
CS 677: Parallel Programming for 

Many-core Processors 

Lecture 6

Instructor: Philippos Mordohai

Webpage: mordohai.github.io

E-mail: Philippos.Mordohai@stevens.edu
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Homework Assignment 3

• Apply Sobel filter on (grayscale) images 
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Homework Assignment 4: CPU Version

for (i = 1; i < ImageNRows ‐ 1; i++)

for (j = 1; j < ImageNCols ‐1; j++)
{

sum1 = u[i‐1][j+1] ‐ u[i‐1][j‐1]
+ 2 * u[i][j+1] ‐ 2 * u[i][j‐1]
+ u[i+1][j+1] ‐ u[i+1][j‐1];

sum2 = u[i‐1][j‐1] + 2 * u[i‐1][j] 
+ u[i‐1][j+1] - u[i+1][j‐1] 
‐ 2 * u[i+1][j] ‐ u[i+1][j+1];

magnitude = sum1*sum1 + sum2*sum2;

if (magnitude > THRESHOLD)

e[i][j] = 255;

else

e[i][j] = 0;

}
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Homework Assignment 4

• Compute magnitude of filter response Gx
2+ Gy

2 and output:
– 0 if magnitude below threshold

– 255 if magnitude above threshold

– 0 pixel is within 1 pixel of image border
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Example Output
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Open Questions

• Memory bandwidth

• 1D vs. 2D block structure

– Fetching of pixels at block boundaries

• I prefer solutions without padding, but you 

can pad for a 10% penalty

• Solutions using global memory only will 

receive little credit
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The PPM Image Format

• PPM is a very simple format

• Each image file consists of a header 

followed by all the pixel data

• Header
P6

# comment 1

# comment 2

.

#comment n

rows columns maxvalue

pixels

P3 means ASCII file

P6 means binary (most 

practical)

See filereading code 

in homework zip file

7

Use Gimp or IrfanView to manipulate 

images and convert between formatsMary Hall

CS6963 University of Utah



Reading the Header

fp = fopen(filename, "rb");

…

int num = fread(chars, sizeof(char), 1000, fp);  

if (chars[0] != 'P' || chars[1] != '6')     

{      

fprintf(stderr, “ERROR  file '%s' does not 

start with \"P6\"  I am expecting a binary 

PPM file\n", filename);      

return NULL;    

}

check for “P6” 

in first line
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Reading the Header (cont)

unsigned int width, height, maxvalue;  

char *ptr = chars+3; // P 6 newline  

if (*ptr == '#') // comment line!     

{      

ptr = 1 + strstr(ptr, "\n");    

}  

num = sscanf(ptr, "%d\n%d\n%d",  

&width, &height, &maxvalue);  

fprintf(stderr, "read %d things   width %d  height %d  

maxval %d\n", num, width, height, maxvalue);    

*xsize = width;  

*ysize = height;  

*maxval = maxvalue;

skip over comments by

looking for # in first 

column
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Reading the Data

// allocate buffer to read the rest of the file into  

int bufsize =  3 * width * height * sizeof(unsigned char);  

if ((*maxval) > 255) bufsize *= 2;  

unsigned char *buf = (unsigned char *)malloc( bufsize );

…

long numread = fread(buf, sizeof(char), bufsize, fp);

…

int pixels = (*xsize) * (*ysize);  

for (int i=0; i<pixels; i++) 

pic[i] = (int) buf[3*i];  // red channel   

return pic; // success
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Application Case Study –

Advanced MRI Reconstruction
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Objective

• To learn about computational thinking 

skills through a concrete example

– Problem formulation

– Designing implementations to steer around 

limitations

– Validating results

– Understanding the impact of your 

improvements
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Overview

• Magnetic resonance imaging

• Non-Cartesian Scanner Trajectory

• Least-squares (LS) reconstruction 
algorithm

• Optimizing the LS reconstruction on the 
G80

– Overcoming bottlenecks

– Performance tuning

• Summary
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Reconstructing MR Images

Cartesian Scan Data Spiral Scan Data

Gridding

FFT LS

Cartesian scan data + FFT: 

Slow scan, fast reconstruction, images may be poor

kx

ky

kx

ky

kx

ky
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FFT LS

Spiral scan data + Gridding + FFT: 

Fast scan, fast reconstruction, better images

kx

ky

kx

kykx

ky

1 Based on Fig 1 of Lustig et al, Fast Spiral Fourier Transform for Iterative MR Image Reconstruction, IEEE Int’l Symp. 

on Biomedical Imaging, 2004

Reconstructing MR Images

Cartesian Scan Data Spiral Scan Data

Gridding1
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FFT Least-Squares (LS)

Spiral scan data + LS

Superior images at expense of significantly more computation

kx

ky

kx

ky kx

ky

Reconstructing MR Images

Cartesian Scan Data Spiral Scan Data

Gridding
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An Exciting Revolution - Sodium Map of the 

Brain

• Images of sodium in the brain
– Very large number of samples for increased SNR

– Requires high-quality reconstruction

• Enables study of brain-cell viability before anatomic 
changes occur in stroke and cancer treatment – within 
days!

Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago
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Least-Squares Reconstruction

dFWWFF HHH  )(

Compute Q for FHF

Acquire Data

Compute FHd

Find ρ

• FHF depends only on scanner 
configuration

• WHW incorporates prior information, 
such as anatomical constraints

• FHd depends on scan data

• ρ vector containing voxel values of 
reconstructed image - found using 
linear solver
– 99.5% of the reconstruction time for 

a single image is devoted to 
computing FHd

– computing Q is even more 
expensive, but depends only on the 
scanner configuration and can be 
amortized
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Least-Squares Reconstruction

• The solution is:

• but for a relatively low-res reconstruction of 

1283 voxels, the inverted matrix contains 

well over four trillion complex-valued 

elements

• Use conjugate gradient to solve

dFWWFF HHH 1)( 
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Least-Squares Reconstruction

• WHW is sparse 

• FHF has convolutional structure

– each descending diagonal from left to right is 

constant

• Efficient FFT-based matrix multiplication is 

possible

– Out of scope for CS 677

dFWWFF HHH  )(



• What has to be computed is the Q matrix 
which depends only on the scan trajectory, but 
not the scan data

• where: 
– km is the location of the mth sample

– xn is the nth voxel

– φ() is the Fourier transform of the voxel basis 
function
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Least-Squares Reconstruction
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• What also needs to be computed is the 

vector FHd which depends on the data

• These two equations look similar but the 

computation of Q requires oversampling by 

a factor of 2 in each dimension

– Q is O(8MN) and FHd is O(MN)
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Least-Squares Reconstruction
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Least-Squares Reconstruction 

- Complexity

• Q: 1-2 days on CPU

• FHd: 6-7 hours on CPU

• ρ: 1.5 minutes on CPU

• Therefore, accelerate Q and FHd

computations
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for (m = 0; m < M; m++) {

phiMag[m] = rPhi[m]*rPhi[m] +

iPhi[m]*iPhi[m];

for (n = 0; n < N; n++) {

expQ = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

rQ[n] +=phiMag[m]*cos(expQ);

iQ[n] +=phiMag[m]*sin(expQ);

}

}

(a) Q computation

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) FHd computation

Q v.s. FHD

25
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for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

}

Algorithms to Accelerate
• Scan data

– M = # scan points

– kx, ky, kz = 3D scan data

• Voxel data

– N = # voxels

– x, y, z = input 3D voxel data

– rFhD, iFhD= output voxel data

• Complexity is O(MN)

• Inner loop

– 14 FP MUL or ADD ops

– 2 FP trig ops (12-13 FL OPs)

– 12 loads, 2 stores
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From C to CUDA: Step 1

What unit of work is assigned to each thread?
1. Each thread executes an iteration of 

the outer loop 

=> Problem: Each thread is trying to 

accumulate a partial sum to rFhD

and iFhD (requires a reduction)

2. Each thread executes an iteration of 

the inner loop. 

• Avoids the reduction problem 

• But now each thread is doing 

very little work 

• We need one grid for each outer 

loop iteration. 

• Performance limited by 

overheads for launching M grids 

and writing 2N values to global 

memory for each grid

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

}
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__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD);  sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg – iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg + rMu[m]*sArg;

}

}

One Possibility (Wrong)
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__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float rMu_reg, iMu_reg;

rMu_reg = rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu_reg = iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD);  sArg = sin(expFhD);

rFhD[n] +=  rMu_reg*cArg – iMu_reg*sArg;

iFhD[n] +=  iMu_reg*cArg + rMu_reg*sArg;

}

}

One Possibility (Wrong) - Improved



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 30

Back to the Drawing Board – Maybe map the n 

loop to threads?
for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg – iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg + rMu[m]*sArg;

}

}
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for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

}

(a) FHd computation

for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) after code motion

31
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for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

}

(a) FHd computation

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

}

for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) after loop fission

32
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__global__ void cmpMu(float* rPhi, iPhi, rD, iD, rMu, iMu)

{ 

int m = blockIdx.x * MU_THREAEDS_PER_BLOCK + threadIdx.x;

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

}

A Separate cmpMu Kernel
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A Second Option for the cmpFHd Kernel

Problem: Each thread is trying to accumulate a partial sum to rFhD and iFhD

__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

for (n = 0; n < N; n++) {

float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);

float cArg = cos(expFhD);  

float sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg – iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg + rMu[m]*sArg;

}

}
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for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

}  (a) before loop interchange

for (n = 0; n < N; n++) {

for (m = 0; m < M; m++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

}

}  (b) after loop interchange

Loop interchange of the FHD computation

35
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A Third Option for the FHd kernel
__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

for (m = 0; m < M; m++) {

float rMu_reg = rMu[m]; 

float iMu_reg = iMu[m];

float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);

float cArg = cos(expFhD);  

float sArg = sin(expFhD);

rFhD[n] +=  rMu_reg*cArg – iMu_reg*sArg;

iFhD[n] +=  iMu_reg*cArg + rMu_reg*sArg;

}

}



From C to CUDA: Step 2 

Getting around Memory Bandwidth 

Limitations

• Using registers

• Using constant memory

37
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__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

kx, ky, kz, x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(kx[m]*xn_r+ky[m]*yn_r+kz[m]*zn_r);

float cArg = cos(expFhD);  

float sArg = sin(expFhD);

rFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Using Registers to Reduce Global Memory Traffic

Compute-to-memory 

access ratio 14:7 (inside 

the loop)

Was 14:14 before (approx.)
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Tiling of Scan Data
LS reconstruction uses 

multiple grids
– Each grid operates on all 

scan data

– Each grid operates on a 
distinct subset of voxels

– Each thread in the same grid 
operates on a distinct voxel

for (m = 0; m < M/32; m++) {

exQ = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n])

rQ[n] += phi[m]*cos(exQ)

iQ[n] += phi[m]*sin(exQ)

}

Thread n operates on voxel n:

Grid MTB0 TB1 TBN………………..

………………SM 0 SM 15

Instruction Unit

32KB Register File 8KB Constant Cache

SP0 SP7

SFU0 SFU1

SM Array

………………….

Off-Chip Memory (Global, Constant)

x

y

z

rQ

iQ

kx

ky

kz

phi

Grid 1TB0 TB1 TBN………………..
Grid 0TB0 TB1 TBN………………..

Pixel Data Scan Data



Using Constant Memory

• All threads access scan data (kx, ky, kz) in 
the same order

• Threads don’t modify scan data

Put scan data in constant memory

Limited to 64kB (larger than shared memory)

But cached, for every 32 accesses to constant 
memory, at least 31 will be cached (96% 
reduction in time, no bank conflicts – broadcast 
mode to all threads in warp)
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__constant__ float kx_c[CHUNK_SIZE],

ky_c[CHUNK_SIZE], kz_c[CHUNK_SIZE];

…

void main() {

int i;

for (i = 0; i < M/CHUNK_SIZE; i++);

cudaMemcpyToSymbol(kx_c,&kx[i*CHUNK_SIZE],4*CHUNK_SIZE, 

cudaMemCpyHostToDevice); 

cudaMemcpyToSymbol(ky_c,&ky[i*CHUNK_SIZE],4*CHUNK_SIZE, 

cudaMemCpyHostToDevice);

cudaMemcpyToSymbol(kz_c,&kz[i*CHUNK_SIZE],4*CHUNK_SIZE, 

cudaMemCpyHostToDevice);

…

cmpFHD<<<FHD_THREADS_PER_BLOCK, N/FHD_THREADS_PER_BLOCK>>> 

(rPhi, iPhi, phiMag, x, y, z, rMu, iMu,

int CHUNK_SIZE);

}

/* Need to call kernel one more time if M is not */

/* perfect multiple of CHUNK SIZE */

}

Chunking k-space Data to Fit into Constant Memory
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__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(kx_c[m]*xn_r

+ky_c[m]*yn_r+kz_c[m]*zn_r);

float cArg = cos(expFhD);  

float sArg = sin(expFhD);

rFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Revised Kernel for Constant Memory

kx_c, ky_c and kz_c

are no longer 

arguments but global 

variables

Compute-to-memory 

access ratio 14:4 (inside 

the loop)

Can be 14:2 if compiler 

stores rMu[m] and iMu[m] 

in temporary registers
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kx[i] ky[i] kz[i] phi[i]

Constant Memory

Scan Data

(a) k-space data stored in separate arrays. (b) k-space data stored in an array 

whose elements are structs.

Effect of k-space data layout on constant cache efficiency.

• The previous implementations leads to bad (slow) 
performance

• Each constant cache entry is designed to store multiple 
consecutive words

• There are very few such entries – insufficient for all active 
warps in an SM

• Solution: use array of struct (contrary to last week’s advice)

kx

ky

kz

phi

kx[i]

ky[i]

ky[i]

phi[i]

Constant Memory

Scan Data

kx[i] ky[i] kz[i] phi[i]

Constant Memory

Scan Data
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struct kdata {

float x, float y, float z;

} k;

__constant__ struct kdata k_c[CHUNK_SIZE];

…

__ void main() {

int i;

for (i = 0; i < M/CHUNK_SIZE; i++);

cudaMemcpyToSymbol(k_c,k,12*CHUNK_SIZE, 

cudaMemCpyHostToDevice);

cmpFHD<<<FHD_THREADS_PER_BLOCK,N/FHD_THREADS_PER_BLOCK>>> 

();

}

Adjusting k-space data layout to improve cache efficiency
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__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(k[m].x*xn_r+k[m].y*yn_r+k[m].z*zn_r);

float cArg = cos(expFhD);  

float sArg = sin(expFhD);

rFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Adjusting the k-space data memory layout in the FHd kernel
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From C to CUDA: Step 3

Where are the potential bottlenecks?

Bottlenecks

• Memory Bandwidth

– See previous slides

• Trig operations

• Overhead (branches, address 

calculations)

– These are important due to short inner loop



Trigonometric Operations

• Use SFUs (Super Function Units)

– __sin and __cos are implemented as 

hardware instructions 

• Require 4 cycles (vs. 12 and 13 FLOP for software 

versions)

• Reduced accuracy

• Performance: from 22.8 GFLOPS to 92.2 

GFLOPS 
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Address Calculations

• Last bottleneck: Overhead of branches and 

address calculations

• Solution: Loop unrolling and experimental tuning

– Loop unrolling factors (1,2,4,8,16)

– Also experimentally tuned the number of threads per 

block and the number of scan points per grid (see 

following slides)

• Performance:179 GFLOPS (Q), 145 GFLOPS 

(FHd)
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Experimental Methodology
• Reconstruct a 3D image of a human brain1

– 3.2 M scan data points acquired via 3D spiral scan

– 256K voxels

• Compare performance of several reconstructions
– Gridding + FFT reconstruction1 on CPU (Intel Core 2 

Extreme Quadro)

– LS reconstruction on CPU (double-precision, single-
precision)

– LS reconstruction on GPU (NVIDIA GeForce 8800 GTX)

• Metrics
– Reconstruction time: compute FHd and run linear solver

– Run time: compute Q or FHd

1 Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago
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Effects of Approximations

• Avoid temptation to measure only absolute error (I0 – I)

– Can be deceptively large or small

• Metrics

– PSNR: Peak signal-to-noise ratio

– SNR: Signal-to-noise ratio

• Avoid temptation to consider only the error in the computed value

– Some applications are resistant to approximations; others are very sensitive
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A.N. Netravali and B.G. Haskell, Digital Pictures: Representation, Compression, and Standards (2nd Ed), Plenum Press, New York, NY (1995).
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Experimental Tuning: Tradeoffs
• In the Q kernel, three parameters are natural candidates for 

experimental tuning

– Loop unrolling factor (1, 2, 4, 8, 16)

– Number of threads per block (32, 64, 128, 256, 512)

– Number of scan points per grid (32, 64, 128, 256, 512, 1024, 2048)

• Cannot optimize these parameters independently

– Resource sharing among threads (register file, shared memory)

– Optimizations that increase a thread’s performance often increase the 

thread’s resource consumption, reducing the total number of threads that 

execute in parallel

• Optimization space is not linear

– Threads are assigned to SMs in large thread blocks

– Causes discontinuity and non-linearity in the optimization space
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Experimental Tuning: Example

Increase in per-thread performance, but fewer threads:

Lower overall performance

TB0 TB1 TB2

32KB Register File

………

16KB Shared Memory

SFU0 SFU1

SP0 SP7

(a) Pre-“optimization”

Core Computation

Thread Contexts

SP Utilization

Area determines overall performance

32KB Register File

16KB Shared Memory

SFU0 SFU1

………

SP0 SP7

(b) Post-“optimization”

Insufficient registers to 

allocate 3 blocks

Thread Contexts

X
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Experimental Tuning: Scan Points 

Per Grid
• Each line in previous plot represents a 

combination of loop unrolling factor and threads 
per block

• The y-axis represents runtime, so lower is better

• Runtime tends to increase as the number of scan 
points per grid increases 

• That’s counter-intuitive. Why would performance 
get worse as the amount of data processed by 
each kernel increased?
Conflicts in the constant cache (across different 

blocks)
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Experimental Tuning: 

Scan Points Per Grid (Improved Data Layout)
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Experimental Tuning: Loop Unrolling 

Factor

2

4

6

8

10

12

14

1 2 4 8 16

Loop unrolling factor

T
im

e
 (

s
)



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 57

Sidebar: Optimizing the CPU 

Implementation
• Optimizing the CPU implementation of your application is very 

important

– Often, the transformations that increase performance on CPU also increase 

performance on GPU (and vice-versa)

– The research community won’t take your results seriously if your baseline 

is crippled

• Useful optimizations

– Data tiling

– SIMD vectorization (SSE)

– Fast math libraries (AMD, Intel)

– Classical optimizations (loop unrolling, etc)

• Intel compiler (icc, icpc)



Quantitative 

Evaluation
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Summary of Results
Q FHd

Reconstruction Run  

Time (m)

GFLOP Run 

Time (m)

GFLOP Linear 

Solver (m)

Recon. 

Time (m)

Gridding + FFT 

(CPU, DP)

N/A N/A N/A N/A N/A 0.39

LS (CPU, DP) 4009.0 0.3 518.0 0.4 1.59 519.59

LS (CPU, SP) 2678.7 0.5 342.3 0.7 1.61 343.91

LS (GPU, Naïve) 260.2 5.1 41.0 5.4 1.65 42.65

LS (GPU, 

CMem)

72.0 18.6 9.8 22.8 1.57 11.37

LS (GPU, 

CMem, 

SFU) 

13.6 98.2 2.4 92.2 1.60 4.00

LS (GPU, 

CMem, 

SFU, Exp)

7.5 178.9 1.5 144.5 1.69 3.19

8X
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Summary of Results
Q FHd

Reconstruction Run  Time (m) GFLOP Run Time 

(m)

GFLOP Linear 

Solver (m)

Recon. Time 

(m)

Gridding + FFT 

(CPU, DP)

N/A N/A N/A N/A N/A 0.39

LS (CPU, DP) 4009.0 0.3 518.0 0.4 1.59 519.59

LS (CPU, SP) 2678.7 0.5 342.3 0.7 1.61 343.91

LS (GPU, Naïve) 260.2 5.1 41.0 5.4 1.65 42.65

LS (GPU, CMem) 72.0 18.6 9.8 22.8 1.57 11.37

LS (GPU, CMem, 

SFU) 

13.6 98.2 2.4 92.2 1.60 4.00

LS (GPU, CMem, 

SFU, Exp)

7.5 178.9 1.5 144.5 1.69 3.19

108X228X357X



Timers

• Any timer can be used

– Check resolution

• Important: many CUDA API functions are 

asynchronous 

– They return control back to the calling CPU 

thread prior to completing their work

– All kernel launches are asynchronous 

– So are all memory copy functions with the 
Async suffix on the name
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Synchronization

• Synchronize the CPU thread with the GPU 
by calling cudaThreadSynchronize()

immediately before starting and stopping 

the CPU timer

• cudaThreadSynchronize()blocks the 

calling CPU thread until all CUDA calls 

previously issued by the thread are 

completed 
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Synchronization

• cudaEventSynchronize() blocks until 

a given event in a particular stream has 

been recorded by the GPU

– Safe only in the default (0) stream

– Fine for our purposes
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CUDA Timer
cudaEvent_t start, stop; 

float time; 

cudaEventCreate(&start); 

cudaEventCreate(&stop); 

cudaEventRecord( start, 0 ); 

kernel<<<grid,threads>>> ( d_odata, d_idata, 
size_x, size_y, NUM_REPS); 

cudaEventRecord( stop, 0 );

cudaEventSynchronize( stop ); // after cudaEventRecord

cudaEventElapsedTime( &time, start, stop ); 

cudaEventDestroy( start ); 

cudaEventDestroy( stop ); 
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Output

• time is in milliseconds 

• Its resolution of approximately half a 

microsecond

• The timings are measured on the GPU 

clock 

– Operating system–independent
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