
CS 677: Parallel Programming for 

Many-core Processors 

Lecture 3

Instructor: Philippos Mordohai

Webpage: www.cs.stevens.edu/~mordohai

E-mail: Philippos.Mordohai@stevens.edu
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Overview

• A Common Programming Strategy

• Threading Hardware

• Memory Hardware

• Control Flow

– Simple Reduction
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A Common Programming Strategy

• Global memory resides in device memory 

(DRAM)
– Much slower access than shared memory

• Tile data to take advantage of fast shared 

memory:
– Generalize from adjacent_difference example

• Lecture 2, slides 35-40

– Divide and conquer
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A Common Programming Strategy

• Partition data into subsets that fit into 

shared memory
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• Handle each data subset with one thread 

block
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• Load the subset from global memory to 
shared memory, using multiple threads to 
exploit memory-level parallelism
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• Perform the computation on the subset from 

shared memory
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• Copy the result from shared memory back 

to global memory
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• Carefully partition data according to access 
patterns

• Read-only ➔ __constant__ memory (fast)

• R/W & shared within block ➔ __shared__ 
memory (fast)

• R/W within each thread ➔ registers (fast)

• Indexed R/W within each thread ➔ local 
memory (slow)

• R/W inputs/results ➔ cudaMalloc‘ed global 
memory (slow)
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Communication Through Memory

• Question:

__global__ void race(void)

{

__shared__ int my_shared_variable;

my_shared_variable = threadIdx.x;

// what is the value of

// my_shared_variable?

}
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Communication Through Memory

• This is a race condition

• The result is undefined

• The order in which threads access the 

variable is undefined without explicit 

coordination

• Use barriers (e.g., __syncthreads) or 

atomic operations (e.g., atomicAdd) to 

enforce well-defined semantics
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Threading Hardware
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Single-Program Multiple-Data (SPMD)

• CUDA integrated CPU + GPU application C program
– Serial C code executes on CPU

– Parallel Kernel C code executes on GPU thread blocks

CPU Serial Code

Grid 0

. . .

. . .

GPU Parallel Kernel

KernelA<<< nBlk, nTid >>>(args);

Grid 1

CPU Serial Code

GPU Parallel Kernel 

KernelB<<< nBlk, nTid >>>(args);



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 408, University of Illinois, Urbana-Champaign 14

CUDA Thread Block: Review

• Programmer declares (Thread) Block:
– Block size 1 to 512 concurrent threads

– Block shape 1D, 2D, or 3D

– Block dimensions in threads

• All threads in a Block execute the 
same thread program

• Threads share data and synchronize 
while doing their share of the work

• Threads have thread id numbers 
within Block

• Thread program uses thread id to 
select work and address shared data

CUDA Thread Block

Thread Id #:
0 1 2 3 …          m   

Thread program

Courtesy: John Nickolls, NVIDIA
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• SPA

– Streaming Processor Array

• TPC

– Texture Processor Cluster (2 or more SM + TEX)

• SM

– Streaming Multiprocessor (8 or more SP)

– Multi-threaded processor core

– Fundamental processing unit for CUDA thread block

• SP

– Streaming Processor

– Scalar ALU for a single CUDA thread

CUDA Processor Terminology
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Streaming Multiprocessor (SM)

• Streaming Multiprocessor (SM)

– 8 Streaming Processors (SP)

– 2 Super Function Units (SFU)

• Multi-threaded instruction dispatch

– 1 to 512 threads active

– Shared instruction fetch per 32 threads

– Cover latency of texture/memory loads

• 20+ GFLOPS

• 16 KB shared memory

• texture and global memory access

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory
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Thread Lifecycle in HW

• Grid is launched on the SPA

• Thread Blocks are serially 
distributed to all the SM’s
– Potentially >1 Thread Block 

per SM

• Each SM launches Warps of 
Threads
– 2 levels of parallelism

• SM schedules and executes 
Warps that are ready to run

• As Warps and Thread Blocks 
complete, resources are 
freed
– SPA can distribute more 

Thread Blocks

Host

Kernel 

1

Kernel 

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)



Threads in Linear Order
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• If the block was 3D, we would start with threads whose 
threadIdx.z=0, then threadIdx.z=1, etc.
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SM Executes Blocks

• Threads are assigned to SMs in 

Block granularity

– Up to N Blocks to each SM if  

other resources are available

• Threads run concurrently

– SM assigns/maintains thread id #s

– SM manages/schedules thread 

execution

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0
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SM Warp Scheduling

• SM hardware implements zero-
overhead Warp scheduling
– Warps whose next instruction has its 

operands ready for consumption are 
eligible for execution

– Eligible Warps are selected for 
execution on a prioritized scheduling 
policy

– All threads in a Warp execute the 
same instruction when selected

• 4 clock cycles needed to dispatch the 
same instruction for all threads in a 
Warp in G80
– If one global memory access is needed 

for every 4 instructions

– A minimum of 13 Warps are needed to 
fully tolerate 200-cycle memory latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

time

warp 3 instruction 96
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SM Instruction Buffer – Warp Scheduling

• Fetch one warp instruction/cycle

– from instruction L1 cache 

– into any instruction buffer slot

• Issue one “ready-to-go” warp instruction/cycle

– from any warp - instruction buffer slot

– operand scoreboarding used to prevent hazards

• Issue selection based on round-robin/age of warp

• SM broadcasts the same instruction to 32 Threads of 

a Warp



Scoreboarding

• How to determine if an instruction is ready to 
execute?

• A scoreboard is a table in hardware that 
tracks

– instructions being fetched, issued, executed 

– resources (functional units and operands) they 
need

– which instructions modify which registers

• Old concept from CDC 6600 (1960s) to 
separate memory and computation

CS6963 University of Utah
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Scoreboarding Example

• Consider three separate 

instruction streams: warp1, 

warp3 and warp8

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

warp 3 instruction 96

t=k

t=k+1

t=k+2

t=l>k

t=l+1

Warp Current
Instruction

Instruction
State

Warp 1 42 Computing

Warp 3 95 Computing

Warp 8 11 Operands 
ready to go

…

Schedule

at time k

CS6963 University of Utah
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Scoreboarding Example

• Consider three separate 

instruction streams: warp1, 

warp3 and warp8
Warp Current

Instruction
Instruction
State

Warp 1 42 Ready to 
write result 

Warp 3 95 Computing

Warp 8 11 Computing

…

Schedule

at time k+1

CS6963 University of Utah
24

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

warp 3 instruction 96

t=k

t=k+1

t=k+2

t=l>k

t=l+1



Scoreboarding

• All register operands of all instructions in the Instruction 
Buffer are scoreboarded
– Status becomes ready after the needed values are deposited

– prevents hazards

– cleared instructions are eligible for issue

• Decoupled Memory/Processor pipelines
– any thread can continue to issue instructions until 

scoreboarding prevents issue

– allows Memory/Processor ops to proceed in shadow of other 
waiting Memory/Processor ops

TB1

W1

TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4
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Memory Hardware

26
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CUDA Device Memory Space: 

Review
• Each thread can:

– R/W per-thread registers

– R/W per-thread local memory

– R/W per-block shared memory

– R/W per-grid global memory

– Read only per-grid constant 
memory

– Read only per-grid texture memory

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Host
• The host can R/W 

global, constant, and 

texture memories
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Parallel Memory Sharing
• Local Memory:   per-thread

– Private per thread
– Auto variables, register spill

• Shared Memory: per-Block
– Shared by threads of the same 

block
– Inter-thread communication

• Global Memory:   per-application
– Shared by all threads
– Inter-Grid communication

Thread

Local Memory

Grid 0

. . .

Global
Memory

. . .

Grid 1
Sequential

Grids

in Time

Block

Shared
Memory
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SM Memory Architecture

• Threads in a block share data & 
results
– In Memory and Shared Memory

– Synchronize at barrier instruction

• Per-Block Shared Memory 
Allocation
– Keeps data close to processor

– Minimize trips to global Memory

– Shared Memory is dynamically 
allocated to blocks, one of the 
limiting resources

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0

Courtesy: 

John Nicols, NVIDIA



Texture Memory

• Read only

• More closely related to graphics pipeline

• Small, but can be faster than global memory due to 
cache
– More relaxed coalescing requirements

– Optimized for 2D spatial locality

– Can pack 4 8-bit ints into 1 float 

– Converts data to [0.0 .. 1.0] or [-1.0 .. 1.0] range

– Automatic boundary handling

out of scope for now
See http://cuda-programming.blogspot.com/2013/02/texture-memory-in-cuda-what-
is-texture.html if interested
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SM Register File

• Register File (RF)

– 32 KB (8K entries) for each SM in G80

• TEX pipe can also read/write RF

– 2 SMs share 1 TEX in G 80, 3 SMs per 

TEX in GTX 200

– Related to graphics mode (out of scope)

• Load/Store pipe can also read/write RF

MAD: Multiply and Add unit

SFU: Super Function Unit – where more 

complex instructions are executed

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU
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Programmer View of Register File

• There are 8192 registers in 
each SM in G80
– This is an implementation 

decision, not part of CUDA

– Registers are dynamically 
partitioned across all blocks 
assigned to the SM

– Once assigned to a block, the 
register is NOT accessible by 
threads in other blocks

– Each thread in the same block 
only access registers assigned 
to itself

(This has changed but the 
example is still useful)

4 blocks 3 blocks
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Matrix Multiplication Example

• If each Block has 16X16 threads and each thread uses 
10 registers, how many threads can run on each SM?
– Each block requires 10*256 = 2560 registers

– 8192 = 3 * 2560 + change

– So, three blocks can run on an SM as far as registers are 
concerned

• How about if each thread increases the use of registers 
by 1?
– Each  Block now requires 11*256 = 2816 registers

– 8192 < 2816 *3

– Only two Blocks can run on an SM, 1/3 reduction of parallelism!!!
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More on Dynamic Partitioning

• Dynamic partitioning gives more flexibility to 

compilers/programmers

– One can run a smaller number of threads that 

require many registers each or a large number of 

threads that require few registers each 

• This allows for finer grain threading than traditional 

CPU threading models

– The compiler can tradeoff between instruction-

level parallelism and thread level parallelism



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 408, University of Illinois, Urbana-Champaign 35

ILP vs. TLP Example

• Assume that a kernel has 256-thread Blocks, 4 
independent instructions for each global memory load in 
the thread program, and each thread uses 10 registers, 
global loads take 200 cycles 
– 3 Blocks can run on each SM

• If a compiler can use one more register to change the 
dependence pattern so that 8 independent instructions 
exist for each global memory load
– Only two can run on each SM

– However, one only needs 200/(8*4) = 7 Warps to tolerate the 
memory latency

– Two blocks have 16 Warps. The performance can be actually 
higher!



TB0 TB1 TB2

32KB Register File

………

16KB Shared Memory

SP0 SP7

(a) Pre-“optimization”

Thread Contexts

Resource Allocation Example

32KB Register File

16KB Shared Memory

………

SP0 SP7

(b) Post-“optimization”

Insufficient 

registers to allocate 

3 blocks

Thread Contexts

X

Increase in per-thread performance, but fewer threads:

Lower overall performance in this case
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CUDA Occupancy Calculator

http://developer.download.nvidia.c

om/compute/cuda/CUDA_Occupa

ncy_calculator.xls
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M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M
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Memory Coalescing*
• When accessing global memory, peak 

performance utilization occurs when all 

threads in a half warp access continuous 

memory locations

Md Nd

W
ID

T
H

WIDTH

Thread 1

Thread 2

Not coalesced coalesced
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M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access 

direction in 

Kernel code

…
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M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access 

direction in 

Kernel code

…



Matrix Multiplication

42

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

1.  __shared __float Mds[TILE_WIDTH][TILE_WIDTH];

2.  __shared __float Nds[TILE_WIDTH][TILE_WIDTH];

3.  int bx = blockIdx.x;  int by = blockIdx.y;

4.  int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5.  int Row = by * TILE_WIDTH + ty;

6.  int Col = bx * TILE_WIDTH + tx;

7.  float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute the Pd element

8.  for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of Md and Nd tiles into shared memory

9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];

10. Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];

11. __syncthreads();

12.    for (int k = 0; k < TILE_WIDTH; ++k)

13. Pvalue += Mds[ty][k] * Nds[k][tx];

14.    __syncthreads();

}

15. Pd[Row*Width + Col] = Pvalue;

}
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Why this works: 

• threads in warp have 
same ty

• adjacent threads read 
adjacent elements from 
memory



* Coalescing since 2013

• GPUs now have cache

=> Coalescing is less important as it is done 
by the hardware

• Make sure you have enough cache 
available for each warp

• There may still be some loss of 
performance (20-50%) due to uncoalesced
access
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Cache (Compute Capability 3.x)

• L1 cache for each multiprocessor 

• L2 cache shared by all multiprocessors

• Both are used to cache accesses to local or 

global memory, including temporary register 

spills

• Cache behavior (e.g., whether reads are cached 

in both L1 and L2 or in L2 only) can be partially 

configured
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Configuring the Cache

• The same on-chip memory is used for both 
L1 and shared memory. It can be 
configured as:

– 48 KB of shared memory and 16 KB of L1 
cache 

– 16 KB of shared memory and 48 KB of L1 
cache 

– 32 KB of shared memory and 32 KB of L1 
cache 

• using cudaFuncSetCacheConfig()
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Cache Preferences

// Host code

// cudaFuncCachePreferShared: shared memory is 48 KB

// cudaFuncCachePreferEqual: shared memory is 32 KB

// cudaFuncCachePreferL1: shared memory is 16 KB

// cudaFuncCachePreferNone: no preference

cudaFuncSetCacheConfig(MyKernel, 

cudaFuncCachePreferShared);

46



Cache Preferences

• The default cache configuration is "prefer none" 

• If a kernel has no preference, then it will default 

to the preference of the current CPU 

thread/context

• If the current thread/context also has no 

preference, then most recent cache 

configuration will be used

– unless a different cache configuration is required to 

launch the kernel (e.g., due to shared memory 

requirements) 

• The initial configuration is 48 KB of shared 

memory and 16 KB of L1 cache 47
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Constants
• Immediate address constants (#define)

• Indexed address constants

• Constants stored in DRAM, and cached on chip

– L1 per SM

• A constant value can be broadcast to all threads in a warp

– Extremely efficient way of accessing a value that is common for all 
threads in a block!

// specify as global variable

__device__ __constant__ float gpuGamma[2]; 

// copy gamma value to constant device memory

cudaMemcpyToSymbol(gpuGamma, &gamma, sizeof(float));

…

// access as global variable in kernel

res = gpuGamma[0] * threadIdx.x;
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Shared Memory

• Each SM has 16 or more KB of Shared 

Memory

– 16 banks of 32-bit words

– 64-bit access is also supported now

• CUDA uses Shared Memory as shared 

storage visible to all threads in a thread 

block

– read and write access
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Parallel Memory Architecture

• In a parallel machine, many threads access 
memory
– Therefore, memory is divided into banks

– Essential to achieve high bandwidth

• Each bank can service one address per cycle
– A memory can service as many simultaneous 

accesses as it has banks

• Multiple simultaneous accesses to a bank
result in a bank conflict 
– Conflicting accesses are serialized

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0
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Bank Addressing Examples

• No Bank Conflicts

– Linear addressing 

stride == 1

• No Bank Conflicts

– Random 1:1 Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0
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Bank Addressing Examples

• 2-way Bank Conflicts • 8-way Bank Conflicts

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8
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How Addresses Map to 

Banks on G80

• Each bank has a bandwidth of 32 bits per 

clock cycle

• Successive 32-bit words are assigned to 

successive banks

• G80 has 16 banks

– So bank = address % 16

– Same as the size of a half-warp

• No bank conflicts between different half-warps, 

only within a single half-warp
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Shared Memory Bank Conflicts

• Shared memory is as fast as registers if there are no bank 
conflicts

• The fast case:
– If all threads of a half-warp access different banks, there is no bank 

conflict

– If all threads of a half-warp access an identical address, there is no 
bank conflict (broadcast)

• The slow case:
– Bank Conflict: multiple threads in the same half-warp access the 

same bank

– Must serialize the accesses

– Cost = max # of simultaneous accesses to a single bank
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Linear Addressing

• Given:

__shared__ float shared[256];

float foo = 

shared[baseIndex + s * threadIdx.x];

• This is only bank-conflict-free 

if s shares no common factors 

with the number of banks 

– 16 on G80, so s must be odd

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0
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Compute 

Capability 3.x

• Left: Linear addressing with a 
stride of one 32-bit word (no 
bank conflict)

• Middle: Linear addressing 
with a stride of two 32-bit 
words (no bank conflict)

• Right: Linear addressing with 
a stride of three 32-bit words 
(no bank conflict)

• More flexible definition of 
alignment  within banks 
enables last two examples
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Compute 

Capability 3.x

• Left: Conflict-free 
access via random 
permutation 

• Middle: Conflict-free 
access since threads 3, 
4, 6, 7, and 9 access 
the same word within 
bank 5

• Right: Conflict-free 
broadcast access 
(threads access the 
same word within a 
bank)
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Control Flow
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Control Flow Instructions

• Main performance concern with branching is divergence
– Threads within a single warp take different paths

– Different execution paths are serialized on GPU
• The control paths taken by the threads in a warp are traversed 

one at a time until there is no more.

• A common case: avoid divergence when branch 
condition is a function of thread ID
– Example with divergence: 

• If (threadIdx.x > 2) { }

• This creates two different control paths for threads in a block

• Branch granularity < warp size; threads 0, 1 and 2 follow different 
path than the rest of the threads in the first warp

– Example without divergence:
• If (threadIdx.x / WARP_SIZE > 2) { }

• Also creates two different control paths for threads in a block

• Branch granularity is a whole multiple of warp size; all threads in 
any given warp follow the same path
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Parallel Reduction

• Given an array of values, “reduce” them to a 
single value in parallel

• Examples 

– Sum reduction: sum of all values in the array

– Max reduction: maximum of all values in the array

• Typically parallel implementation:

– Recursively halve # threads, add two values per 
thread

– Takes log(n) steps for n elements, requires n/2 
threads
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A Vector Reduction Example

• Assume an in-place reduction using 

shared memory

– The original vector is in device global memory

– The shared memory is used to hold a partial 

sum vector

– Each iteration brings the partial sum vector 

closer to the final sum

– The final solution will be in element 0
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A simple implementation
• Assume we have already loaded array into

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (unsigned int stride = 1; 

stride < blockDim.x;  stride *= 2) 

{

__syncthreads();

if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];

}
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Vector Reduction with Branch Divergence

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements 

iterations

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10
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Some Observations

• In each iteration, two control flow paths will be 
sequentially traversed for each warp
– Threads that perform addition and threads that do not

– Threads that do not perform addition may cost extra cycles 
depending on the implementation of divergence

• No more than half of threads will be executing at any time
– All odd index threads are disabled right from the beginning!

– On average, less than ¼ of the threads will be activated for all 
warps over time.

– After the 5th iteration, entire warps in each block will be disabled, 
poor resource utilization but no divergence

• This can go on for a while, up to 4 more iterations (512/32=16= 24), 
where each iteration only has one thread activated until all warps 
retire 
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Shortcomings of the 

implementation
• Assume we have already loaded array into

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (unsigned int stride = 1; 

stride < blockDim.x;  stride *= 2) 

{

__syncthreads();

if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];

}

BAD: Divergence 

due to interleaved 

branch decisions
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A better implementation
• Assume we have already loaded array into

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (unsigned int stride = blockDim.x/2; 

stride >= 1;  stride >>= 1) 

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}
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Thread 0

No Divergence until <= 16 sub-sums 

0 1 2 3 … 13 1514 181716 19

0+16 15+31
1

3

4

Thread 1 Thread 2 Thread 14 Thread 15

67



© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 408, University of Illinois, Urbana-Champaign68

Prefetching and Instruction 

Mix
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Prefetching
• One could double buffer the computation, getting 

better instruction mix within each thread

– This is classic software pipelining in ILP compilers

Loop {

Load current tile to shared memory

syncthreads()

Compute current tile

syncthreads()

}

Load next tile from global memory

Loop {

Deposit current tile to shared memory

syncthreads()

Load next tile from global memory

Compute current tile

syncthreads()

}
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• Deposit blue tile from register 

into shared memory

• Syncthreads

• Load orange tile into register

• Compute Blue tile

• Deposit orange tile into shared 

memory

• ….
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Instruction Mix Considerations

for (int k = 0; k < BLOCK_SIZE; ++k)

Pvalue += Ms[ty][k] * Ns[k][tx];

There are very few mul/add between branches and 

address calculation 

Loop unrolling can help. (Be aware that any local arrays 

used after unrolling will be dumped into Local Memory)

Pvalue += Ms[ty][k] * Ns[k][tx] + …

Ms[ty][k+15] * Ns[k+15][tx];
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Unrolling
Ctemp = 0;
for (...) {

  __shared__ float As[16][16];
  __shared__ float Bs[16][16];

  // load input tile elements
  As[ty][tx] = A[indexA];
  Bs[ty][tx] = B[indexB];
  indexA += 16;
  indexB += 16 * widthB;

  __syncthreads();

  // compute results for tile
  for (i = 0; i < 16; i++)
    {
      Ctemp += As[ty][i]
        * Bs[i][tx];
    }

  __syncthreads();
}
C[indexC] = Ctemp;

Ctemp = 0;
for (...) {

  __shared__ float As[16][16];
  __shared__ float Bs[16][16];

  // load input tile elements
  As[ty][tx] = A[indexA];
  Bs[ty][tx] = B[indexB];
  indexA += 16;
  indexB += 16 * widthB;

  __syncthreads();

  // compute results for tile
  Ctemp +=
     As[ty][0] * Bs[0][tx];
  ...
  Ctemp +=
     As[ty][15] * Bs[15][tx];
 

  __syncthreads();
}
C[indexC] = Ctemp;

(b) Tiled Version (c) Unrolled Version
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