan data

• ρ vector containing voxel values of 
reconstructed image - found using 
linear solver
– 99.5% of the reconstruction time for 

a single image is devoted to 
computing FHd

– computing Q is even more 
expensive, but depends only on the 
scanner configuration and can be 
amortized
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Least-Squares Reconstruction

• The solution is:

• but for a relatively low-res reconstruction of 

1283 voxels, the inverted matrix contains 

well over four trillion complex-valued 

elements

• Use conjugate gradient to solve

dFWWFF HHH 1)( 
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Least-Squares Reconstruction

• WHW is sparse 

• FHF has convolutional structure

– each descending diagonal from left to right is 

constant

• Efficient FFT-based matrix multiplication is 

possible

– Out of scope for CS 677

dFWWFF HHH  )(



• What has to be computed is the Q matrix 
which depends only on the scan trajectory, but 
not the scan data

• where: 
– km is the location of the mth sample

– xn is the nth voxel

– φ() is the Fourier transform of the voxel basis 
function
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Least-Squares Reconstruction
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• What also needs to be computed is the 

vector FHd which depends on the data

• These two equations look similar but the 

computation of Q requires oversampling by 

a factor of 2 in each dimension

– Q is O(8MN) and FHd is O(MN)
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Least-Squares Reconstruction
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Least-Squares Reconstruction 

- Complexity

• Q: 1-2 days on CPU

• FHd: 6-7 hours on CPU

• ρ: 1.5 minutes on CPU

• Therefore, accelerate Q and FHd

computations
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for (m = 0; m < M; m++) {

phiMag[m] = rPhi[m]*rPhi[m] +

iPhi[m]*iPhi[m];

for (n = 0; n < N; n++) {

expQ = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

rQ[n] +=phiMag[m]*cos(expQ);

iQ[n] +=phiMag[m]*sin(expQ);

}

}

(a) Q computation

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) FHd computation

Q v.s. FHD

25
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for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

}

Algorithms to Accelerate
• Scan data

– M = # scan points

– kx, ky, kz = 3D scan data

• Voxel data

– N = # voxels

– x, y, z = input 3D voxel data

– rFhD, iFhD= output voxel data

• Complexity is O(MN)

• Inner loop

– 14 FP MUL or ADD ops

– 2 FP trig ops (12-13 FL OPs)

– 12 loads, 2 stores
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From C to CUDA: Step 1

What unit of work is assigned to each thread?
1. Each thread executes an iteration of 

the outer loop 

=> Problem: Each thread is trying to 

accumulate a partial sum to rFhD

and iFhD (requires a reduction)

2. Each thread executes an iteration of 

the inner loop. 

• Avoids the reduction problem 

• But now each thread is doing 

very little work 

• We need one grid for each outer 

loop iteration. 

• Performance limited by 

overheads for launching M grids 

and writing 2N values to global 

memory for each grid

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

}
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__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD);  sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg – iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg + rMu[m]*sArg;

}

}

One Possibility (Wrong)
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__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float rMu_reg, iMu_reg;

rMu_reg = rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu_reg = iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD);  sArg = sin(expFhD);

rFhD[n] +=  rMu_reg*cArg – iMu_reg*sArg;

iFhD[n] +=  iMu_reg*cArg + rMu_reg*sArg;

}

}

One Possibility (Wrong) - Improved



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 30

Back to the Drawing Board – Maybe map the n 

loop to threads?
for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg – iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg + rMu[m]*sArg;

}

}
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for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

}

(a) FHd computation

for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) after code motion

31
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for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

}

(a) FHd computation

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

}

for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) after loop fission

32
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__global__ void cmpMu(float* rPhi, iPhi, rD, iD, rMu, iMu)

{ 

int m = blockIdx.x * MU_THREAEDS_PER_BLOCK + threadIdx.x;

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

}

A Separate cmpMu Kernel
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A Second Option for the cmpFHd Kernel

Problem: Each thread is trying to accumulate a partial sum to rFhD and iFhD

__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

for (n = 0; n < N; n++) {

float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);

float cArg = cos(expFhD);  

float sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg – iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg + rMu[m]*sArg;

}

}
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for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

}  (a) before loop interchange

for (n = 0; n < N; n++) {

for (m = 0; m < M; m++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

}  (b) after loop interchange

Loop interchange of the FHD computation

35
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A Third Option for the FHd kernel
__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

for (m = 0; m < M; m++) {

float rMu_reg = rMu[m]; 

float iMu_reg = iMu[m];

float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);

float cArg = cos(expFhD);  

float sArg = sin(expFhD);

rFhD[n] +=  rMu_reg*cArg – iMu_reg*sArg;

iFhD[n] +=  iMu_reg*cArg + rMu_reg*sArg;

}

}



From C to CUDA: Step 2 

Getting around Memory Bandwidth 

Limitations

• Using registers

• Using constant memory

37
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__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

kx, ky, kz, x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(kx[m]*xn_r+ky[m]*yn_r+kz[m]*zn_r);

float cArg = cos(expFhD);  

float sArg = sin(expFhD);

rFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Using Registers to Reduce Global Memory Traffic

Compute-to-memory 

access ratio 14:7 (inside 

the loop)

Was 14:14 before (approx.)
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Tiling of Scan Data
LS reconstruction uses 

multiple grids
– Each grid operates on all 

scan data

– Each grid operates on a 
distinct subset of voxels

– Each thread in the same grid 
operates on a distinct voxel

for (m = 0; m < M/32; m++) {

exQ = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n])

rQ[n] += phi[m]*cos(exQ)

iQ[n] += phi[m]*sin(exQ)

}

Thread n operates on voxel n:

Grid MTB0 TB1 TBN………………..

………………SM 0 SM 15

Instruction Unit

32KB Register File 8KB Constant Cache

SP0 SP7

SFU0 SFU1

SM Array

………………….

Off-Chip Memory (Global, Constant)

x

y

z

rQ

iQ

kx

ky

kz

phi

Grid 1TB0 TB1 TBN………………..
Grid 0TB0 TB1 TBN………………..

Pixel Data Scan Data



Using Constant Memory

• All threads access scan data (kx, ky, kz) in 
the same order

• Threads don’t modify scan data

Put scan data in constant memory

Limited to 64kB (larger than shared memory)

But cached, for every 32 accesses to constant 
memory, at least 31 will be cached (96% 
reduction in time, no bank conflicts – broadcast 
mode to all threads in warp)
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__constant__ float kx_c[CHUNK_SIZE],

ky_c[CHUNK_SIZE], kz_c[CHUNK_SIZE];

…

void main() {

int i;

for (i = 0; i < M/CHUNK_SIZE; i++);

cudaMemcpyToSymbol(kx_c,&kx[i*CHUNK_SIZE],4*CHUNK_SIZE, 

cudaMemCpyHostToDevice); 

cudaMemcpyToSymbol(ky_c,&ky[i*CHUNK_SIZE],4*CHUNK_SIZE, 

cudaMemCpyHostToDevice);

cudaMemcpyToSymbol(kz_c,&kz[i*CHUNK_SIZE],4*CHUNK_SIZE, 

cudaMemCpyHostToDevice);

…

cmpFHD<<<FHD_THREADS_PER_BLOCK, N/FHD_THREADS_PER_BLOCK>>> 

(rPhi, iPhi, phiMag, x, y, z, rMu, iMu,

int CHUNK_SIZE);

}

/* Need to call kernel one more time if M is not */

/* perfect multiple of CHUNK SIZE */

}

Chunking k-space Data to Fit into Constant Memory
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__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(kx_c[m]*xn_r

+ky_c[m]*yn_r+kz_c[m]*zn_r);

float cArg = cos(expFhD);  

float sArg = sin(expFhD);

rFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Revised Kernel for Constant Memory

kx_c, ky_c and kz_c

are no longer 

arguments but global 

variables

Compute-to-memory 

access ratio 14:4 (inside 

the loop)

Can be 14:2 if compiler 

stores rMu[m] and iMu[m] 

in temporary registers
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kx[i] ky[i] kz[i] phi[i]

Constant Memory

Scan Data

(a) k-space data stored in separate arrays. (b) k-space data stored in an array 

whose elements are structs.

Effect of k-space data layout on constant cache efficiency.

• The previous implementations leads to bad (slow) 
performance

• Each constant cache entry is designed to store multiple 
consecutive words

• There are very few such entries – insufficient for all active 
warps in an SM

• Solution: use array of struct (contrary to last week’s advice)

kx

ky

kz

phi

kx[i]

ky[i]

ky[i]

phi[i]

Constant Memory

Scan Data

kx[i] ky[i] kz[i] phi[i]

Constant Memory

Scan Data
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struct kdata {

float x, float y, float z;

} k;

__constant__ struct kdata k_c[CHUNK_SIZE];

…

__ void main() {

int i;

for (i = 0; i < M/CHUNK_SIZE; i++);

cudaMemcpyToSymbol(k_c,k,12*CHUNK_SIZE, 

cudaMemCpyHostToDevice);

cmpFHD<<<FHD_THREADS_PER_BLOCK,N/FHD_THREADS_PER_BLOCK>>> 

();

}

Adjusting k-space data layout to improve cache efficiency
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__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(k[m].x*xn_r+k[m].y*yn_r+k[m].z*zn_r);

float cArg = cos(expFhD);  

float sArg = sin(expFhD);

rFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Adjusting the k-space data memory layout in the FHd kernel
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From C to CUDA: Step 3

Where are the potential bottlenecks?

Bottlenecks

• Memory Bandwidth

– See previous slides

• Trig operations

• Overhead (branches, address 

calculations)

– These are important due to short inner loop



Trigonometric Operations

• Use SFUs (Super Function Units)

– __sin and __cos are implemented as 

hardware instructions 

• Require 4 cycles (vs. 12 and 13 FLOP for software 

versions)

• Reduced accuracy

• Performance: from 22.8 GFLOPS to 92.2 

GFLOPS 
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Address Calculations

• Last bottleneck: Overhead of branches and 

address calculations

• Solution: Loop unrolling and experimental tuning

– Loop unrolling factors (1,2,4,8,16)

– Also experimentally tuned the number of threads per 

block and the number of scan points per grid (see 

following slides)

• Performance:179 GFLOPS (Q), 145 GFLOPS 

(FHd)
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Experimental Methodology
• Reconstruct a 3D image of a human brain1

– 3.2 M scan data points acquired via 3D spiral scan

– 256K voxels

• Compare performance of several reconstructions
– Gridding + FFT reconstruction1 on CPU (Intel Core 2 

Extreme Quadro)

– LS reconstruction on CPU (double-precision, single-
precision)

– LS reconstruction on GPU (NVIDIA GeForce 8800 GTX)

• Metrics
– Reconstruction time: compute FHd and run linear solver

– Run time: compute Q or FHd

1 Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago
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Effects of Approximations

• Avoid temptation to measure only absolute error (I0 – I)

– Can be deceptively large or small

• Metrics

– PSNR: Peak signal-to-noise ratio

– SNR: Signal-to-noise ratio

• Avoid temptation to consider only the error in the computed value

– Some applications are resistant to approximations; others are very sensitive
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A.N. Netravali and B.G. Haskell, Digital Pictures: Representation, Compression, and Standards (2nd Ed), Plenum Press, New York, NY (1995).



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 51

Experimental Tuning: Tradeoffs
• In the Q kernel, three parameters are natural candidates for 

experimental tuning

– Loop unrolling factor (1, 2, 4, 8, 16)

– Number of threads per block (32, 64, 128, 256, 512)

– Number of scan points per grid (32, 64, 128, 256, 512, 1024, 2048)

• Cannot optimize these parameters independently

– Resource sharing among threads (register file, shared memory)

– Optimizations that increase a thread’s performance often increase the 

thread’s resource consumption, reducing the total number of threads that 

execute in parallel

• Optimization space is not linear

– Threads are assigned to SMs in large thread blocks

– Causes discontinuity and non-linearity in the optimization space
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Experimental Tuning: Example

Increase in per-thread performance, but fewer threads:

Lower overall performance

TB0 TB1 TB2

32KB Register File

………

16KB Shared Memory

SFU0 SFU1

SP0 SP7

(a) Pre-“optimization”

Core Computation

Thread Contexts

SP Utilization

Area determines overall performance

32KB Register File

16KB Shared Memory

SFU0 SFU1

………

SP0 SP7

(b) Post-“optimization”

Insufficient registers to 

allocate 3 blocks

Thread Contexts

X
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Experimental Tuning: Scan Points 

Per Grid
• Each line in previous plot represents a 

combination of loop unrolling factor and threads 
per block

• The y-axis represents runtime, so lower is better

• Runtime tends to increase as the number of scan 
points per grid increases 

• That’s counter-intuitive. Why would performance 
get worse as the amount of data processed by 
each kernel increased?
Conflicts in the constant cache (across different 

blocks)
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Experimental Tuning: 

Scan Points Per Grid (Improved Data Layout)
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Experimental Tuning: Loop Unrolling 
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Sidebar: Optimizing the CPU 

Implementation
• Optimizing the CPU implementation of your application is very 

important

– Often, the transformations that increase performance on CPU also increase 

performance on GPU (and vice-versa)

– The research community won’t take your results seriously if your baseline 

is crippled

• Useful optimizations

– Data tiling

– SIMD vectorization (SSE)

– Fast math libraries (AMD, Intel)

– Classical optimizations (loop unrolling, etc)

• Intel compiler (icc, icpc)



Quantitative 

Evaluation
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Summary of Results
Q FHd

Reconstruction Run  

Time (m)

GFLOP Run 

Time (m)

GFLOP Linear 

Solver (m)

Recon. 

Time (m)

Gridding + FFT 

(CPU, DP)

N/A N/A N/A N/A N/A 0.39

LS (CPU, DP) 4009.0 0.3 518.0 0.4 1.59 519.59

LS (CPU, SP) 2678.7 0.5 342.3 0.7 1.61 343.91

LS (GPU, Naïve) 260.2 5.1 41.0 5.4 1.65 42.65

LS (GPU, 

CMem)

72.0 18.6 9.8 22.8 1.57 11.37

LS (GPU, 

CMem, 

SFU) 

13.6 98.2 2.4 92.2 1.60 4.00

LS (GPU, 

CMem, 

SFU, Exp)

7.5 178.9 1.5 144.5 1.69 3.19

8X
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Summary of Results
Q FHd

Reconstruction Run  Time (m) GFLOP Run Time 

(m)

GFLOP Linear 

Solver (m)

Recon. Time 

(m)

Gridding + FFT 

(CPU, DP)

N/A N/A N/A N/A N/A 0.39

LS (CPU, DP) 4009.0 0.3 518.0 0.4 1.59 519.59

LS (CPU, SP) 2678.7 0.5 342.3 0.7 1.61 343.91

LS (GPU, Naïve) 260.2 5.1 41.0 5.4 1.65 42.65

LS (GPU, CMem) 72.0 18.6 9.8 22.8 1.57 11.37

LS (GPU, CMem, 

SFU) 

13.6 98.2 2.4 92.2 1.60 4.00

LS (GPU, CMem, 

SFU, Exp)

7.5 178.9 1.5 144.5 1.69 3.19

108X228X357X



Timers

• Any timer can be used

– Check resolution

• Important: many CUDA API functions are 

asynchronous 

– They return control back to the calling CPU 

thread prior to completing their work

– All kernel launches are asynchronous 

– So are all memory copy functions with the 
Async suffix on the name
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Synchronization

• Synchronize the CPU thread with the GPU 
by calling cudaThreadSynchronize()

immediately before starting and stopping 

the CPU timer

• cudaThreadSynchronize()blocks the 

calling CPU thread until all CUDA calls 

previously issued by the thread are 

completed 
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Synchronization

• cudaEventSynchronize() blocks until 

a given event in a particular stream has 

been recorded by the GPU

– Safe only in the default (0) stream

– Fine for our purposes
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CUDA Timer
cudaEvent_t start, stop; 

float time; 

cudaEventCreate(&start); 

cudaEventCreate(&stop); 

cudaEventRecord( start, 0 ); 

kernel<<<grid,threads>>> ( d_odata, d_idata, 
size_x, size_y, NUM_REPS); 

cudaEventRecord( stop, 0 );

cudaEventSynchronize( stop ); // after cudaEventRecord

cudaEventElapsedTime( &time, start, stop ); 

cudaEventDestroy( start ); 

cudaEventDestroy( stop ); 
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Output

• time is in milliseconds 

• Its resolution of approximately half a 

microsecond

• The timings are measured on the GPU 

clock 

– Operating system–independent
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