
CS 677: Parallel Programming for

Many-core Processors

Lecture 6

Instructor: Philippos Mordohai

Webpage: mordohai.github.io

E-mail: Philippos.Mordohai@stevens.edu

1

mailto:Philippos.Mordohai@stevens.edu

Homework Assignment 3

• Apply Sobel filter on (grayscale) images

2Mary Hall

CS6963 University of Utah

101

202

101

xG

121

000

121

yG

Homework Assignment 4: CPU Version

for (i = 1; i < ImageNRows ‐ 1; i++)

for (j = 1; j < ImageNCols ‐1; j++)
{

sum1 = u[i‐1][j+1] ‐ u[i‐1][j‐1]
+ 2 * u[i][j+1] ‐ 2 * u[i][j‐1]
+ u[i+1][j+1] ‐ u[i+1][j‐1];

sum2 = u[i‐1][j‐1] + 2 * u[i‐1][j]
+ u[i‐1][j+1] - u[i+1][j‐1]
‐ 2 * u[i+1][j] ‐ u[i+1][j+1];

magnitude = sum1*sum1 + sum2*sum2;

if (magnitude > THRESHOLD)

e[i][j] = 255;

else

e[i][j] = 0;

}

3Mary Hall

CS6963 University of Utah

Homework Assignment 4

• Compute magnitude of filter response Gx
2+ Gy

2 and output:
– 0 if magnitude below threshold

– 255 if magnitude above threshold

– 0 pixel is within 1 pixel of image border

4Mary Hall

CS6963 University of Utah

Example Output

5Mary Hall

CS6963 University of Utah

Open Questions

• Memory bandwidth

• 1D vs. 2D block structure

– Fetching of pixels at block boundaries

• I prefer solutions without padding, but you

can pad for a 10% penalty

• Solutions using global memory only will

receive little credit

6Mary Hall

CS6963 University of Utah

The PPM Image Format

• PPM is a very simple format

• Each image file consists of a header

followed by all the pixel data

• Header
P6

comment 1

comment 2

.

#comment n

rows columns maxvalue

pixels

P3 means ASCII file

P6 means binary (most

practical)

See filereading code

in homework zip file

7

Use Gimp or IrfanView to manipulate

images and convert between formatsMary Hall

CS6963 University of Utah

Reading the Header

fp = fopen(filename, "rb");

…

int num = fread(chars, sizeof(char), 1000, fp);

if (chars[0] != 'P' || chars[1] != '6')

{

fprintf(stderr, “ERROR file '%s' does not

start with \"P6\" I am expecting a binary

PPM file\n", filename);

return NULL;

}

check for “P6”

in first line

8Mary Hall

CS6963 University of Utah

Reading the Header (cont)

unsigned int width, height, maxvalue;

char *ptr = chars+3; // P 6 newline

if (*ptr == '#') // comment line!

{

ptr = 1 + strstr(ptr, "\n");

}

num = sscanf(ptr, "%d\n%d\n%d",

&width, &height, &maxvalue);

fprintf(stderr, "read %d things width %d height %d

maxval %d\n", num, width, height, maxvalue);

*xsize = width;

*ysize = height;

*maxval = maxvalue;

skip over comments by

looking for # in first

column

9Mary Hall

CS6963 University of Utah

Reading the Data

// allocate buffer to read the rest of the file into

int bufsize = 3 * width * height * sizeof(unsigned char);

if ((*maxval) > 255) bufsize *= 2;

unsigned char *buf = (unsigned char *)malloc(bufsize);

…

long numread = fread(buf, sizeof(char), bufsize, fp);

…

int pixels = (*xsize) * (*ysize);

for (int i=0; i<pixels; i++)

pic[i] = (int) buf[3*i]; // red channel

return pic; // success

10Mary Hall

CS6963 University of Utah

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

Application Case Study –

Advanced MRI Reconstruction

11

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 12

Objective

• To learn about computational thinking

skills through a concrete example

– Problem formulation

– Designing implementations to steer around

limitations

– Validating results

– Understanding the impact of your

improvements

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 13

Acknowledgements

Sam S. Stone§, Haoran Yi§, Justin P. Haldar†, Deepthi
Nandakumar, Bradley P. Sutton†,

Zhi-Pei Liang†, Keith Thulburin*

§Center for Reliable and

High-Performance Computing

† Beckman Institute for

Advanced Science and Technology

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

* University of Illinois, Chicago Medical Center

13

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 14

Overview

• Magnetic resonance imaging

• Non-Cartesian Scanner Trajectory

• Least-squares (LS) reconstruction
algorithm

• Optimizing the LS reconstruction on the
G80

– Overcoming bottlenecks

– Performance tuning

• Summary

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 15

Reconstructing MR Images

Cartesian Scan Data Spiral Scan Data

Gridding

FFT LS

Cartesian scan data + FFT:

Slow scan, fast reconstruction, images may be poor

kx

ky

kx

ky

kx

ky

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

16

FFT LS

Spiral scan data + Gridding + FFT:

Fast scan, fast reconstruction, better images

kx

ky

kx

kykx

ky

1 Based on Fig 1 of Lustig et al, Fast Spiral Fourier Transform for Iterative MR Image Reconstruction, IEEE Int’l Symp.

on Biomedical Imaging, 2004

Reconstructing MR Images

Cartesian Scan Data Spiral Scan Data

Gridding1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 17

FFT Least-Squares (LS)

Spiral scan data + LS

Superior images at expense of significantly more computation

kx

ky

kx

ky kx

ky

Reconstructing MR Images

Cartesian Scan Data Spiral Scan Data

Gridding

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

An Exciting Revolution - Sodium Map of the

Brain

• Images of sodium in the brain
– Very large number of samples for increased SNR

– Requires high-quality reconstruction

• Enables study of brain-cell viability before anatomic
changes occur in stroke and cancer treatment – within
days!

Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago

18

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 19

Least-Squares Reconstruction

dFWWFF HHH)(

Compute Q for FHF

Acquire Data

Compute FHd

Find ρ

• FHF depends only on scanner
configuration

• WHW incorporates prior information,
such as anatomical constraints

• FHd depends on scan data

• ρ vector containing voxel values of
reconstructed image - found using
linear solver
– 99.5% of the reconstruction time for

a single image is devoted to
computing FHd

– computing Q is even more
expensive, but depends only on the
scanner configuration and can be
amortized

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 20

Least-Squares Reconstruction

• The solution is:

• but for a relatively low-res reconstruction of

1283 voxels, the inverted matrix contains

well over four trillion complex-valued

elements

• Use conjugate gradient to solve

dFWWFF HHH 1)(

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 21

Least-Squares Reconstruction

• WHW is sparse

• FHF has convolutional structure

– each descending diagonal from left to right is

constant

• Efficient FFT-based matrix multiplication is

possible

– Out of scope for CS 677

dFWWFF HHH)(

• What has to be computed is the Q matrix
which depends only on the scan trajectory, but
not the scan data

• where:
– km is the location of the mth sample

– xn is the nth voxel

– φ() is the Fourier transform of the voxel basis
function

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 22

Least-Squares Reconstruction

M

m

xki

mn
nmekxQ

1

)2(2|)(|)(

• What also needs to be computed is the

vector FHd which depends on the data

• These two equations look similar but the

computation of Q requires oversampling by

a factor of 2 in each dimension

– Q is O(8MN) and FHd is O(MN)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 23

Least-Squares Reconstruction

M

m

xki

mmn

H nmekdkdF
1

)2(*)()(][

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 24

Least-Squares Reconstruction

- Complexity

• Q: 1-2 days on CPU

• FHd: 6-7 hours on CPU

• ρ: 1.5 minutes on CPU

• Therefore, accelerate Q and FHd

computations

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 25

for (m = 0; m < M; m++) {

phiMag[m] = rPhi[m]*rPhi[m] +

iPhi[m]*iPhi[m];

for (n = 0; n < N; n++) {

expQ = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

rQ[n] +=phiMag[m]*cos(expQ);

iQ[n] +=phiMag[m]*sin(expQ);

}

}

(a) Q computation

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) FHd computation

Q v.s. FHD

25

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 - ECE408, University of Illinois, Urbana-Champaign

26

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

}

Algorithms to Accelerate
• Scan data

– M = # scan points

– kx, ky, kz = 3D scan data

• Voxel data

– N = # voxels

– x, y, z = input 3D voxel data

– rFhD, iFhD= output voxel data

• Complexity is O(MN)

• Inner loop

– 14 FP MUL or ADD ops

– 2 FP trig ops (12-13 FL OPs)

– 12 loads, 2 stores

27

From C to CUDA: Step 1

What unit of work is assigned to each thread?
1. Each thread executes an iteration of

the outer loop

=> Problem: Each thread is trying to

accumulate a partial sum to rFhD

and iFhD (requires a reduction)

2. Each thread executes an iteration of

the inner loop.

• Avoids the reduction problem

• But now each thread is doing

very little work

• We need one grid for each outer

loop iteration.

• Performance limited by

overheads for launching M grids

and writing 2N values to global

memory for each grid

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 28

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD); sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg – iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;

}

}

One Possibility (Wrong)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 29

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float rMu_reg, iMu_reg;

rMu_reg = rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu_reg = iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD); sArg = sin(expFhD);

rFhD[n] += rMu_reg*cArg – iMu_reg*sArg;

iFhD[n] += iMu_reg*cArg + rMu_reg*sArg;

}

}

One Possibility (Wrong) - Improved

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 30

Back to the Drawing Board – Maybe map the n

loop to threads?
for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg – iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;

}

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

}

(a) FHd computation

for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) after code motion

31

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

}

(a) FHd computation

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +

iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

}

for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) after loop fission

32

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 33

__global__ void cmpMu(float* rPhi, iPhi, rD, iD, rMu, iMu)

{

int m = blockIdx.x * MU_THREAEDS_PER_BLOCK + threadIdx.x;

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

}

A Separate cmpMu Kernel

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 34

A Second Option for the cmpFHd Kernel

Problem: Each thread is trying to accumulate a partial sum to rFhD and iFhD

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

for (n = 0; n < N; n++) {

float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);

float cArg = cos(expFhD);

float sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg – iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;

}

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

} (a) before loop interchange

for (n = 0; n < N; n++) {

for (m = 0; m < M; m++) {

expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

}

} (b) after loop interchange

Loop interchange of the FHD computation

35

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 36

A Third Option for the FHd kernel
__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

for (m = 0; m < M; m++) {

float rMu_reg = rMu[m];

float iMu_reg = iMu[m];

float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);

float cArg = cos(expFhD);

float sArg = sin(expFhD);

rFhD[n] += rMu_reg*cArg – iMu_reg*sArg;

iFhD[n] += iMu_reg*cArg + rMu_reg*sArg;

}

}

From C to CUDA: Step 2

Getting around Memory Bandwidth

Limitations

• Using registers

• Using constant memory

37

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 38

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

kx, ky, kz, x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(kx[m]*xn_r+ky[m]*yn_r+kz[m]*zn_r);

float cArg = cos(expFhD);

float sArg = sin(expFhD);

rFhDn_r += rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Using Registers to Reduce Global Memory Traffic

Compute-to-memory

access ratio 14:7 (inside

the loop)

Was 14:14 before (approx.)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 39

Tiling of Scan Data
LS reconstruction uses

multiple grids
– Each grid operates on all

scan data

– Each grid operates on a
distinct subset of voxels

– Each thread in the same grid
operates on a distinct voxel

for (m = 0; m < M/32; m++) {

exQ = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +

kz[m]*z[n])

rQ[n] += phi[m]*cos(exQ)

iQ[n] += phi[m]*sin(exQ)

}

Thread n operates on voxel n:

Grid MTB0 TB1 TBN………………..

………………SM 0 SM 15

Instruction Unit

32KB Register File 8KB Constant Cache

SP0 SP7

SFU0 SFU1

SM Array

………………….

Off-Chip Memory (Global, Constant)

x

y

z

rQ

iQ

kx

ky

kz

phi

Grid 1TB0 TB1 TBN………………..
Grid 0TB0 TB1 TBN………………..

Pixel Data Scan Data

Using Constant Memory

• All threads access scan data (kx, ky, kz) in
the same order

• Threads don’t modify scan data

Put scan data in constant memory

Limited to 64kB (larger than shared memory)

But cached, for every 32 accesses to constant
memory, at least 31 will be cached (96%
reduction in time, no bank conflicts – broadcast
mode to all threads in warp)

40

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 41

__constant__ float kx_c[CHUNK_SIZE],

ky_c[CHUNK_SIZE], kz_c[CHUNK_SIZE];

…

void main() {

int i;

for (i = 0; i < M/CHUNK_SIZE; i++);

cudaMemcpyToSymbol(kx_c,&kx[i*CHUNK_SIZE],4*CHUNK_SIZE,

cudaMemCpyHostToDevice);

cudaMemcpyToSymbol(ky_c,&ky[i*CHUNK_SIZE],4*CHUNK_SIZE,

cudaMemCpyHostToDevice);

cudaMemcpyToSymbol(kz_c,&kz[i*CHUNK_SIZE],4*CHUNK_SIZE,

cudaMemCpyHostToDevice);

…

cmpFHD<<<FHD_THREADS_PER_BLOCK, N/FHD_THREADS_PER_BLOCK>>>

(rPhi, iPhi, phiMag, x, y, z, rMu, iMu,

int CHUNK_SIZE);

}

/* Need to call kernel one more time if M is not */

/* perfect multiple of CHUNK SIZE */

}

Chunking k-space Data to Fit into Constant Memory

42

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(kx_c[m]*xn_r

+ky_c[m]*yn_r+kz_c[m]*zn_r);

float cArg = cos(expFhD);

float sArg = sin(expFhD);

rFhDn_r += rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Revised Kernel for Constant Memory

kx_c, ky_c and kz_c

are no longer

arguments but global

variables

Compute-to-memory

access ratio 14:4 (inside

the loop)

Can be 14:2 if compiler

stores rMu[m] and iMu[m]

in temporary registers

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 43

kx[i] ky[i] kz[i] phi[i]

Constant Memory

Scan Data

(a) k-space data stored in separate arrays. (b) k-space data stored in an array

whose elements are structs.

Effect of k-space data layout on constant cache efficiency.

• The previous implementations leads to bad (slow)
performance

• Each constant cache entry is designed to store multiple
consecutive words

• There are very few such entries – insufficient for all active
warps in an SM

• Solution: use array of struct (contrary to last week’s advice)

kx

ky

kz

phi

kx[i]

ky[i]

ky[i]

phi[i]

Constant Memory

Scan Data

kx[i] ky[i] kz[i] phi[i]

Constant Memory

Scan Data

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 44

struct kdata {

float x, float y, float z;

} k;

__constant__ struct kdata k_c[CHUNK_SIZE];

…

__ void main() {

int i;

for (i = 0; i < M/CHUNK_SIZE; i++);

cudaMemcpyToSymbol(k_c,k,12*CHUNK_SIZE,

cudaMemCpyHostToDevice);

cmpFHD<<<FHD_THREADS_PER_BLOCK,N/FHD_THREADS_PER_BLOCK>>>

();

}

Adjusting k-space data layout to improve cache efficiency

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 45

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];

float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {

float expFhD = 2*PI*(k[m].x*xn_r+k[m].y*yn_r+k[m].z*zn_r);

float cArg = cos(expFhD);

float sArg = sin(expFhD);

rFhDn_r += rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;

}

rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Adjusting the k-space data memory layout in the FHd kernel

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 46

From C to CUDA: Step 3

Where are the potential bottlenecks?

Bottlenecks

• Memory Bandwidth

– See previous slides

• Trig operations

• Overhead (branches, address

calculations)

– These are important due to short inner loop

Trigonometric Operations

• Use SFUs (Super Function Units)

– __sin and __cos are implemented as

hardware instructions

• Require 4 cycles (vs. 12 and 13 FLOP for software

versions)

• Reduced accuracy

• Performance: from 22.8 GFLOPS to 92.2

GFLOPS

47

Address Calculations

• Last bottleneck: Overhead of branches and

address calculations

• Solution: Loop unrolling and experimental tuning

– Loop unrolling factors (1,2,4,8,16)

– Also experimentally tuned the number of threads per

block and the number of scan points per grid (see

following slides)

• Performance:179 GFLOPS (Q), 145 GFLOPS

(FHd)

48

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 49

Experimental Methodology
• Reconstruct a 3D image of a human brain1

– 3.2 M scan data points acquired via 3D spiral scan

– 256K voxels

• Compare performance of several reconstructions
– Gridding + FFT reconstruction1 on CPU (Intel Core 2

Extreme Quadro)

– LS reconstruction on CPU (double-precision, single-
precision)

– LS reconstruction on GPU (NVIDIA GeForce 8800 GTX)

• Metrics
– Reconstruction time: compute FHd and run linear solver

– Run time: compute Q or FHd

1 Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 50

Effects of Approximations

• Avoid temptation to measure only absolute error (I0 – I)

– Can be deceptively large or small

• Metrics

– PSNR: Peak signal-to-noise ratio

– SNR: Signal-to-noise ratio

• Avoid temptation to consider only the error in the computed value

– Some applications are resistant to approximations; others are very sensitive

i j

jiIjiI
mn

MSE 2

0)),(),((
1

)
)),(max(

(log20 0
10

MSE

jiI
PSNR

i j

s jiI
mn

A 2

0),(
1

)(log20 10
MSE

A
SNR

s

A.N. Netravali and B.G. Haskell, Digital Pictures: Representation, Compression, and Standards (2nd Ed), Plenum Press, New York, NY (1995).

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 51

Experimental Tuning: Tradeoffs
• In the Q kernel, three parameters are natural candidates for

experimental tuning

– Loop unrolling factor (1, 2, 4, 8, 16)

– Number of threads per block (32, 64, 128, 256, 512)

– Number of scan points per grid (32, 64, 128, 256, 512, 1024, 2048)

• Cannot optimize these parameters independently

– Resource sharing among threads (register file, shared memory)

– Optimizations that increase a thread’s performance often increase the

thread’s resource consumption, reducing the total number of threads that

execute in parallel

• Optimization space is not linear

– Threads are assigned to SMs in large thread blocks

– Causes discontinuity and non-linearity in the optimization space

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign
52

Experimental Tuning: Example

Increase in per-thread performance, but fewer threads:

Lower overall performance

TB0 TB1 TB2

32KB Register File

………

16KB Shared Memory

SFU0 SFU1

SP0 SP7

(a) Pre-“optimization”

Core Computation

Thread Contexts

SP Utilization

Area determines overall performance

32KB Register File

16KB Shared Memory

SFU0 SFU1

………

SP0 SP7

(b) Post-“optimization”

Insufficient registers to

allocate 3 blocks

Thread Contexts

X

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 53

0

5

10

15

20

25

30

35

40

32 64 128 256 512 1024 2048

Scan points per grid

T
im

e
 (

s
)

Experimental Tuning: Scan Points Per Grid

Experimental Tuning: Scan Points

Per Grid
• Each line in previous plot represents a

combination of loop unrolling factor and threads
per block

• The y-axis represents runtime, so lower is better

• Runtime tends to increase as the number of scan
points per grid increases

• That’s counter-intuitive. Why would performance
get worse as the amount of data processed by
each kernel increased?
Conflicts in the constant cache (across different

blocks)

54

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 55

Experimental Tuning:

Scan Points Per Grid (Improved Data Layout)

0

2

4

6

8

10

12

14

16

32 64 128 256 512 1024 2048

Scan points per grid

T
im

e
 (

s
)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 56

Experimental Tuning: Loop Unrolling

Factor

2

4

6

8

10

12

14

1 2 4 8 16

Loop unrolling factor

T
im

e
 (

s
)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 57

Sidebar: Optimizing the CPU

Implementation
• Optimizing the CPU implementation of your application is very

important

– Often, the transformations that increase performance on CPU also increase

performance on GPU (and vice-versa)

– The research community won’t take your results seriously if your baseline

is crippled

• Useful optimizations

– Data tiling

– SIMD vectorization (SSE)

– Fast math libraries (AMD, Intel)

– Classical optimizations (loop unrolling, etc)

• Intel compiler (icc, icpc)

Quantitative

Evaluation

58

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 59

Summary of Results
Q FHd

Reconstruction Run

Time (m)

GFLOP Run

Time (m)

GFLOP Linear

Solver (m)

Recon.

Time (m)

Gridding + FFT

(CPU, DP)

N/A N/A N/A N/A N/A 0.39

LS (CPU, DP) 4009.0 0.3 518.0 0.4 1.59 519.59

LS (CPU, SP) 2678.7 0.5 342.3 0.7 1.61 343.91

LS (GPU, Naïve) 260.2 5.1 41.0 5.4 1.65 42.65

LS (GPU,

CMem)

72.0 18.6 9.8 22.8 1.57 11.37

LS (GPU,

CMem,

SFU)

13.6 98.2 2.4 92.2 1.60 4.00

LS (GPU,

CMem,

SFU, Exp)

7.5 178.9 1.5 144.5 1.69 3.19

8X

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign 60

Summary of Results
Q FHd

Reconstruction Run Time (m) GFLOP Run Time

(m)

GFLOP Linear

Solver (m)

Recon. Time

(m)

Gridding + FFT

(CPU, DP)

N/A N/A N/A N/A N/A 0.39

LS (CPU, DP) 4009.0 0.3 518.0 0.4 1.59 519.59

LS (CPU, SP) 2678.7 0.5 342.3 0.7 1.61 343.91

LS (GPU, Naïve) 260.2 5.1 41.0 5.4 1.65 42.65

LS (GPU, CMem) 72.0 18.6 9.8 22.8 1.57 11.37

LS (GPU, CMem,

SFU)

13.6 98.2 2.4 92.2 1.60 4.00

LS (GPU, CMem,

SFU, Exp)

7.5 178.9 1.5 144.5 1.69 3.19

108X228X357X

Timers

• Any timer can be used

– Check resolution

• Important: many CUDA API functions are

asynchronous

– They return control back to the calling CPU

thread prior to completing their work

– All kernel launches are asynchronous

– So are all memory copy functions with the
Async suffix on the name

61

Synchronization

• Synchronize the CPU thread with the GPU
by calling cudaThreadSynchronize()

immediately before starting and stopping

the CPU timer

• cudaThreadSynchronize()blocks the

calling CPU thread until all CUDA calls

previously issued by the thread are

completed

62

Synchronization

• cudaEventSynchronize() blocks until

a given event in a particular stream has

been recorded by the GPU

– Safe only in the default (0) stream

– Fine for our purposes

63

CUDA Timer
cudaEvent_t start, stop;

float time;

cudaEventCreate(&start);

cudaEventCreate(&stop);

cudaEventRecord(start, 0);

kernel<<<grid,threads>>> (d_odata, d_idata,
size_x, size_y, NUM_REPS);

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop); // after cudaEventRecord

cudaEventElapsedTime(&time, start, stop);

cudaEventDestroy(start);

cudaEventDestroy(stop);

64

Output

• time is in milliseconds

• Its resolution of approximately half a

microsecond

• The timings are measured on the GPU

clock

– Operating system–independent

65

