CS 677: Parallel Programming for Many-core Processors Lecture 4

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Project Proposal

- Problem description
- What is the computation and why is it important?
- Abstraction of computation: equations, graphic or pseudocode, no more than 1 page
- Suitability for GPU acceleration
- Amdahl's Law: describe the inherent parallelism. Argue that it is close to 100% of computation.
- Synchronization and Communication: Discuss what data structures may need to be protected by synchronization, or communication through host.
- Copy Overhead: Discuss the data footprint and anticipated cost of copying to/from host memory.
- Intellectual Challenges
- Generally, what makes this computation worthy of a project?
- Point to any difficulties you anticipate at present in achieving high speedup

Amdahl's Law

- "The speedup of a program using multiple processors in parallel computing is limited by the time needed for the sequential fraction of the program."
- Example
- 95% of original execution time can be sped up by 100x on GPU
- Speed up for entire application:

$$
\frac{1}{\left(5 \%+\frac{95 \%}{100}\right)}=\frac{1}{5 \%+0.95 \%}=\frac{1}{5.95 \%}=17 x
$$

Overview

- More Performance Considerations
- Memory Coalescing
- Occupancy
- Kernel Launch Overhead
- Instruction Performance
- Summary of Performance Considerations
- Lectures 3 and 4
- Parallel Patterns: Reduction Trees
- Parallel Patterns: Parallel Prefix Sum (Scan)

Memory Coalescing (Part 2)

slides by
Jared Hoberock and David Tarjan (Stanford CS 193G)

Consider the stride of your accesses

__global__ void foo(int* input,
float3* input2)
i
int $i=b l o c k D i m . x$ * blockIdx.x + threadIdx.x;
// Stride 1
int a = input[i];
// Stride 2, half the bandwidth is wasted
int $b=$ input[2*i];
// Stride 3, 2/3 of the bandwidth wasted
float $c=$ input2[i].x;

Example: Array of Structures (AoS)

struct record
$\{$
int key;
int value;
int flag;
\};
record *d_records;
cudaMalloc((void**) \&d_records, ...);

Example: Structure of Arrays (SoA)

 struct SoA\{
int * keys;
int * values;
int * flags;
\};

SoA d_SoA_data;
cudaMalloc((void**) \&d_SoA_data.keys, ...);
cudaMalloc((void**) \&d_SoA_data.values, ...);
cudaMalloc((void**)\&d_SoA_data.flags, ...);

Example: SoA vs. AoS

global_ void bar(record

 *AoS_data, SoA SoA_data)$\{$
int i = blockDim.x * blockIdx.x + threadIdx.x;
// AoS wastes bandwidth
int key = AoS_data[i].key;
// SoA efficient use of bandwidth
int key_better = SoA_data.keys[i];

Memory Coalescing

- Structure of arrays is often better than array of structures
- Very clear win on regular, stride 1 access patterns
- Unpredictable or irregular access patterns are case-by-case

Occupancy

slides (mostly) by
Jared Hoberock and David Tarjan (Stanford CS 193G)
and Joseph T. Kider Jr. (UPenn)

Reminder: Thread Scheduling

- SM implements zero-overhead warp scheduling
- At any time, only one of the warps is executed by SM
- Warps whose next instruction has its inputs ready for consumption are eligible for execution
- Eligible Warps are selected for execution on a prioritized scheduling policy
- All threads in a warp execute the same instruction when selected

Thread Scheduling

- What happens if all warps are stalled?
- No instruction issued \rightarrow performance lost
- Most common reason for stalling?
- Waiting on global memory
- If your code reads global memory every couple of instructions
- You should try to maximize occupancy

Occupancy

- Thread instructions are executed sequentially, so executing other warps is the only way to hide latencies and keep cores busy
- Occupancy = number of warps running concurrently on a multiprocessor divided by maximum number of warps that can run concurrently
- Limited by resource usage:
- Registers
- Shared memory

Resource Limits (1)

Registers

TB 0
TB 0

Shared Memory

TB 2
TB 1
TB 0

Registers

Shared Memory

TB 0

- Pool of registers and shared memory per SM
- Each thread block grabs registers \& shared memory
- If one or the other is fully utilized -> no more thread blocks

Resource Limits (2)

- Can only have N thread blocks per SM
- If they're too small, can't fill up the SM
- Need 128 threads / block (GT200), 192 threads/ block (GF100)
- Higher occupancy has diminishing returns for hiding latency

Grid/Block Size Heuristics

- \# of blocks > \# of multiprocessors
- So all multiprocessors have at least one block to execute
- \# of blocks / \# of multiprocessors > 2
- Multiple blocks can run concurrently on a multiprocessor
- Blocks not waiting at a __syncthreads() keep hardware busy
- Subject to resource availability - registers, shared memory
- \# of blocks > 100 to scale to future devices

Register Dependency

- Read-after-write register dependency
- Instruction's result can be read approximately 24 cycles later
- To completely hide latency:
- Run at least 192 threads (6 warps) per multiprocessor
- At least 25% occupancy for compute capability 1.0 and 1.1
- Threads do not have to belong to the same block

Register Pressure

- Hide latency by using more threads per SM
- Limiting factors:
- Number of registers per thread
- 8k/16k/... per SM, partitioned among concurrent threads
- Amount of shared memory
- 16kB/... per SM, partitioned among concurrent blocks

How do you know what you're using?

- Use nvcc -Xptxas -v to get register and shared memory usage

```
nvcc -Xptxas -v acos.cu
ptxas info : Compiling entry function 'acos_main'
ptxas info: Used 4 registers, 60+56 bytes lmem, 44+40 bytes
    smem, 20 bytes cmem[1], 12 bytes cmem[14]
```

- The first number represents the total size of all the variables declared in that memory segment and the second number represents the amount of system allocated data.
- Constant memory numbers include which memory banks have been used
- Plug those numbers into CUDA Occupancy Calculator

How to influence how many registers you use

- Pass option -maxrregcount=x to nvcc
- This isn't magic, won't get occupancy for free
- Use this very carefully when you are right on the edge

Optimizing Threads per Block

- Choose threads per block as multiple of warp size
- Avoid wasting computation on underpopulated warps
- Run as many warps as possible per SM - Hide latency
- SMs can run up to N blocks at a time

Occupancy != Performance

- Increasing occupancy does not necessarily increase performance
- BUT...
- Low-occupancy SMs cannot adequately hide latency

Parameterize your Application

- Parameterization helps adaptation to different GPUs
- GPUs vary in many ways
- \# of SMs
- Memory bandwidth
- Shared memory size
- Register file size
- Max threads per block
> Avoid local minima
- Try widely varying configurations

Kernel Launch Overhead

slides by
Jared Hoberock and David Tarjan (Stanford CS 193G)

Kernel Launch Overhead

- Kernel launches aren't free
- A null kernel launch will take non-trivial time
- Actual time changes with HW generations and driver software...
- Independent kernel launches are cheaper than dependent kernel launches
- Dependent launch: Some readback to the CPU
- Launching lots of small grids comes with substantial performance loss

Kernel Launch Overheads

- If you are reading back data to the CPU for control decisions, consider doing it on the GPU
- Even though the GPU is slow at serial tasks, it can do surprising amounts of work before you used up kernel launch overhead

Instruction Performance

slides by
Joseph T. Kider Jr. (Upenn)

Instruction Performance

- Instruction cycles (per warp) is the sum of
- Operand read cycles
- Instruction execution cycles
- Result update cycles
- Therefore instruction throughput depends on
- Nominal instruction throughput
- Memory latency
- Memory bandwidth
- Cycle refers to the multiprocessor clock rate

Maximizing Instruction Throughput

- Maximize use of high-bandwidth memory
- Maximize use of shared memory
- Minimize accesses to global memory
- Maximize coalescing of global memory accesses
- Optimize performance by overlapping memory accesses with computation
- High arithmetic intensity programs
- Many concurrent threads

Arithmetic Instruction Throughput

- int and float add, shift, min, max and float mul, mad: 4 cycles per warp
- int multiply is by default 32-bit
- requires multiple cycles/warp
- use _mul24() and __umul24() intrinsics for 4-cycle 24-bit int multiplication
- Integer division and modulo operations are costly
- The compiler will convert literal power-of-2 divides to shifts
- But it may miss
- Be explicit in cases where the compiler cannot tell that the divisor is a power of 2
- Trick: foo \% $n==$ foo $\&(n-1)$ if n is a power of 2

Loop Transformations

Mary Hall
CS6963 University of Utah

Reordering Transformations

- Analyze reuse in computation
- Apply loop reordering transformations to improve locality based on reuse
- With any loop reordering transformation, always ask
- Safety? (doesn't reverse dependences)
- Profitablity? (improves locality)

Loop Permutation:

A Reordering Transformation

Permute the order of the loops to modify the traversal order

```
for (i= 0; i<3; i++)
    for (j=0; j<6; j++)
        A[i][j+1]=A[j][j]+B[j];
```


Which one is better for row-major storage?

Safety of Permutation

- Intuition: Cannot permute two loops i and j in a loop nest if doing so reverses the direction of any dependence.

```
for (i= 0; i<3; i++)
    for (j=0; j<6; j++)
        A[[][]+1]=A[[][]+B[]];
```

```
for (i= 0; i<3; i++)
    for (j=1; j<6; j++)
    A[i+1][j-1]=A[[][]]+B[]];
```

- Ok to permute?

Tiling (Blocking): Another Loop Reordering Transformation

- Blocking reorders loop iterations to bring iterations that reuse data closer in time

Tiling Example

```
for (j=1; j<M; j++)
    for (i=1; i<N; i++)
        D[i] = D[i] + B[j][i];
```

Strip
mine

$$
\begin{aligned}
& \text { for }(j=1 ; j<M ; j++) \\
& \text { for }(i=1 ; i<N ; i+=s) \\
& \text { for }(i=i j ; i<\min (i i+s, N) ; i++) \\
& \qquad D[i]=D[i]+B[j][i] ;
\end{aligned}
$$

Permute

$$
\begin{aligned}
& \text { for }(\mathrm{ii=}=1 ; i<\mathrm{N} ; \mathrm{i}+=\mathrm{s}) \\
& \quad \text { for }(\mathrm{j}=1 ; \mathrm{j}<\mathrm{M} ; \mathrm{j}++\mathrm{+}) \\
& \text { for }(\mathrm{i}=\mathrm{ij} ; \mathrm{i}<\min (\mathrm{i}+\mathrm{s}, \mathrm{~N}) ; \mathrm{i}++) \\
& \qquad \mathrm{D}[\mathrm{i}]=\mathrm{D}[\mathrm{i}]+\mathrm{B}[\mathrm{j}][\mathrm{i}] ;
\end{aligned}
$$

Legality of Tiling

- Tiling = strip-mine and permutation -Strip-mine does not reorder iterations
-Permutation must be legal
OR
- strip size less than dependence distance

A Few Words On Tiling

- Tiling can be used hierarchically to compute partial results on a block of data wherever there are capacity limitations
- Between grids if total data exceeds global memory capacity
- Across thread blocks if shared data exceeds shared memory capacity (also to partition computation across blocks and threads)
- Within threads if data in constant cache exceeds cache capacity or data in registers exceeds register capacity or (as in example) data in shared memory for block still exceeds shared memory capacity

Summary of Performance Considerations

Summary of Performance Considerations

- Thread Execution and Divergence
- Communication Through Memory
- Instruction Level Parallelism and Thread Level Parallelism
- Memory Coalescing
- Shared Memory Bank Conflicts
- Parallel Reduction
- Prefetching
- Loop Unrolling and Transformations
- Occupancy
- Kernel Launch Overhead
- Instruction Performance

Thread Execution and Divergence

- Instructions are issued per 32 threads (warp)
- Divergent branches:
- Threads within a single warp take different paths
- if-else, ...
- Different execution paths within a warp are serialized
- Different warps can execute different code with no impact on performance

An Example

is this barrier divergent?
for (int offset $=$ blockDim.x / 2; offset > 0; offset $\gg=1$)
\{

- - -

__syncthreads();
\}

A Second Example

what about this one?

global__ void do_i_halt(int *input)
int i $=$...
if(input[i])
\{
__syncthreads() i// a divergent barrier
\} // hangs the machine

Compute Capabilities

- Reminder: do not take various constants, such as size of shared memory etc., for granted since they continuously change
- Check CUDA programming guide for the features of the compute capability of your GPU

Reduction Trees

Partition and Summarize

- A commonly used strategy for processing large input data sets
- There is no required order of processing elements in a data set (associative and commutative)
- Partition the data set into smaller chunks
- Have each thread to process a chunk
- Use a reduction tree to summarize the results from each chunk into the final answer
- We will focus on the reduction tree step for now
- Google and Hadoop MapReduce frameworks are examples of this pattern

Reduction enables other techniques

- Reduction is also needed to clean up after some commonly used parallelizing transformations
- Privatization
- Multiple threads write into an output location
- Replicate the output location so that each thread has a private output location
- Use a reduction tree to combine the values of private locations into the original output location

What is a reduction computation

- Summarize a set of input values into one value using a "reduction operation"
- Max
- Min
- Sum
- Product
- Often with user defined reduction operation function as long as the operation
- Is associative and commutative
- Has a well-defined identity value (e.g., 0 for sum)

A sequential reduction algorithm performs N operations - $\mathrm{O}(\mathrm{N})$

- Initialize the result as an identity value for the reduction operation
- Smallest possible value for max reduction
- Largest possible value for min reduction
- 0 for sum reduction
- 1 for product reduction
- Scan through the input and perform the reduction operation between the result value and the current input value

A parallel reduction tree algorithm

 performs N -1 Operations in $\log (\mathrm{N})$ steps
A Quick Analysis

- For N input values, the reduction tree performs
$-(1 / 2) \mathrm{N}+(1 / 4) \mathrm{N}+(1 / 8) \mathrm{N}+\ldots(1 / \mathrm{N})=(1-(1 / \mathrm{N})) \mathrm{N}=\mathrm{N}-1$ operations
- In Log (N) steps - 1,000,000 input values take 20 steps
- Assuming that we have enough execution resources
- Average Parallelism (N-1)/Log(N))
- For $N=1,000,000$, average parallelism is 50,000
- However, peak resource requirement is 500,000 !
- This is a work-efficient parallel algorithm
- The amount of work done is comparable to sequential
- Many parallel algorithms are not work efficient

A Sum Reduction Example

- Parallel implementation:
- Recursively halve \# of threads, add two values per thread in each step
- Takes $\log (\mathrm{n})$ steps for n elements, requires $\mathrm{n} / 2$ threads
- Assume an in-place reduction using shared memory
- The original vector is in device global memory
- The shared memory is used to hold a partial sum vector
- Each step brings the partial sum vector closer to the sum
- The final sum will be in element 0
- Reduces global memory traffic due to partial sum values

Vector Reduction with Branch Divergence

Some Observations

- In each iteration, two control flow paths will be sequentially traversed for each warp
- Threads that perform addition and threads that do not
- Threads that do not perform addition still consume execution resources
- No more than half of threads will be executing after the first step
- All odd index threads are disabled after first step
- After the $5^{\text {th }}$ step, entire warps in each block will fail the if test, poor resource utilization but no divergence.
- This can go on for a while, up to 5 more steps ($1024 / 32=16=2^{5}$), where each active warp only has one productive thread until all warps in a block retire

Thread Index Usage Matters

- In some algorithms, one can shift the index usage to improve the divergence behavior
- Commutative and associative operators
- Reduction satisfies this criterion

A Better Strategy

- Always compact the partial sums into the first locations in the partialSum[] array
- Keep the active threads consecutive

An Example of 16 threads
 Thread 0 Thread 1 Thread 2
 Thread 14 Thread 15

A Better Reduction Kernel

for (unsigned int stride = blockDim.x/2;
stride >= 1; stride >>= 1)
i
__syncthreads();
if (t < stride)
partialSum[t] += partialSum[t+stride];
\}

A Quick Analysis

- For a 1024 thread block
- No divergence in the first 5 steps
- 1024, 512, 256, 128, 64, 32 consecutive threads are active in each step
- The final 5 steps will still have divergence

Parallel Algorithm Overhead

```
__shared__ float partialSum[2*BLOCK_SIZE];
unsigned int t = threadIdx.x;
unsigned int start = 2*blockIdx.x*blockDim.x;
partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start+ blockDim.x+t];
for (unsigned int stride = blockDim.x/2;
stride >= 1; stride >>= 1)
    {
        syncthreads();
            if (t < stride)
    partialSum[t] += partialSum[t+stride];
    }
```


Parallel Algorithm Overhead

```
__shared__ float partialSum[2*BLOCK_SIZE];
unsigned int t = threadIdx.x;
unsigned int start = 2*blockIdx.x*blockDim.x;
partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start+ blockDim.x+t];
for (unsigned int stride = blockDim.x/2;
stride >= 1; stride >>= 1)
    {
        syncthreads();
            if (t < stride)
        partialSum[t] += partialSum[t+stride];
    }
```


Parallel Execution Overhead

- Although the number of "operations" is N , each operation involves much more complex address calculation and intermediate result manipulation
- If the parallel code is executed on a singlethread hardware, it would be significantly slower than the code based on the original sequential algorithm

Parallel Prefix Sum (Scan)

Objectives

- Prefix Sum (Scan) algorithms
- Frequently used for parallel work assignment and resource allocation
- A key primitive in many parallel algorithms to convert serial computation into parallel computation
- Based on reduction tree and reverse reduction tree
- To learn the concept of double buffering

(Inclusive) Prefix-Sum (Scan) Definition

Definition: The all-prefix-sums operation takes a binary associative operator \oplus, and an array of n elements

$$
\left[x_{0}, x_{1}, \ldots, x_{n-1}\right],
$$

and returns the array

$$
\left[x_{0},\left(x_{0} \oplus x_{1}\right), \ldots,\left(x_{0} \oplus x_{1} \oplus \ldots \oplus x_{n-1}\right)\right] .
$$

Example: If \oplus is addition, then the all-prefix-sums operation on the array
$\left.\begin{array}{llllllll}{[3} & 1 & 7 & 0 & 4 & 1 & 6 & 3\end{array}\right]$,
would return
[3 41111151622 25].

A Inclusive Scan Application Example

- Assume that we have a 100 -inch bread to feed 10 people
- We know how much each person wants in inches - [lllllllll 35282841$]$
- How do we cut the bread quickly?
- How much will be left
- Method 1: cut the sections sequentially: 3 inches first, 5 inches second, 2 inches third, etc.
- Method 2: calculate Prefix scan
- [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)

Typical Applications of Scan

- Assigning camp slots
- Assigning farmer market space
- Allocating memory to parallel threads
- Allocating memory buffer to communication channels
- Useful for many parallel algorithms:
- radix sort
- quicksort
- String comparison
- Lexical analysis
- Stream compaction
- Polynomial evaluation
- Solving recurrences
- Tree operations
- Histograms
- Etc.

A Inclusive Sequential Prefix-Sum

Given a sequence $\quad\left[x_{0}, x_{1}, x_{2}, \ldots\right]$
Calculate output $\quad\left[y_{0}, y_{1}, y_{2}, \ldots\right]$
Such that

$$
\begin{aligned}
& y_{0}=x_{0} \\
& y_{1}=x_{0}+x_{1} \\
& y_{2}=x_{0}+x_{1}+x_{2}
\end{aligned}
$$

Using a recursive definition

$$
y_{i}=y_{i-1}+x_{i}
$$

A Work Efficient C Implementation

$$
\begin{aligned}
& y[0]=x[0] ; \\
& \text { for }\left(i=1 ; i<M a x _i ; i++\right) \\
& \quad y[i]=y[i-1]+x[i] ;
\end{aligned}
$$

Computationally efficient:
N additions needed for N elements - $\mathrm{O}(\mathrm{N})$

A Naïve Inclusive Parallel Scan

- Assign one thread to calculate each y element
- Have every thread to add up all x elements needed for the y element

$$
\begin{aligned}
& y_{0}=x_{0} \\
& y_{1}=x_{0}+x_{1} \\
& y_{2}=x_{0}+x_{1}+x_{2}
\end{aligned}
$$

"Parallel programming is easy as long as you do not care about performance."

Parallel Inclusive Scan using Reduction Trees

- Calculate each output element as the reduction of all previous elements
- Some reduction partial sums will be shared among the calculation of output elements
- Based on hardware added design by Peter Kogge and Harold Stone at IBM in the 1970s -Kogge-Stone Trees

A Slightly Better Parallel Inclusive Scan Algorithm

T	3	1	7	0	4	1	6	3

1. Load input from global memory into shared memory array T
[^0]
A Kogge-Stone Parallel Scan Algorithm

Thread 5

1. (previous slide)
2. Iterate $\log (\mathrm{n})$ times, stride from 1 to ceil(n/2.0). Threads stride to $n-1$ active: add pairs of elements that are stride elements apart.

- Active threads: stride to n - 1 (n-stride hreads)
- Thread j adds elements j and j-stride from T and writes result into shared memory buffer T
- Each iteration requires two syncthreads
- syncthreads(); // make sure that input is in place

Iteration \#1
Stride $=1$

- float temp = T[j] + T[j - stride];

A Kogge-Stone Parallel Scan Algorithm

- Active threads: stride to $n-1$ (n-stride thieads)
- Thread j adds elements j and j-stride from T and writes result into shared memory buffer T
- Each iteration requires two syncthreads
- syncthreads(); // make sure that input is in place
- float temp = T[j] + T[j - stride];

Iteration \#1
Stride $=1$

- syncthreads(); // make sure that previous output has been consumed
- T[j] = temp;

A Kogge-Stone Parallel Scan Algorithm

1. ...
2. Iterate $\log (\mathrm{n})$ times, stride from 1 to ceil(n/2.0). Threads stride to $n-1$ active: add pairs of elements that are stride elements apart.

Iteration \#2

Stride = 2

A Kogge-Stone Parallel Scan Algorithm

1. Load input from global memory to shared memory.
2. Iterate $\log (n)$ times, stride from 1 to ceil(n/2.0). Threads stride to $n-1$ active: add pairs of elements that are stride elements apart.
3. Write output from shared memory to device memory

Iteration \#3
Stride $=4$

Double Buffering

- Use two copies of data T0 and T1
- Start by using T0 as input and T1 as output
- Switch input/output roles after each iteration
- Iteration 0: T0 as input and T1 as output
- Iteration 1: T1 as input and T0 and output
- Iteration 2: T0 as input and T1 as output
- This is typically implemented with two pointers, source and destination that swap their contents from one iteration to the next
- This eliminates the need for the second syncthreads

A Double-Buffered

Kogge-Stone Parallel Scan Algorithm

- Active threads: stride to $n-1$ (n-stride threads)
- Thread j adds elements j and j-stride from T and writes result into shared memory buffer T
- Each iteration requires only one syncthreads
- syncthreads(); // make sure that input is in place

Iteration \#1
Stride $=1$

- float destination[j] = source[j] + source[j - stride];
- temp = destination; destination = source; source = temp;

Work Efficiency Analysis

- A Kogge-Stone scan kernel executes log(n) parallel iterations
- The steps do (n-1), (n-2), (n-4),..(n-n/2) add operations each
- Total \# of add operations: $n^{*} \log (n)-(n-1) \rightarrow O\left(n^{*} \log (n)\right)$ work
- This scan algorithm is not very work efficient
- Sequential scan algorithm does n adds
- A factor of $\log (n)$ hurts: $20 x$ for $1,000,000$ elements!
- Typically used within each block, where $\mathrm{n} \leq 1,024$
- A parallel algorithm can be slow when execution resources are saturated due to low work efficiency

Improving Efficiency

- A common parallel algorithm pattern:

Balanced Trees

- Build a balanced binary tree on the input data and sweep it to and from the root
- Tree is not an actual data structure, but a concept to determine what each thread does at each step
- For scan:
- Traverse down from leaves to root building partial sums at internal nodes in the tree
- Root holds sum of all leaves
- Traverse back up the tree building the scan from the partial sums

Brent-Kung Parallel Scan - Reduction Step

Inclusive Post Scan Step

Inclusive Post Scan Step

Putting it Together

Reduction Step Kernel Code

```
__global__ void Brent_Kung_scan_kernel(float *X, float *Y,
    int InputSize) {
    __shared__ float XY[SECTION_SIZE];
    int i = 2*blockIdx.x*blockDim.x + threadIdx.x;
    if (i < InputSize) XY[threadIdx.x] = X[i];
    if (i+blockDim.x < InputSize) XY[threadIdx.x+blockDim.x] = X[i+blockDim.x];
    for (unsigned int stride = 1; stride <= blockDim.x; stride *= 2) {
        __syncthreads();
        int index = (threadIdx.x+1) * 2* stride -1;
        if (index < SECTION_SIZE) {
        XY[index] += XY[index - stride];
        }
    }
```

$$
\begin{aligned}
& / / \text { threadIdx. } x+1=1,2,3,4 \ldots \\
& / / \text { stride }=1, \text { index }=
\end{aligned}
$$

Putting it Together

Kernel Function

```
__global__ void Brent_Kung_scan_kernel(float *X, float *Y,
    int InputSize) {
        shared__ float XY[SECTION_SIZE];
    int i = 2*blockIdx.x*blockDim.x + threadIdx.x;
    if (i < InputSize) XY[threadIdx.x] = X[i];
    if (i+blockDim.x < InputSize) XY[threadIdx.x+blockDim.x] = X[i+blockDim.x];
    for (unsigned int stride = 1; stride <= blockDim.x; stride *= 2) {
        __syncthreads();
        int index = (threadIdx.x+1) * 2* stride -1;
        if (index < SECTION_SIZE) {
            XY[index] += XY[index - stride];
        }
    }
    for (int stride = SECTION_SIZE/4; stride > 0; stride /= 2) {
        __syncthreads();
        int index = (threadIdx.x+1)*stride*2 - 1;
        if(index + stride < SECTION_SIZE) {
            XY[index + stride] += XY[index];
        }
    }
        syncthreads();
    if (i < InputSize) Y[i] = XY[threadIdx.x];
    if (i+blockDim.x < InputSize) Y[i+blockDim.x] = XY[threadIdx.x+blockDim.x];
}

\section*{Work Analysis}
- The parallel Inclusive Scan executes \(2 \log (\mathrm{n})\) parallel iterations
- \(\log (n)\) in reduction and \(\log (n)\) in post scan
- The iterations do \(n / 2, n / 4, . .1,1, \ldots ., n / 4 . n / 2\) adds
- Total adds: \(2(\mathrm{n}-1) \rightarrow \mathrm{O}(\mathrm{n})\) work
- The total number of adds is no more than twice of that done in the efficient sequential algorithm
- The benefit of parallelism can easily overcome the \(2 x\) work when there is sufficient hardware

\section*{A Couple of Details}
- Brent-Kung uses half the number of threads compared to Kogge-Stone
- Each thread should load two elements into the shared memory
- Brent-Kung takes twice the number of steps compared to Kogge-Stone
- Kogge-Stone is more popular for parallel scan with blocks in GPUs

\section*{Flow of a Complete Scan - Hierarchical Approach}


\section*{Using Global Memory Contents in CUDA}
- Data in registers and shared memory of one thread block are not visible to other blocks
- To make data visible, the data has to be written into global memory
- However, any data written to the global memory are not visible until a memory fence. This is typically done by terminating the kernel execution
- Launch another kernel to continue the execution. The global memory writes done by the terminated kernels are visible to all blocks.

\section*{Flow of a Complete Scan - Hierarchical Approach}


\section*{Working on Arbitrary-Length Input}
- Build on the scan kernel that handles up to 2*blockDim.x elements
- For Kogge-Stone, have each section of blockDim.x elements assigned to a block
- Have each block write the sum of its section into a Sum array indexed by blockldx.x
- Run parallel scan on the Sum array
- May need to break down Sum into multiple sections if it is too big for a block
- Add the scanned Sum array values to the elements of corresponding sections```


[^0]:    Each thread loads one value from the input (global memory) array into shared memory array T.

