
CS 677: Parallel Programming for

Many-core Processors

Lecture 6

Instructor: Philippos Mordohai

Webpage: mordohai.github.io

E-mail: Philippos.Mordohai@stevens.edu

1

mailto:Philippos.Mordohai@stevens.edu

Homework Assignment 3

• Apply Sobel filter on (grayscale) images

2Mary Hall

CS6963 University of Utah

























101

202

101

xG















 



121

000

121

yG

Homework Assignment 4: CPU Version

for (i = 1; i < ImageNRows ‐ 1; i++)

for (j = 1; j < ImageNCols ‐1; j++)
{

sum1 = u[i‐1][j+1] ‐ u[i‐1][j‐1]
+ 2 * u[i][j+1] ‐ 2 * u[i][j‐1]
+ u[i+1][j+1] ‐ u[i+1][j‐1];

sum2 = u[i‐1][j‐1] + 2 * u[i‐1][j]
+ u[i‐1][j+1] - u[i+1][j‐1]
‐ 2 * u[i+1][j] ‐ u[i+1][j+1];

magnitude = sum1*sum1 + sum2*sum2;

if (magnitude > THRESHOLD)

e[i][j] = 255;

else

e[i][j] = 0;

}

3Mary Hall

CS6963 University of Utah

Homework Assignment 4

• Compute magnitude of filter response Gx
2+ Gy

2 and output:
– 0 if magnitude below threshold

– 255 if magnitude above threshold

– 0 pixel is within 1 pixel of image border

4Mary Hall

CS6963 University of Utah

Example Output

5Mary Hall

CS6963 University of Utah

Open Questions

• Memory bandwidth

• 1D vs. 2D block structure

– Fetching of pixels at block boundaries

• I prefer solutions without padding, but you

can pad for a 10% penalty

• Solutions using global memory only will

receive little credit

6Mary Hall

CS6963 University of Utah

The PPM Image Format

• PPM is a very simple format

• Each image file consists of a header

followed by all the pixel data

• Header
P6

comment 1

comment 2

.

#comment n

rows columns maxvalue

pixels

P3 means ASCII file

P6 means binary (most

practical)

See filereading code

in homework zip file

7

Use Gimp or IrfanView to manipulate

images and convert between formatsMary Hall

CS6963 University of Utah

Reading the Header

fp = fopen(filename, "rb");

…

int num = fread(chars, sizeof(char), 1000, fp);

if (chars[0] != 'P' || chars[1] != '6')

{

fprintf(stderr, “ERROR file '%s' does not

start with \"P6\" I am expecting a binary

PPM file\n", filename);

return NULL;

}

check for “P6”

in first line

8Mary Hall

CS6963 University of Utah

Reading the Header (cont)

unsigned int width, height, maxvalue;

char *ptr = chars+3; // P 6 newline

if (*ptr == '#') // comment line!

{

ptr = 1 + strstr(ptr, "\n");

}

num = sscanf(ptr, "%d\n%d\n%d",

&width, &height, &maxvalue);

fprintf(stderr, "read %d things width %d height %d

maxval %d\n", num, width, height, maxvalue);

*xsize = width;

*ysize = height;

*maxval = maxvalue;

skip over comments by

looking for # in first

column

9Mary Hall

CS6963 University of Utah

Reading the Data

// allocate buffer to read the rest of the file into

int bufsize = 3 * width * height * sizeof(unsigned char);

if ((*maxval) > 255) bufsize *= 2;

unsigned char *buf = (unsigned char *)malloc(bufsize);

…

long numread = fread(buf, sizeof(char), bufsize, fp);

…

int pixels = (*xsize) * (*ysize);

for (int i=0; i<pixels; i++)

pic[i] = (int) buf[3*i]; // red channel

return pic; // success

10Mary Hall

CS6963 University of Utah

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

Application Case Study –

Advanced MRI Reconstruction

11

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 12

Objective

• To learn about computational thinking

skills through a concrete example

– Problem formulation

– Designing implementations to steer around

limitations

– Validating results

– Understanding the impact of your

improvements

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 13

Acknowledgements

Sam S. Stone§, Haoran Yi§, Justin P. Haldar†, Deepthi
Nandakumar, Bradley P. Sutton†,

Zhi-Pei Liang†, Keith Thulburin*

§Center for Reliable and

High-Performance Computing

† Beckman Institute for

Advanced Science and Technology

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

* University of Illinois, Chicago Medical Center

13

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 14

Overview

• Magnetic resonance imaging

• Non-Cartesian Scanner Trajectory

• Least-squares (LS) reconstruction
algorithm

• Optimizing the LS reconstruction on the
G80

– Overcoming bottlenecks

– Performance tuning

• Summary

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 15

Reconstructing MR Images

Cartesian Scan Data Spiral Scan Data

Gridding

FFT LS

Cartesian scan data + FFT:

Slow scan, fast reconstruction, images may be poor

kx

ky

kx

ky

kx

ky

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

16

FFT LS

Spiral scan data + Gridding + FFT:

Fast scan, fast reconstruction, better images

kx

ky

kx

kykx

ky

1 Based on Fig 1 of Lustig et al, Fast Spiral Fourier Transform for Iterative MR Image Reconstruction, IEEE Int’l Symp.

on Biomedical Imaging, 2004

Reconstructing MR Images

Cartesian Scan Data Spiral Scan Data

Gridding1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 17

FFT Least-Squares (LS)

Spiral scan data + LS

Superior images at expense of significantly more computation

kx

ky

kx

ky kx

ky

Reconstructing MR Images

Cartesian Scan Data Spiral Scan Data

Gridding

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

An Exciting Revolution - Sodium Map of the

Brain

• Images of sodium in the brain
– Very large number of samples for increased SNR

– Requires high-quality reconstruction

• Enables study of brain-cell viability before anatomic
changes occur in stroke and cancer treatment – within
days!

Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago

18

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 19

Least-Squares Reconstruction

dFWWFF HHH  )(

Compute Q for FHF

Acquire Data

Compute FHd

Find ρ

• FHF depends only on scanner
configuration

• WHW incorporates prior information,
such as anatomical constraints

• FHd depends on scan data

• ρ vector containing voxel values of
reconstructed image - found using
linear solver
– 99.5% of the reconstruction time for

a single image is devoted to
computing FHd

– computing Q is even more
expensive, but depends only on the
scanner configuration and can be
amortized

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 20

Least-Squares Reconstruction

• The solution is:

• but for a relatively low-res reconstruction of

1283 voxels, the inverted matrix contains

well over four trillion complex-valued

elements

• Use conjugate gradient to solve

dFWWFF HHH 1)(

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 21

Least-Squares Reconstruction

• WHW is sparse

• FHF has convolutional structure

– each descending diagonal from left to right is

constant

• Efficient FFT-based matrix multiplication is

possible

– Out of scope for CS 677

dFWWFF HHH  )(

• What has to be computed is the Q matrix
which depends only on the scan trajectory, but
not the scan data

• where:
– km is the location of the mth sample

– xn is the nth voxel

– φ() is the Fourier transform of the voxel basis
function

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 22

Least-Squares Reconstruction







M

m

xki

mn
nmekxQ

1

)2(2|)(|)(


• What also needs to be computed is the

vector FHd which depends on the data

• These two equations look similar but the

computation of Q requires oversampling by

a factor of 2 in each dimension

– Q is O(8MN) and FHd is O(MN)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 23

Least-Squares Reconstruction







M

m

xki

mmn

H nmekdkdF
1

)2(*)()(][


© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 24

Least-Squares Reconstruction

- Complexity

• Q: 1-2 days on CPU

• FHd: 6-7 hours on CPU

• ρ: 1.5 minutes on CPU

• Therefore, accelerate Q and FHd

computations

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 25

for (m = 0; m < M; m++) {

phiMag[m] = rPhi[m]*rPhi[m] +

iPhi[m]*iPhi[m];

for (n = 0; n < N; n++) {

expQ = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

rQ[n] +=phiMag[m]*cos(expQ);

iQ[n] +=phiMag[m]*sin(expQ);

}

}

(a) Q computation

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) FHd computation

Q v.s. FHD

25

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 - ECE408, University of Illinois, Urbana-Champaign

26

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

}

Algorithms to Accelerate
• Scan data

– M = # scan points

– kx, ky, kz = 3D scan data

• Voxel data

– N = # voxels

– x, y, z = input 3D voxel data

– rFhD, iFhD= output voxel data

• Complexity is O(MN)

• Inner loop

– 14 FP MUL or ADD ops

– 2 FP trig ops (12-13 FL OPs)

– 12 loads, 2 stores

27

From C to CUDA: Step 1

What unit of work is assigned to each thread?
1. Each thread executes an iteration of

the outer loop

=> Problem: Each thread is trying to

accumulate a partial sum to rFhD

and iFhD (requires a reduction)

2. Each thread executes an iteration of

the inner loop.

• Avoids the reduction problem

• But now each thread is doing

very little work

• We need one grid for each outer

loop iteration.

• Performance limited by

overheads for launching M grids

and writing 2N values to global

memory for each grid

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 28

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD); sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg – iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;

}

}

One Possibility (Wrong)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 29

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float rMu_reg, iMu_reg;

rMu_reg = rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu_reg = iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD); sArg = sin(expFhD);

rFhD[n] += rMu_reg*cArg – iMu_reg*sArg;

iFhD[n] += iMu_reg*cArg + rMu_reg*sArg;

}

}

One Possibility (Wrong) - Improved

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 30

Back to the Drawing Board – Maybe map the n

loop to threads?
for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg – iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;

}

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

}

(a) FHd computation

for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) after code motion

31

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

}

(a) FHd computation

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

}

for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) after loop fission

32

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 33

__global__ void cmpMu(float* rPhi, iPhi, rD, iD, rMu, iMu)

{

int m = blockIdx.x * MU_THREAEDS_PER_BLOCK + threadIdx.x;

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

}

A Separate cmpMu Kernel

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 34

A Second Option for the cmpFHd Kernel

Problem: Each thread is trying to accumulate a partial sum to rFhD and iFhD

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

for (n = 0; n < N; n++) {

float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);

float cArg = cos(expFhD);

float sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg – iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;

}

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

} (a) before loop interchange

for (n = 0; n < N; n++) {

for (m = 0; m < M; m++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) after loop interchange

Loop interchange of the FHD computation

35

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 36

A Third Option for the FHd kernel
__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

for (m = 0; m < M; m++) {

float rMu_reg = rMu[m];

float iMu_reg = iMu[m];

float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);

float cArg = cos(expFhD);

float sArg = sin(expFhD);

rFhD[n] += rMu_reg*cArg – iMu_reg*sArg;

iFhD[n] += iMu_reg*cArg + rMu_reg*sArg;

}

}

From C to CUDA: Step 2

Getting around Memory Bandwidth

Limitations

• Using registers

• Using constant memory

37

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 38

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

kx, ky, kz, x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(kx[m]*xn_r+ky[m]*yn_r+kz[m]*zn_r);

float cArg = cos(expFhD);

float sArg = sin(expFhD);

rFhDn_r += rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Using Registers to Reduce Global Memory Traffic

Compute-to-memory

access ratio 14:7 (inside

the loop)

Was 14:14 before (approx.)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 39

Tiling of Scan Data
LS reconstruction uses

multiple grids
– Each grid operates on all

scan data

– Each grid operates on a
distinct subset of voxels

– Each thread in the same grid
operates on a distinct voxel

for (m = 0; m < M/32; m++) {

exQ = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n])

rQ[n] += phi[m]*cos(exQ)

iQ[n] += phi[m]*sin(exQ)

}

Thread n operates on voxel n:

Grid MTB0 TB1 TBN………………..

………………SM 0 SM 15

Instruction Unit

32KB Register File 8KB Constant Cache

SP0 SP7

SFU0 SFU1

SM Array

………………….

Off-Chip Memory (Global, Constant)

x

y

z

rQ

iQ

kx

ky

kz

phi

Grid 1TB0 TB1 TBN………………..
Grid 0TB0 TB1 TBN………………..

Pixel Data Scan Data

Using Constant Memory

• All threads access scan data (kx, ky, kz) in
the same order

• Threads don’t modify scan data

Put scan data in constant memory

Limited to 64kB (larger than shared memory)

But cached, for every 32 accesses to constant
memory, at least 31 will be cached (96%
reduction in time, no bank conflicts – broadcast
mode to all threads in warp)

40

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 41

__constant__ float kx_c[CHUNK_SIZE],

ky_c[CHUNK_SIZE], kz_c[CHUNK_SIZE];

…

void main() {

int i;

for (i = 0; i < M/CHUNK_SIZE; i++);

cudaMemcpyToSymbol(kx_c,&kx[i*CHUNK_SIZE],4*CHUNK_SIZE,

cudaMemCpyHostToDevice);

cudaMemcpyToSymbol(ky_c,&ky[i*CHUNK_SIZE],4*CHUNK_SIZE,

cudaMemCpyHostToDevice);

cudaMemcpyToSymbol(kz_c,&kz[i*CHUNK_SIZE],4*CHUNK_SIZE,

cudaMemCpyHostToDevice);

…

cmpFHD<<<FHD_THREADS_PER_BLOCK, N/FHD_THREADS_PER_BLOCK>>>

(rPhi, iPhi, phiMag, x, y, z, rMu, iMu,

int CHUNK_SIZE);

}

/* Need to call kernel one more time if M is not */

/* perfect multiple of CHUNK SIZE */

}

Chunking k-space Data to Fit into Constant Memory

42

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(kx_c[m]*xn_r

+ky_c[m]*yn_r+kz_c[m]*zn_r);

float cArg = cos(expFhD);

float sArg = sin(expFhD);

rFhDn_r += rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Revised Kernel for Constant Memory

kx_c, ky_c and kz_c

are no longer

arguments but global

variables

Compute-to-memory

access ratio 14:4 (inside

the loop)

Can be 14:2 if compiler

stores rMu[m] and iMu[m]

in temporary registers

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 43

kx[i] ky[i] kz[i] phi[i]

Constant Memory

Scan Data

(a) k-space data stored in separate arrays. (b) k-space data stored in an array

whose elements are structs.

Effect of k-space data layout on constant cache efficiency.

• The previous implementations leads to bad (slow)
performance

• Each constant cache entry is designed to store multiple
consecutive words

• There are very few such entries – insufficient for all active
warps in an SM

• Solution: use array of struct (contrary to last week’s advice)

kx

ky

kz

phi

kx[i]

ky[i]

ky[i]

phi[i]

Constant Memory

Scan Data

kx[i] ky[i] kz[i] phi[i]

Constant Memory

Scan Data

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 44

struct kdata {

float x, float y, float z;

} k;

__constant__ struct kdata k_c[CHUNK_SIZE];

…

__ void main() {

int i;

for (i = 0; i < M/CHUNK_SIZE; i++);

cudaMemcpyToSymbol(k_c,k,12*CHUNK_SIZE,

cudaMemCpyHostToDevice);

cmpFHD<<<FHD_THREADS_PER_BLOCK,N/FHD_THREADS_PER_BLOCK>>>

();

}

Adjusting k-space data layout to improve cache efficiency

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 45

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(k[m].x*xn_r+k[m].y*yn_r+k[m].z*zn_r);

float cArg = cos(expFhD);

float sArg = sin(expFhD);

rFhDn_r += rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Adjusting the k-space data memory layout in the FHd kernel

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 46

From C to CUDA: Step 3

Where are the potential bottlenecks?

Bottlenecks

• Memory Bandwidth

– See previous slides

• Trig operations

• Overhead (branches, address

calculations)

– These are important due to short inner loop

Trigonometric Operations

• Use SFUs (Super Function Units)

– __sin and __cos are implemented as

hardware instructions

• Require 4 cycles (vs. 12 and 13 FLOP for software

versions)

• Reduced accuracy

• Performance: from 22.8 GFLOPS to 92.2

GFLOPS

47

Address Calculations

• Last bottleneck: Overhead of branches and

address calculations

• Solution: Loop unrolling and experimental tuning

– Loop unrolling factors (1,2,4,8,16)

– Also experimentally tuned the number of threads per

block and the number of scan points per grid (see

following slides)

• Performance:179 GFLOPS (Q), 145 GFLOPS

(FHd)

48

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 49

Experimental Methodology
• Reconstruct a 3D image of a human brain1

– 3.2 M scan data points acquired via 3D spiral scan

– 256K voxels

• Compare performance of several reconstructions
– Gridding + FFT reconstruction1 on CPU (Intel Core 2

Extreme Quadro)

– LS reconstruction on CPU (double-precision, single-
precision)

– LS reconstruction on GPU (NVIDIA GeForce 8800 GTX)

• Metrics
– Reconstruction time: compute FHd and run linear solver

– Run time: compute Q or FHd

1 Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 50

Effects of Approximations

• Avoid temptation to measure only absolute error (I0 – I)

– Can be deceptively large or small

• Metrics

– PSNR: Peak signal-to-noise ratio

– SNR: Signal-to-noise ratio

• Avoid temptation to consider only the error in the computed value

– Some applications are resistant to approximations; others are very sensitive

 
i j

jiIjiI
mn

MSE 2

0)),(),((
1

)
)),(max(

(log20 0
10

MSE

jiI
PSNR 


i j

s jiI
mn

A 2

0),(
1

)(log20 10
MSE

A
SNR

s


A.N. Netravali and B.G. Haskell, Digital Pictures: Representation, Compression, and Standards (2nd Ed), Plenum Press, New York, NY (1995).

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 51

Experimental Tuning: Tradeoffs
• In the Q kernel, three parameters are natural candidates for

experimental tuning

– Loop unrolling factor (1, 2, 4, 8, 16)

– Number of threads per block (32, 64, 128, 256, 512)

– Number of scan points per grid (32, 64, 128, 256, 512, 1024, 2048)

• Cannot optimize these parameters independently

– Resource sharing among threads (register file, shared memory)

– Optimizations that increase a thread’s performance often increase the

thread’s resource consumption, reducing the total number of threads that

execute in parallel

• Optimization space is not linear

– Threads are assigned to SMs in large thread blocks

– Causes discontinuity and non-linearity in the optimization space

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign
52

Experimental Tuning: Example

Increase in per-thread performance, but fewer threads:

Lower overall performance

TB0 TB1 TB2

32KB Register File

………

16KB Shared Memory

SFU0 SFU1

SP0 SP7

(a) Pre-“optimization”

Core Computation

Thread Contexts

SP Utilization

Area determines overall performance

32KB Register File

16KB Shared Memory

SFU0 SFU1

………

SP0 SP7

(b) Post-“optimization”

Insufficient registers to

allocate 3 blocks

Thread Contexts

X

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 53

0

5

10

15

20

25

30

35

40

32 64 128 256 512 1024 2048

Scan points per grid

T
im

e
 (

s
)

Experimental Tuning: Scan Points Per Grid

Experimental Tuning: Scan Points

Per Grid
• Each line in previous plot represents a

combination of loop unrolling factor and threads
per block

• The y-axis represents runtime, so lower is better

• Runtime tends to increase as the number of scan
points per grid increases

• That’s counter-intuitive. Why would performance
get worse as the amount of data processed by
each kernel increased?
Conflicts in the constant cache (across different

blocks)

54

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 55

Experimental Tuning:

Scan Points Per Grid (Improved Data Layout)

0

2

4

6

8

10

12

14

16

32 64 128 256 512 1024 2048

Scan points per grid

T
im

e
 (

s
)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 56

Experimental Tuning: Loop Unrolling

Factor

2

4

6

8

10

12

14

1 2 4 8 16

Loop unrolling factor

T
im

e
 (

s
)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 57

Sidebar: Optimizing the CPU

Implementation
• Optimizing the CPU implementation of your application is very

important

– Often, the transformations that increase performance on CPU also increase

performance on GPU (and vice-versa)

– The research community won’t take your results seriously if your baseline

is crippled

• Useful optimizations

– Data tiling

– SIMD vectorization (SSE)

– Fast math libraries (AMD, Intel)

– Classical optimizations (loop unrolling, etc)

• Intel compiler (icc, icpc)

Quantitative

Evaluation

58

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 59

Summary of Results
Q FHd

Reconstruction Run

Time (m)

GFLOP Run

Time (m)

GFLOP Linear

Solver (m)

Recon.

Time (m)

Gridding + FFT

(CPU, DP)

N/A N/A N/A N/A N/A 0.39

LS (CPU, DP) 4009.0 0.3 518.0 0.4 1.59 519.59

LS (CPU, SP) 2678.7 0.5 342.3 0.7 1.61 343.91

LS (GPU, Naïve) 260.2 5.1 41.0 5.4 1.65 42.65

LS (GPU,

CMem)

72.0 18.6 9.8 22.8 1.57 11.37

LS (GPU,

CMem,

SFU)

13.6 98.2 2.4 92.2 1.60 4.00

LS (GPU,

CMem,

SFU, Exp)

7.5 178.9 1.5 144.5 1.69 3.19

8X

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 60

Summary of Results
Q FHd

Reconstruction Run Time (m) GFLOP Run Time

(m)

GFLOP Linear

Solver (m)

Recon. Time

(m)

Gridding + FFT

(CPU, DP)

N/A N/A N/A N/A N/A 0.39

LS (CPU, DP) 4009.0 0.3 518.0 0.4 1.59 519.59

LS (CPU, SP) 2678.7 0.5 342.3 0.7 1.61 343.91

LS (GPU, Naïve) 260.2 5.1 41.0 5.4 1.65 42.65

LS (GPU, CMem) 72.0 18.6 9.8 22.8 1.57 11.37

LS (GPU, CMem,

SFU)

13.6 98.2 2.4 92.2 1.60 4.00

LS (GPU, CMem,

SFU, Exp)

7.5 178.9 1.5 144.5 1.69 3.19

108X228X357X

Timers

• Any timer can be used

– Check resolution

• Important: many CUDA API functions are

asynchronous

– They return control back to the calling CPU

thread prior to completing their work

– All kernel launches are asynchronous

– So are all memory copy functions with the
Async suffix on the name

61

Synchronization

• Synchronize the CPU thread with the GPU
by calling cudaThreadSynchronize()

immediately before starting and stopping

the CPU timer

• cudaThreadSynchronize()blocks the

calling CPU thread until all CUDA calls

previously issued by the thread are

completed

62

Synchronization

• cudaEventSynchronize() blocks until

a given event in a particular stream has

been recorded by the GPU

– Safe only in the default (0) stream

– Fine for our purposes

63

CUDA Timer
cudaEvent_t start, stop;

float time;

cudaEventCreate(&start);

cudaEventCreate(&stop);

cudaEventRecord(start, 0);

kernel<<<grid,threads>>> (d_odata, d_idata,
size_x, size_y, NUM_REPS);

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop); // after cudaEventRecord

cudaEventElapsedTime(&time, start, stop);

cudaEventDestroy(start);

cudaEventDestroy(stop);

64

Output

• time is in milliseconds

• Its resolution of approximately half a

microsecond

• The timings are measured on the GPU

clock

– Operating system–independent

65

