CS 677 Parallel Programming for
Many-core Processors
Lecture 13

Instructor: Philippos Mordohai
Webpage: mordohai.github.io
E-mail: Philippos.Mordohai@stevens.edu

mailto:Philippos.Mordohai@stevens.edu

Outline

* Deep learning

 Hardware Developments
* Developments in CUDA

Deep Learning

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Machine Learning

« A way of building software from input-output
pairs

— Use labeled data - data that come with the input values and their
desired output values - to learn what the logic should be

— Capture each labeled data item by adjusting the program logic
* Training Phase
— The system learns the logic for the application from labeled data.

* Deployment (inference) Phase
— The system applies the learned program logic on new data

View deep neural network as function approximators

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Recent Explosion of Deep Learning
Applications

 GPU computing hardware and programming interfaces
such as CUDA has enabled very fast research cycle of
deep neural net training

« Computer Vision, Speech Recognition, Document
Translation, Self Driving Cars, ...

« Using big labeled data to train and specialize DNN
based classifiers

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Background: Combinations Logic
Specification - Truth Table

Input
5 b c output
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 6

ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Images/vide

(0]
Audio *‘“’“‘W*‘M‘"_
Audio Audio features Speaker ID
A=
——) < Text classification,
Text o v e B .
machine
Text Text features translation,
Information
retrieval,

Slide courtesy of Andrew Ng, Stanford
University

What if we did not know the truth
table?

* Look at enough observation data to
construct the rule
000 - O
011 - O
100 - 1
110 - 0
* |[f we have enough observational data to

cover all input patterns, we can construct
the truth table and derive the logic

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Multilayer Perceptron Synaptic Weights

Universal for function approximation

Input Layer Hidden Layer Output Layer

SYNAPTIC SYNAPTIC
WEIGHTS WEIGHTS

[Cybenko, 1989; etc.]

LeNet-5, a convolutional neural
network for hand-written digit
recognition

C3:f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

32x32 $gan2e S2: . maps r
6@14x14 r

C5: layer :
120 Fsi. layer i:;lalTPUT

I
| Full cnnrlection ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

This is a 1024*8-bit input, which will have a truth
table of 2 819 entries

10

Forward Propagation Path of a
Convolution Layer

Weights
W

Input

Convolutional

Feat
eatures — > Layer — >

X

Output
Features
Y

 All input feature maps contribute to all output
feature maps. One convolution mask is
provided for each input-output combination.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Example of the Forward Path of a
Convolution Layer

Churt pt
m =
24 o

¥
'T'r #H
o
. ™,
7 5 | 2 | y ",
Comeoiut kom
1 1 1 1] 1 1] 2 1 1 2 Eiltetrs
2 2 1 1 1 o 0 1 2 1 2 o -r;.- i
™] o ¥ - o
. 1*¥0+1*2 +
‘ 1*0 +1i*a T ORI+ g
1%14 1%2 +° 1%0 + 1%31 4
2*1 + 2*1 » . ._.___---" "-___- ...__.--" - &
el r . el T o
{u 2 1 1 Iniput
2 3 Featurss
1 1 i 2 ¥
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 12

ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Sequential Code for the Forward Path of a
Convolution Layer

void convLayer_forward(int M, int C, int H, int W, int K, float™* X, float™* W, float™* Y)
{

intm, ¢, h,w, p, q;

intH out=H-K+1;

intW_out=W-K+1;

for(intm=0; m<M; m++) // for each output feature map
for(int h =0; h < H_out; h++) // for each output element
for(int w=0; w < W_out; w++) {
Y[m, h, w] =0;
for(intc=0; c<C; c++) // sum over all input feature maps
for(int p =0; p < K; p++) // KxK filter
for(int q=0; g < K; g++)
Y[m, h, w] +=X[c, h+p,w+q] * W[m, c, p, q];
}
}
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Sequential code for the Forward Path of a
Sub-sampling Layer

void poolinglLayer_forward(int M, int H, int W, int K, float* Y, float* S)
{
for(intm=0; m<M; m++) // for each output feature maps
for(int h =0; h < H/K; h++) // for each output element
for(int w = 0; w < W/K; w++) {
S[m, x, y] =0.;
for(intp=0; p<K; p++) { // loop over KxK input samples
for(int q=0; g < K; g++)
S[m, h, w] +=Y[m, K*h + p, K*w + q] /(K*K);
}
// add bias and apply non-linear activation
S[m, h, w] =sigmoid(S[m, h, w] + b[m])
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

A Small Convolution Layer Example
Y[0,0,1]

X[0,_, _]

N O R, B

X[1,_, _]

N RO O

X[2,_, _]

1
0
3

1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

) N RN

R, B W N

2
1
3
3

o N W O

o O N P

1
3
2

2

Generating
1 1
2 2
0 2
3
0 1
1 1
2 3
3
0
2 0
0 1
0 1

RN R

1
3
0

W [OIOI_I _]

0}
WI[0,1, ,] Y[O

? 2

w[0,2,_, _]

J— _]

A Small Convolution Layer Example

X[0,_, _]

N IO [[

X[1,_, _]

N = O O

X[2,_, _]

1
0
3

1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016

N SIS N

R =W N

2
1
3
3

Generating Y[0,0,0], c=0

0

(@R |\ SENENOS)

o O N B

1
3
2

2

w O N =

w N - O

0
2
0

0

1
2
2

=N
o w B

ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

[OIOI_I _]
3+13+2

W[OI 1;_1 _]
w(o0,2,_,]

— _]

A Small Convolution Layer Example
Generatmg Y[0,0,0], c=1

1 2 1 1 1 1
1 1 3 2 2 2 3 W00,]
X0__1 o0 2 2 o 2.1 0
2 1 0 3
74343
0O 2 170 1 2 Y} 3
0 3 21J1 11 0 [0,1, ,] Y[O,_,]
X[1,_, _] 111 0l 30 2 2
2 1 0 3
1 2 1 O
X2,] o 1 3 2 0 1 1
3 3 2 0 1 0 2 w[0,2,,]
1 3 2 0 1 21

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

A Small Convolution Layer Example

Generatmg Y[0,0,0], c=2

1 2 1 1 1 1

1 1 3 2 2 2 3
X0l o 2 2 o0 2.1 0

2 1 0 3

O 2 1 o0 1 2

O 3 2 1 1 1 0
X[1,_, _]

1 1 0 2 3 0

2 1 0 3

1 2 1 0

0 1 3 2 0O 1 1
X[2,_, _]

3 3 2 0 1 0 2

1 3 2 0 1 2 1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

W [OIOI_I _]

W[OI 1I_I _]

7

3+6+11

[0121 J _]

? Y[o,_, _|

Parallelism in a Convolution Layer

 All output feature maps can be calculated in
parallel

— A small number in general, not sufficient to fully utilize a
GPU

 All output feature map pixels can be calculated in
parallel

— All rows can be done in parallel
— All pixels in each row can be done in parallel
— Large number but diminishes as we go into deeper
layers
* All input feature maps can be processed in
parallel, but will need atomic operation or tree
reduction

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Design of a Basic Kernel

« Each block computes a tile of output pixels
— TILE_WIDTH pixels in each dimension

* The first (x) dimension in the grid maps to
the M output feature maps

* The second (y) dimension in the grid maps
to the tiles in the output feature maps

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Host Code for the Basic Kernel

» Defining the grid configuration

— W _out and H_out are the output feature map
width and height

define TILE_WIDTH 16 // We will use 4 for small examples.
W _grid = W_out/TILE_ WIDTH; // number of horizontal tiles per output map
H grid = H_out/TILE. WIDTH; // number of vertical tiles per output map

Y=H_grid * W_grid;

dim3 blockDim(TILE_WIDTH, TILE_WIDTH, 1);

dim3 gridDim(M, Y, 1);

ConvlLayerForward Kernel<<< gridDim, blockDim>>>(...);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

A Small Example

* Assume that we will produce 4 output feature
maps
— Each output feature map is 8x8 image
— We have 4 blocks in the x dimension

 |f we use tiles of 4 pixels on each side
(TILE_SIZE = 4)

— We have 4 blocks in the x dimension

« Top two blocks in each column calculate the top row of tiles
in the corresponding output feature map

« Bottom two blocks in each column calculate the bottom row
of tiles in the corresponding output feature map

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

A Basic Conv. Layer Forward Kernel

__global __ void ConvLayerForward_Basic_Kernel(int C, int W_grid, int K,
float™ X, float™ W, float™ Y)
{

int m = blockldx.x;
int h = blockldx.y / W_grid + threadldx.y;
int w = blockldx.y % W_grid + threadldx.x;

float acc =0.;
for (intc=0; c<C; c++){ // sum over all input channels

for (int p=0; p<K; p++) // loop over KxK filter
for (intg=0; g <K; g++)
acc+=X[c, h+p, w+q]*W[m,c, p, q];
}

Y[m, h, w] = acc;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Some Observations

* The amount of parallelism is quite high as
long as the total number of pixels across
all output feature maps is large

— This matches the CNN architecture well
« Each input tile is loaded multiple times,

once for each block that calculates the
output tile that requires it

— Not very efficient in global memory bandwidth

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Implementing a convolution layer with
matrix multiplication

2 .
15 17 26
A |
1) Conyolutlon
p 0 Filtetrs
W
’1 Input
1 Features
0 2 2 1 1 0 3 3 2 X
1122 1111 0110 [1][2][2][1] 14 20 15 24
1001 2121 1220 * 211071113 = 12 24 17 26
1(11]|/0([2
1([3(2]|2
Convolution oll21loll3 Output
Filte’trs 21111l 3]l 2 Features
W ol[3]|2]l2 Y
3112(|1(|0
1(12||1([|1
2(1(1([{0]]|3
0||1(|3]|[3
1([3](]3(|2
. . . Input
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 Features

ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign X_unrolled

25

Simple Matrix Multiplication

2] 0 1 3
1 1 0 2
1] 3 2 2
Each product matrix element is an output
feature map pixel. S
2 1 3 2
This inner product generates element O of of 3 1 1
output feature map 0. sl 2 1 o
1] 2 1 1
21 1 0 3
o 1 3 3
Convolution Filters il 3 3 2
v

1 T00121211220

4 0 5 4
1 P 1 P
o . 2 |4 |7 6
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016

ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

sdew ainyes) 1nduj

Tiled Matrix Multiplication

2x2 example

Each block calculates one output tile — 2 BNk
elements from each output map o] 2 o
21 1 3
Each input element is reused 2 times in the T
shared memory
3] 2 1
1] 2 1
21 1 O
o 1 3

Convolution Filters

) P

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

sdew ainyes) 1nduj

Tiled Matrix Multiplication

2x4 example

Each block calculates one output tile — 4 3 2
elements from each output map o] 2 o
21 1 3
Each input element is reused 2 times in the T
shared memory
31 2 1
1] 2 1
21 1 O
o 1 3

Convolution Filters

) P

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

sdew ainyes) 1nduj

Analysis of Efficiency
Total Input Replication

« Each output map requires its replicated input
feature map elements
— Not replicated for different output feature maps

— There are H_out * W_out output feature map
elements

— Each requires K*K replicated input feature map
elements

— S0, the total number of input element after replication
Is H_out*W_out*K*K times for each input feature map

— The total number of elements in each original input
feature map is (H_out+K-1) * (W_out+K-1)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Analysis of Small Example

« H out=2 /1
« W out=2 \ \
. K=9 ; 2| T
« There are 3 input maps \W/
(channels) =
« The total number of input -
elements in the replicated
(“unrolled”) input matrix is -
3*2*2*2*2 oor i et Pl - e
* The replicating factor is Convolution é%?é outpit
. (3*2%2*2*2)/(3*3*3) = 1.78 " IHIRI
Ny)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016

ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Memory Access Efficiency of Original
Convolution Algorithm

« Assume that we use tiled 2D convolution

* For input elements
— Each output tile has TILE_WIDTH? elements
— Each input tile has (TILE_WIDTH+K-1)?

— The total number of input feature map element accesses is
TILE_WIDTHZ*K?2

— The reduction factor of the tiled algorithm is
KZ*TILE_WIDTHZ/(TILE_WIDTH+K-1)?2

« The convolution filter weight elements are reused within
each output tile

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Efficiency of Tiled Matrix Multiplication

« Assuming we use TILE_WIDTH? input and
output tiles

— Each replicated input feature map element is reused
TILE_WIDTH times

— Each convolution filter weight element is reused
TILE_WIDTH times

— Matrix multiplication is better if TILE_WIDTH is larger
than KZ*TILE_WIDTHZ/(TILE_WIDTH+K-1)?2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Problem with the Later Stages

* The size (H_out, W_out) of each output
feature map decreases as we go to the
later stages of the CNN

— The TILE_WIDTH may be limited to very
small sizes relative to K

— The benefit of 2D tiling will diminish as we go
down the pipeline

— This is an intrinsic problem for 2D tiled
convolution

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Mini-Batching

* One can use mini-batching to further
increase the amount of work done in each
kernel launch

— Collect several sets of input feature maps of
an input sequence

— Use a larger unrolled input feature matrix that
has all the inputs from the mini-batch

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Other Optimizations

» Use streams to overlap the reading of the
next set of input feature maps with the
processing of the previous input feature
maps.

» Create unrolled matrix elements on the fly,
only when they are loaded into shared
memory

* Use more advanced algorithms such as
FFT to implement convolution

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Gradient Back-Propagation

« Training of ConvNets is based on a procedure called back-
propagation.
« The training data set is labeled with the “correct answer.”

« For each training image, the final stage of the network
calculates the loss function or the error as the difference
between the generated output vector element values and the
“correct” output vector element values.

« QGiven a sequence of training images, we can numerically
calculate the gradient of the loss function with respect to the
output vector. Intuitively, it gives the rate at which the error
changes when the value of the output vector changes - dE/dY

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Gradient Back Propagation (Cont.)

* The process propagates the gradient from
the last layer towards the first layer
through all layers of network.

« Each layer receives as dE/dY - gradient
with respect to its output feature maps and
computes dE/dX - gradient with respect to
its input feature maps

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Convolution Layer - Back
Propagation of dE/DY

()
J

Gradients
dE/dx

Convolutional

Layer

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Gradients
dE/dY

38

Adjusting Weights

» After the dE/dW values at all feature map

element positions are computed, weights
are updated:

* For each weight value
w(t+1) = w(t) - N dE/dw,

where A is the learning rate.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/C5483, ECE 498AL, University of Illinois, Urbana-Champaign

Other layer types

* Fully-connected

* Pooling/downsampling
* Upsampling

* Activation

The same operation is applied on all inputs,
with same or different parameters (weights)

The Fermi Architecture

Selected notes from
presentation by:

Michael C. Shebanow

Principal Research Scientist,
NV Research
mshebanow@nvidia.com

(2010)

41

* Programmability
— C++ Support
— Exceptions/Debug support

« Performance
— Dual issue SMs

+ Reliability: ECC

Much Better Compute

L1 cache

Larger Shared Memory
Much better DP math
Much better atomic support

GT200 GF100 Benefit

L1 Texture 12 KB 12 KB Fast texture

Cache (per filtering
quad)

Dedicated X 16 or 48 KB Efficient

L1 LD/ST physics and

Cache ray tracing

Total 16KB 16 or 48 KB | More data reuse

Shared among threads
Memory

L2 Cache 256KB 768 KB Greater texture

(TEX read (all clients coverage,

only) read/write) | robust compute

performance

Double 30 256 Much higher

Precision | FMAs/clock | FMAs/clock | throughputs for

Throughput Scientific codes

Instruction Set Architecture

Enables C++ : virtual functions,
new/delete, try/catch

Unified load/store addressing

64-bit addressing for large
problems

Optimized for CUDA C, OpenCL
& Direct Compute
— Direct Compute is Microsoft’s
general-purpose computing on GPU
API
Enables system call functionality

- stdio.h, etc.

Instruction Cache
Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit
3 . s

CUDA Core
Dispatch Port
Operand Collector

Register File (32,768 x 32-bit)

B . - 3 - =
LD/ST
Core Core Core Core
LD/ST

LD/ST

FP Unit INT Unit

Result Queue Core Core Core Core

LD/ST
LD/ST
LD/ST

Core Core Core Core

LD/ST
Core Core Core Core
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST

64 KB Shared Memory / L1 Cache
Uniform Cache
Tex Tex

Texture Cache
PolyMorph Engine

Vertex Fetch || Tessellator | #aewpoﬁ rr; I

|Attribute Setupl | Stream Output |

43

Unified Load/Store Addressing

Non-unified Address Space

*p_shared

Global

0]
*p_global

Unified Address Space

Global

40-bit

Instruction Issue and Control Flow

* Decouple internal execution resources
— Deliver peak IPC on branchy / int-heavy / LD-ST - heavy codes

« Dual issue pipelines select two warps to issue

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit Instruction Dispatch Unit

Warp 8 instruction 11 Warp 9 instruction 11

Warp 2 instruction 42 Warp 3 instruction 33

Warp 14 instruction 95 Warp 15 instruction 95

Warp 8 instruction 12 Warp 9 instruction 12

Warp 14 instruction 96 Warp 3 instruction 34

Warp 2 instruction 43 Warp 15 instruction 96

45

Caches

« Configurable L1 cache per SM
— 16KB L1$ / 48KB Shared

Memory Tesla Memory Hiearchy Fermi Memory Hiearchy

T =

— 48KB L1$ / 16KB Shared
Memory

« Shared 768KB L2 cache

» Compute motivation:

— Caching captures locality,
amplifies bandwidth

— Caching more effective than
Shared Memory for irregular or
unpredictable access

» Ray tracing, sparse matrix
multiplication, physics kernels ...

— Caching helps latency sensitive
cases

46

GigaThread Hardware Thread Scheduler

 Hierarchically manages tens of
thousands of simultaneously
active threads

« 10x faster
context
switching
on Fermi

 Concurrent
kernel execution

HTS

47

GigaThread Streaming Data Transfer Engine

Dual DMA engines

Simultaneous CPU->GPU
and GPU—->CPU data
transfer

Fully overlapped with
CPU/GPU processing

Kernel 0 iEE SDT1

Kernel 1 TCPU SDTO SDT1

Kernel 2 CPU SDTO SDT1
Kernel 3 T cp CPU SDTO SDT1

48

Fermi runs independent kernels in parallel
Concurrent Kernel Execution + Faster Context Switch

Kernel Kernel Kernel 2
1 1

—_— .
v —

Kernel 2 Kernel 2 Kernel 3

Kernel 2 Kernel 5

=

Kernel 3

Kernel
4

Kernel 5

Serial Kernel Execution Parallel Kernel Execution

Inside Kepler

Manuel Ujaldon
Nvidia CUDA Fellow
Computer Architecture Department
University of Malaga (Spain)

Modified by P. Mordohai

50

Summary of Features

Released in 2012

Architecture: Between 7 and 15 multiprocessors
SMX, endowed with 192 cores each.

Arithmetic: More than 1 TeraFLOP in double
precision (64 bits IEEE-/54 floating-point format).

— Specific values depend on the clock frequency for
each model (usually, more on GeForces, less on

Teslas).
Major innovations in core design:

— Dynamic parallelism
— Thread scheduling (Hyper-Q)

How the Architecture Scales Up

Architecture

CUDA Compute
Capability (CCC)

N (multiprocs.) 16 30 16 7 8 15

M (cores/multip.) 8 8 32 48 192 192

Number of cores 128 240 512 336 1536 2880

52

Fermi

2
S
<«
Q
=
O

9928}U| 1SOH

peayjefio

Kepler GK110

Memory Controller Memory Controller Memory Controller

PCI Express 3.0 Host Interface

Memory Controller Memory Controller

54

From SM to SMX in Kepler

Instruction Cache
Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

Diapateh Unit DHapal i D e i i i Unit
L L

Regieter File (

4+ 4

2
Core Ceoro - L¥ST | BFU
Core Core - LOisT [SFU

Core SFU

§

Core C SFU

§
§

SFU

SFU

§

SFU

SFU

Core

SFU

§

Core SFU

Corc SFU

Core - LCisT |SFU

Core - LOVST | SFU

Cere - LoveT |BFU
Core Core - LCisT
Core Core - LE¥ET

64 KB Shared Mamory [L1 Cache

§

§'

]
]

43 KB Read-Only Cache

Tex

Tex

95

Differences in Memory Hierarchy

Thread Kepler Memory Hierarchy

(1

Shared Memory L1 Cache Shared
L Memory

[

L2
Cache

56

New Data Cache

Additional 48 Kbytes to expand L1 cache size
Avoids the texture unit

Allows a global address to be fetched and

cached, using a pipeline different from that of
L1/shared

Flexible (does not require aligned accesses)
Eliminates texture setup

Managed automatically by compiler ("const___
restrict” indicates eligibility). Next slide shows
an example.

How to use Data Cache

« Annotate eligible kernel parameters with "const __ restrict"

« Compiler will automatically map loads to use read-only data cache
path.

__global void saxpy(float x, float vy,
const float * restrict input,
float * output)

size t offset = threadIdx.x +
(blockIdx.x * blockDim.x);

// Compiler will automatically use cache for "input"
output [offset] = (input[offset] * x) + vy,

GPUDirect now supports RDMA
[Remote Direct Memory Access]

« This allows direct transfers between GPUs and network
devices, for reducing the penalty on the extraordinary
bandwidth of GDDRS video memory

59

Relaxing Software Constraints for
Massive Parallelism

GPU generation Fermi Kepler

32 32 32

Number of threads / warp (warp size) 32

Max. number of warps / Multiprocessor 48 48 64 64
Max. number of blocks / Multiprocessor 8 8 16 16
Max. number of threads / Block 1024 1024 1024 1024

Max. number of threads / Multiprocessor 1536 1536 m m

Crucial enhancement
for Hyper-Q (see later)

60

Major Hardware Enhancements

» Large scale computations

GPU generation

Hardware model |GF100]GF104] GK104 | GKI10 | Limitation
Compute Capability (€66) | 20 | 21 | 30 | 35 _

| 2716-1 2716-1 2732-1 27321 Software Problem size |

* New architectural features

GPU generation

Hardware model |GF100|GF104| GK104 | GK110 | Limitation

Compute Capabilty (6cc) | 20 | 21 | 30 | 35

‘ No No No Hardware Problem
structure

No No No Hardware Threa;l
scheduling

61

Dynamic Parallelism

* The ability to launch new grids from the GPU:
— Dynamically: Based on run-time data
— Simultaneously: From multiple threads at once
— Independently: Each thread can launch a different grid

R ¢ N[

U eru ‘cPu

Fermi: Only CPU Kepler: GPU can
can generate GPU work. generate work for itself.

GPU

62

Dynamic Parallelism

The pre-Kepler GPU is a co-processor

The Kepler GPU s autonomous:
Dynamic parallelism

CPU

Now programs run faster and
are expressed in a more natural way.

63

R sm

LREBERERG

[V
wh kb

Workload Balance

Plenty of factors, unpredictable at run time, may
transform workload balancing among
multiprocessors into an impossible goal

See below the duration of 8 warps on an SM of

-]

l-ﬂw

=

L3

54

Hyper-Q

* |In Fermi, several CPU processes can send thread blocks
to the same GPU, but a kernel cannot start its execution
until the previous one has finished

* In Kepler, we can execute simultaneously up to 32
kernels launched from different:
— MPI processes, CPU threads (POSIX threads) or CUDA streams

« This increments the % of temporal occupancy on the

GPU

1 MPI Task at a Time

]

32 Simultaneous MPI Tasks

i

65

Without Hyper-Q

X
c
o
-
©
-~
=
-
=
o
o

66

With Hyper-Q

% UOLIeziliin Nd9

67

Six Ways to Improve Code on Kepler

parallelism
and Hyper-Q
on Kepler

68

Dynamic Work Generation

Coarse grid Fine grid

Higlher performance, Lower performance,
OWer accuracy higher accuracy

Parallelism based on Level of Detall

CUDA until 2012:

* The CPU launches
kernels regularly.

e All pixels are treated
the same.

CUDA on Kepler:

* The GPU launches a
different number of
kernels/blocks for each
computational region.

Grid Management Unit

Fermi

Stream Queue
(ordered queues of grids)

Stream 1 Stream 2 Stream 3
Kernel C Kernel R Kernel Z
Kernel B Kernel Q Kernel Y
Kernel A Kernel P Kernel X

"~ Single hardware queue
muftiplexing streams

Work Distributor

Tracks blocks issued from grids

16 active grids

CUDA Generated Work

Kepler GK110

Stream Queue

Parallel hardjvare streams

Grid Management Unit
Pending & Suspended Grids

1000s of pending grids

Allows suspending of grids

Work Distributor
Actively dispatching grids

32 active grids

71

Software and Hardware Queues

Fermi: o |
But CUDA streams multiplex into a single queue / — .

Up to 16 grids _, e .
on GPU hardware * 3 -~ _

’ ' Y Stream 2
Chances for overlapping: Only at stream edges “_

Stream 3

72

Software and Hardware Queues

Kepler: No inter-stream dependencies

——
o ‘ Stream 1

Up to 32 grids
can run at once < m
on GPU hardware

Concurrency at full-stream level Stream 3

73

Instruction Issue and Execution

SM-SMX fetch & issue (front-end) SM-SMX execution (back-end)

Can issue 2 warps, 1 instruction each. 32 cores (1 warp) for "int" and "float".

Total: 2 warps per cycle. 16 cores for "double” (1/2 warp).
Active warps: 48 on each SM, 16 load/store units (1/2 warp).
chosen from up to 8 blocks. 4 special function units (1/8 warp).

In GTX480: 15 * 48 = 720 active warps. A total of up to 4 concurrent warps.

Can issue 4 warps, 2 instructions each. 192 cores (6 warps) for "int" and "float".

Total: 8 warps per cycle. 64 cores for "double” (2 warps).
Active warps: 64 on each SMX, 32 load/store units (1 warp).
chosen from up to 16 blocks. 32 special function units (1 warp).

In K20: 13 * 64 = 832 active warps. A total of up to 10 concurrent warps.

Data-Dependent Parallelism

* The simplest possible parallel program:
— Loops are parallelizable
— Workload is known at compile-time
for 1 = 1 to N
for J =1 to M
convolution (i,)

* The simplest impossible program:
— Workload is unknown at compile-time.
— The challenge is data partitioning
for 1 = 1 to N
for J = 1 to x[1]
convolution (i, J);

Data-Dependent Parallelism

* Kepler version:

__global void convolution(int x[])
{
for J = 1 to x[blockIdx]

// Each block launches x[blockIdx]
// kernels from GPU

kernel <<< ... >>> (blockIdx, 7j)
}

// Launch N blocks of 1 thread
// on GPU (rows start in parallel)
convolution <<< N, 1 >>> (x);

» Up to 24 nested loops supported in CUDA 5.0

Recursive Parallel Algorithms prior
to Kepler

Early CUDA programming model did not
support recursion at all

CUDA started to support recursive functions
in version 3.1, but they can easily crash if the
size of the arguments is large

A user-defined stack in global memory can be
employed instead, but at the cost of a
significant performance penalty

An efficient solution is possible using
dynamic parallelism

Parallel Recursion: Quicksort
 Typical divide-and-conquer algorithm, hard to do
on Fermi |
Select pivot
' value
3]2]216[3]0]1]4]5]81[8]7]0]2]5] 2
/ \, v
212111112 B o 4[5 [3 elolsl7lol3l5) For each element
0 BB BHOEEEGCEEE BO § W r
I;: \, ; Store left if Store right if
EEE : value < pivot No‘ value >= pivot
= .) w
1]1]2]2[2]3]3]4]5[5]6]7][8]8]o]o]

done?

Recurse sort
‘-= nto left-hand

subset

Recurse sort
-

into right-hand -~
subset

Quicksort

__device WorkStack stack;
__global woid quicksort(int *data, int left, int right)
{
int nleft, nright;
/{ Partitions data based on pivot of first element.
// Returns counts in nleft & nright
partition (data+left, data+right, data[left], nleft, nright);
/{ If a sub-array needs sorting, push it on the stack
if{left « nright)
stack.push (data, left, nright);
if(nleft « right)
stack.push (data, nleft, right);
}

79

Quicksort

__host wvoid launch quicksort(int *data, int count)
{ a
// Launch initial guicksecrt to populate the stack
quicksort<<< ... >>>(data, 0, count-1);
// Loop more guickscrts until no more work exists
while(1)
{ -
// Wait for all sorts at this stage to finish
cudaDeviceSynchronize () ;
/! Copy our stack from the device.
WorkStack stack copy;
stack copy = CopyFromDevice (stack);
// Count of things on stack. We're done if it's zero!
if (stack copy.size() = 0)
break;
// Pop the stack and launch each new sort in its own stream
while (stack copy.size())
{
WorkStack elem = stack copy.pepl():;
cudaStream t 3; B
cudaStreamCreate(&3) ;
gquicksort<<< ..., 3 >>>(data, elem.left, elem.right);
}
}
}

80

Quicksort with Dynamic Parallelism

__global woid quicksort(int *data, int left, int right)

{

}

{

int nleft, nright;
cudaStream t 31, =s2;
// Partiticns data based con piveot of first element.
// Returns counts in nleft & nright
partitien (data+left, data+right, data[left], nleft, nright);
// If a sub-array needs sorting, launch a new grid for it.
// Note use of streams tc get concurrency between sub-sorts
if(left « nright) {
cudaStreamCreateWithFlags(&sl, cudaStreamNonBlocking) ;
quicksort<<< ..., 81 >>>(data, left, nright);
1
if(nleft « right) {
cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking);
quicksort<<< ..., 82 >>»>(data, nleft, right);
1
__host weoid launch quicksort(int *data, int count)
gquicksort<<< ... >>>(data, 0, count-1);

}

Quicksort Results

Quicksort

2X

o

e \\ithout Dynamic Parallelism

ammn\Nith Dynamic Parallelism
Ox T 1

0 5 10
Problem Size (Million of Elements)

Relative Sorting Performance

82

Maxwell

(2"d generation)
Released in 2014

Material by Mark Harris (NVIDIA)
and others

83

Energy Efficiency

RESULTS : ENERGY EFFICIENCY

GTX 680

m GTX 980

Performance per Watt
GTX 680: Kepler GTX 980: Maxwell

New Features

SMs 8 16
CUDA Cores 1536 2048
Base Clock 1006 MHz 1126 MHz
GPU Boost Clock 1058 MHz 1216 MHz
GFLOPs 3090 4612’
“Texture Units 128 128
Texel fill-rate 128.8 Gigatexels/sec 144 1 Gigatexels/sec
Memory Clock 6000 MHz 7000 MHz
Memory Bandwidth 192 GBlsec 224 GBisec
ROPs 32 64
L2 Cache Size 512KB 2048KB
TDP 195 Watts 165 Watts
Transistors 3.54 billion 5.2 billion
Die Size 294 mm? 398 mm?*
Manufacturing Process 28-nm 28-nm

85

New Features

Improved instruction scheduling

— Four warp schedulers per SMM (Maxwell
SM), no shared core functional units

Increased occupancy
— Maximum active blocks per SMM has doubled

Larger dedicated shared memory
— L1 is now with texture cache

Faster shared memory atomics
Broader support for dynamic parallelism

Graphics

NEXT GENERATION
GRAPHICS

Enabling New Algorithms and
Superior Image Quality

Voxel Global Illumination
Multi Projection
Conservative Raster

Shader : Raster Ordered View
Tiled Resources

Advanced Sampling

Pascal

Key New Features

Smaller manufacturing process
— 16 nm vs. 28 nm of previous generations

Much faster memory

Higher clock frequency
— 1607 MHz vs. 1216 MHz

Dynamic load balancing including graphics
pipeline

Page Migration Engine

Released in 2017

90

Key New Features

Up to 640 Tensor Cores for deep learning

— Multiply and add floating point matrices (64
operations per clock)

— Over 125 TFLOPS (5x more than Pascal)

Next generation NVLink doubles
bandwidth (up to 300 GB/s)

384 SMs

Simultaneous execution of FP32 and
INT32 operations

Tesla Product Tesla K40 Tesla M40 Tesla P100 Tesla V100
GPU GK180 (Kepler) GM200 (Maxwell) | GP100 (Pascal) GV100 (Volta)
5hs= 15 24 56 BO

TPCs 15 24 28 40

FP32 Cores / SM 192 128 64 64

FP32 Cares / GPU 2880 3072 3584 5120

FP&4 Cores / SM 64 4 32 32

FP&4 Cares / GPU 960 96 1792 2560

Tensor Cores / SM TS MA MA B

Tensor Cores / GPU MNA NA NA 640

GPU Boost Clock B810/875 MHz 1114 MHz 1480 MHz 1530 MHz
Peak FP32 TFLOPS! 5 6.8 10.6 15.7

Peak FP&4 TFLOPS! 1.7 21 53 7.8

Peak Tensor TFLOPS! NA MNA NA 125

Texture Units 240 192 224 320

Memory Interface 384-bit GDDRS 384-bit GDDRS 4096-hit HEMZ2 | 4096-bit HEM2
Memory Size Upto 12 GB Up to 24 GB 16 GB 16 GB

LZ Cache Size 1536 KB 3072 KB 4096 KB 6144 KB
Shared Memory Size/ | 16 KB/32 KB/48 | 95 KB 64 KB Configurable up
M KB to 96 KB
Register File Size / SM | 256 KB 256 KB 256 KB 256KB
Register File Size / 3840 KB 6144 KB 14336 KB 20480 KB
GPU

TOP 235 Watts 250 Watts 300 Watts 300 Watts
Transistors 7.1 billion 8 billion 15.3 billion 21.1 billion
GPU Die Size 551 mm? 601 mm? 610 mm? 815 mm?
Manufacturing 28 nm 28 nm 16 nm FinFET+ 12 nm FFN

Process

1 peak TFLOPS rates are based on GPU Boost Clock

92

¥
e rnpess s | re e s - ————
: |
1

alalslals
N R R R

==.
1
e

{hlelalnlels
R
-1

;n.n!l;..,.
L3 N 2

ADVANCED SHADING

RT CORE

TENSOR CORE

NEW CORE ARCHITECTURE

Released in 2018

93

Key New Features

 CUDA, Ray-tracing and Tensor cores
— 14.2 TFLOPS of FP32 performance, 113.8
Tensor TFLOPS and 10 Giga Rays/sec
 Upto 24 GB of RAM in Titan RTX and up to
48 GB in Quadro RTX 8000

* Independent integer and floating-point
datapaths and unified shared memory,
texture caching and memory load caching
lead to 50% performance improvement per
core

Turing Tensor Cores

PASCAL TURING TENSOR CORE TURING TENSOR CORE TURING TENSOR CORE
FP16 INT 8 INT 4
i i
I

et e

o .."‘...

i - Sees

1 3 £t R

i .‘:g'. et '.:.'0.

i i % i

gt w5 2 =

iy
A
7

0:0
R
W

> Sk z
. ” g -
N) A, *X
-THROUGHPDT? » x
3 .- " /-
PASCALTPC TURING TPC

. . N
THROUGHPUT:

LOAD/STORE LOAD/STORE LOAD/STORE
UNIT UNIT UNIT

L1 & SHARED MEM L1 & SHARED MEM
64KB+32K8B or 64KB+32KB or
I2KB+64KB 32KB+64KB

95

Memory Compression

» Several lossless memory compression
techniques to reduce bandwidth demands

* Improvements over Pascal

Reflections Demo

97

NVIDIA DGX-1

NVIDIA DGX-1

ININ (. C
ANING O

“250 SERVERS IN-A-BOX”

DUAL XEON

FLOPS (CPU + GPU) 3TE 170 TF

AGGREGATE NODE BW 76 GB/ s 768 GB/ s

ALEXNET TRAIN TIME 150 HOURS 2 HOURS

TRAIN IN 2 HOURS >250 NODES* 1 NODE

*Caffe Training on Multi-node Digributed-memory Systems Based on Intel ® Xeon ® Processor ES Family (extrapolated)
Gennady Fedorov (Intel)'s picture Submitted by Gennady Fedorov (Intel), Vadim P. (Intel) on October 29, 2015
httos:/ f software. intel. com/en-usf atidess catfe-tmining-on-multi-node-distributed-memory-syste ms-based-o0-intel-Xeon- Droc s - e5

99

SYSTEM SPECIFICATIONS

GPUs 8X Tesla V100
Performance 1 petaFLOPS
[Mixed Precision|
GPU Memory 256 GB total system
CPU Dual 20-Core Intel Xeon
E5-2698 v4 2.2 GHz
NVIDIA CUDA"® Cores 40,960
MVIDIA Tensor Cores 5,120
[on V100 based systems)
Power Requirements 3,500 W
Systermn Memory 512 GB 2,133 MHz DDR4
RDIMM
Storage 4X1.92TBSSDRAIDO
Metwork Dual 10 GbE, 4 IB EDR
Operating System Canonical Ubuntu,
Red Hat Enterprise Linux
System Weight 134 lbs
System Dimensions 866 D x 444 W x 131 H [mm)
Packing Dimensions 1,180 Dx 730 W x 284 H
(mm]
Operating Temperature 5-35°C

Range

100

NVIDIA DGX-2

DATA CENTER

DGX-2

NVIDIA DGX-2

The world’s most powerful Al system for the most complex
Al challenges.

SYSTEM SPECIFICATIONS

GPUs 16X NVIDIA® Tesla V100

GPU Memary 512GB total

Performance 2 petaFLOPS

NVIDIA CUDA® Cores 81920

NVIDIA Tensor Cores 10240

NVSwitches 12

Maximum Power Usage 10kW

CPU Dual Intel Xeon Platinum
8168, 2.7 GHz, 24-cores

Systermn Memory 1.5TB

Network 8X 100Gb/sec

Infiniband/100GigE
Dual 10/25/40/50/100GbE

Storage 05: 2ZX 960GB NVME SSDs
Internal Storage: 30TB
(8X 3.84TB) NVME SSDs

Software Ubuntu Linux 05

Red Hat Enterprise Linux 0S5
See Software stack

for details
Systern Weight 360 Lbs [163.29 kgs)
Packaged System 400Llbs [181.44kgs)

Weight

System Dimensions Height: 17.3 in (440.0 mm)
Width: 19.0 in (482.3 mm)
Length: 31.3 in (795.4 mm)
- No Front Bezel
32.8in [834.0 mm]
- With Front Bezel

Operating Temperature 5°C to 35°C [41°F to 95°F)
Range

102

NVIDIA DGX STATION

SYSTEM SPECIFICATIONS

GPUs 4X Tesla V100
TFLOPS [Mixed precision) 500

GPU Memory 128 GB total system
NVIDIA Tensor Cores 2,560

NVIDIA CUDA" Cores 20,480

CPU

System Memory
Storage

Network

Display

Additional Ports
Acoustics

System Weight
System Dimensions

Maximum Power
Requirements

Operating Temperature

Range

Software

Intel Xeon E5-24698 v& 2.2 GHz
|20-Core)

256 GB RDIMM DDR4

Data: 3X 1.92TB SSD RAID 0
05: 1X1.92TBSSD

Dual 10GBASE-T [RJ45)

3X DisplayPort, 4K resolution
2x eSATA, 2x USB 3.1, 4x USB 3.0
<35dB

88 lbs / 40 kg

518 D x 256 W x 639 H [mm)
1,500 W

10-30°C

Ubuntu Desktop Linux 0S,
Red Hat Enterprise Linux 0S,
DGX Recommended GPU Driver

CUDA Toolkit

104

AMD RX Vega

« 8 GB high bandwidth memory (HBM2)
— 14 nm production process

4096 cores

« 12.7 TFLOPS

— Compared to 11 TFLOPS of NVIDIA GTX
Titan X and 15.7 TFLOPS of NVIDIA GV100
(Volta)

AMD RADEON VI

16 GB high bandwidth memory (HBM2)
— 7/ nm production process

3840 cores
13.2 billion transistors
13.8 TFLOPS

106

CUDA 4.0

)

CUDA 4.0: Highlights

Easier Parallel Faster New & Improved
Application Porting Multi-GPU Programming Developer Tools
A 4 A 4 A 4

» Share GPUs across multiple threads

« Single thread access 1o all GPUs » Unified Virtual Addressing * Auto Performance Analysis
» No-copy pinning of system memory » NVIDIA GPUDirect™ v2.0 « C++ Debugging

* News CUDA C/C++ features * Peer-to-Peer Access « GPU Binary Disassembler
* Thrust templated primitives library » Peer-to-Peer Transfers . cuda-gdb for MacOS

* NPP image/video processing library * GPU-accelerated MP)

* Layered Textures

CUDA 4.0 Release

 March 2011
* Independent software release

e Unlike:

— CUDA 1.0 released with G80/G9x in 2007
(nearly a year later than the hardware)

— CUDA 2.0 released for GT200 in 2008
— CUDA 3.0 released for Fermi in 2009

CUDA 4.0 - Application Porting

 Unified Virtual Addressing

» Faster Multi-GPU Programming
— NVIDIA GPUDirect 2.0

» Easier Parallel Programming in C++
— Thrust

Easier Porting of Existing Applications

Share GPUs across multiple
threads

« Easier porting of multi-
threaded apps

— pthreads / OpenMP threads
share a GPU
 Launch concurrent kernels
from different host threads

— Eliminates context switching
overhead
* New, simple context
management APIs

— Old context migration APIs
still supported

Single thread access to all
GPUs

« Each host thread can now
access all GPUs in the
system

— One thread per GPU
limitation removed

« Easier than ever for
applications to take
advantage of multi-GPU

— Single-threaded applications

can now benefit from
multiple GPUs

— Easily coordinate work
across multiple GPUs

New CUDA C/C++ Language Features

« C++ new/delete
— Dynamic memory management

« C++ virtual functions
— Easier porting of existing applications

* Inline PTX
— Enables assembly-level optimization

GPU-Accelerated Image Processing

* NVIDIA Performance Primitives (NPP) library

— 10x to 36x faster image processing

— Initial focus on imaging and video related
primitives
« Data exchange and initialization
Color conversion
Threshold and compare operations
Statistics
Filter functions
Geometry transforms
 Arithmetic and logical operations
« JPEG

NVIDIA GPUDirect:Towards
Eliminating the CPU Bottleneck

Version 1.0 Version 2.0

for applications that communicate for applications that communicate
over a network within a node

v v

* Direct access to GPU memory for 3
party devices

* Peer-to-Peer memory access,

* Eliminates unnecessary sys mem transfers & synchronization
copies & CPU overhead

» Supported by Mellanox and Qlogic » Less code, higher programmer

* Up to 30% improvement in productivity

communication performance

Before GPUDirect 2.0

Two copies required

GPUDirect 2.0;: Peer-to-Peer
Communication

Only one copy required

GPUDirect 2.0: Peer-to-Peer
Communication

* Direct communication between GPUs
— Faster - no system memory copy overhead
— More convenient multi-GPU programming

* Direct Transfers
— Copy from GPUO memory to GPU1 memory
— Works transparently with UVA

* Direct Access

— GPUO reads or writes GPU1 memory
(load/store)

Unified Virtual Addressing

 No UVA: Multiple « UVA: Single Address
Memory Spaces Space

System GPUO GPU1
Memory Memory

118

Unified Virtual Addressing

* One address space for all CPU and GPU memory

— Determine physical memory location from pointer
value

— Enables libraries to simplify their interfaces (e.g.
cudaMemcpy)

* Supported on Tesla 20-series and other Fermi
GPUs

Before UVA With UVA

Separate options for each permutation One function handles all cases

cudaMemcpyHostToHost
cudaMemcpyHostToDevice cudaMemcpyDefault
cudaMemcpyDeviceToHost (data location becomes an implementation detail)

cudaMemcpyDeviceToDevice

119

New Developer Tools

» Auto Performance Analysis: Visual Profiler
— Identify limiting factor
— Analyze instruction throughput
— Analyze memory throughput
— Analyze kernel occupancy
« C++ Debugging
— cuda-gdb for MacOS
 GPU Binary Disassembler

CUDA 5.0

Mark Harris

Chief Technologist, GPU
Computing

121

Open Source LLVM Compiler

* Provides ability for anyone to add CUDA to new
languages and processors

CUDA
C, C++, Fortran

LLVM Compiler
For CUDA

NVIDIA x86
GPUs CPUs

122

NVIDIA Nsight, Eclipse Edition

iant be 2]

Simultaneously debug of CPU and GPU o Quickly identifies performance issues

® Automated CPU to GPU code refactoring e
® Semantic highlighting of CUDA code ® Inspect variables across CUDA threads o Integrated expert system
o Integrated code samples & docs ® Use breakpoints & single-step debugging ® Automated analysis

® Source line correlation

For Linux and Mac OS

123

CUDA 4: Whole-Program
Compilation & Linking

CUDA 5: GPU Library Object
Linking
Separate compilation allows building independent

object files

CUDA 5 can link multiple object files into one
program

Can also combine object files into static libraries
— Link and externally call device code

b.cu cc
i
e f... '
main.cpp + N4 N4 i program.exe

125

CUDA 5: GPU Library Object
Linking

« Enables 3rd party
closed-source
device libraries

 User-defined device
callback functions

main.cpp
100.CU

program.exe

126

CUDA 5.0: Run-time Syntax and
Semantics

{

\J

/,;_device__ float buf[1l024]; ‘\

global wvoid dynamic(float *data)

int tid = threadIdx.x;
if (tid % 2)

buf[tid/2] = data[tid]+data[tid+1];
__syncthreads();

— This launch is per-thread

if (tid == 0) {
launchkernel<<<128,256>>>(buf) ; €
cudaDeviceSynchronize();

}

__syncthreads () ; <

CUDA 5.0: Sync. all launches within my block

if (tid == 0) {
cudaMemCpyAsync(data, buf, 1024); €
cudaDeviceSynchronize();

idle threads wait for the others here

— CUDA 5.0: Only async. launches
are allowed on data gathering

J

127

CUDA 6.0

Manuel Ujaldon
Nvidia CUDA Fellow
Computer Architecture
Department
University of Malaga (Spain)

128

CUDA 6 Highlights

Unified Memory:

— Cfl;’U and GPU can share data without much programming
effort

Extended Library Interface (XT) and Drop-in Libraries:
— Libraries much easier to use

GPUDirect RDMA:
— A key achievement in multi-GPU environments

Developer tools:

— Visual Profiler enhanced with:
» Side-by-side source and disassembly view showing.

* New analysis passes (per SM activity level), generates a kernel
analysis report.

Multi-Process Server (MPS) support in nvprof and cuda-
memcheck

Nsight Eclipse Edition supports remote development (x86
and ARM)

CUDA 6.0: Performance
Improvements in Key Use Cases

Kernel launch

Repeated launch of the same set of
kernels

cudaDeviceSynchronize()
Back-to-back grids in a stream

Unified Memory

Dual-, tri- or
quad-channel
(~100 GB/s.)

256, 320,
384 bits
(~300 GB/s.)

PCI-express
(~10 GB/s.)

Main memory Video memory

131

Unified Memory Contributions

* Creates pool of managed memory between
CPU and GPU

« Simpler programming and memory model:

— Single pointer to data, accessible anywhere

— Eliminate need for cudaMemcpy(), use
cudaMallocManaged()

— No need for deep copies
» Performance through data locality:
— Migrate data to accessing processor

— Guarantee global coherency
— Still allows cudaMemcpyAsync() hand tuning

CUDA call
Allocation fixed in
Local access for
PIC-e access for
Other features

Coherency

Full support in

Memory Types

Zero-Copy

(pinned memory)
cudaMallocHost(&A, 4);

Main memory (DDR3) Video memory (GDDR5)

CPU
All GPUs
Avoid swapping to disk
At all times
CUDA 2.2

Unified Virtual
Addressing

cudaMalloc(&A, 4);

Home GPU
Other GPUs
No CPU access
Between GPUs
CUDA 1.0

Unified Memory

cudaMallocManaged(&A, 4);
Both
CPU and home GPU
Other GPUs
On access CPU/GPU migration
Only at launch & sync.
CUDA 6.0

133

Additions to the CUDA API

* New call: cudaMallocManaged()

— Drop-in replacement for cudaMalloc() allocates
managed memory

— Returns pointer accessible from both Host and
Device

* New call: cudaStreamAttachMemAsync()

— Manages concurrency in multi-threaded CPU
applications

* New keyword: __managed___

— Declares global-scope migratable device variable
— Symbol accessible from both GPU and CPU code

Code without Unified Memory

void launch(dataElem *elem) {
CPU memory dataElem *g elem;
dataElem char *g_text;

int textlen = strlen(elem->text);

“Hello, world” // Allocate storage for struct and text
cudaMalloc (&g elem, sizeof(dataElem));

cudaMalloc (&g text, textlen);
Two addresses

g?ghtewga%gples // Copy up each piece separately, including

new “text” pointer value
cudaMemcpy (g_elem, elem, sizeof(dataElem));

cudaMemcpy (g _text, elem->text, textlen);

GPU memory

dataEl:m sizeof (g _text));

cudaMemcpy (& (g_elem->text), &g text,

propl

prop2 // CPU and GPU use different copies of “elem”

@ “HE"O, world” kernel<<< ... >>>(g_elem);

// Finally we can launch our kernel, but

135

Code with Unified Memory

CPU memory void launch(dataElem *elem) ({

kernel<<< ... >>>(elem);

}
« What remains the same:

— Data movement
— GPU accesses a local
copy of text
prop2 « What has Changed:
“text g Hello, world” — Programmer sees a
single pointer
GPU memory — CPU and GPU both

reference the same object
— There is coherence

136

CUDA 7.0

By Mark Harris
NVIDIA

137

New Features: C++11

« C++11 features on device including:
— auto,
— lambda,
— variadic templates,
— rvalue references,
— range-based for loops

Example

#include <initializer list>
#include <iostream>

#include <cstring>

// Generic parallel find routine. Threads search through the
// array in parallel. A thread returns the index of the
// first wvalue it finds that satisfies predicate "'p°, or -1.
template <typename T, typename Predicate>
__device int find(T *data, int n, Predicate p)
{

for (int 1 = blockIdx.x * blockDim.x + threadIldx.x;

i < n;

1 += blockDim.x * gridDim.Xx)

1f (p(data[i])) return 1i;
}

return -1;

//
//
//
//

Use find with a lambda function that searches for x, v,
or w. Note the use of range-based for loop and

initializer list inside the functor, and auto means we
don't have to know the type of the lambda or the array
global

void xyzw frequency(unsigned int *count, char *data, 1int n)

{

auto match xyzw = [] (char c) {
const char letters[] = { 'x','y','z",'w' };
for (const auto x : letters)
1f (¢ == x) return true;
return false;

b
int 1 = find(data, n, match xyzw);

if (1 >= 0) atomicAdd(count, 1);

140

Z

int main (void)

{

char text[] = "zebra xylophone wax";

char *d text;

cudaMalloc (&d text, sizeof (text));

cudaMemcpy (d_text, text, sizeof (text),cudaMemcpyHostToDevice);
unsigned int *d count;

cudaMalloc (&d count, sizeof (unsigned int));
cudaMemset (d count, 0, sizeof (unsigned int));

xyzw frequency<<<l, 64>>>(d count, d text, strlen(text));

unsigned int count;

cudaMemcpy (&count, d count, sizeof (unsigned int), cudaMemcpyDeviceToHost);

std::cout << count << " instances of 'x', 'y', 'z', 'w'"
<< "in " << text << std::endl;

cudaFree (d count);

cudaFree (d text);

return 0O;
141

Other Features

 Thrust version 1.8

— Thrust algorithms can now be invoked from
the device

e cuSOLVER, cuFFT

— cuSolver library is a high-level package based
on the cuBLAS and cuSPARSE libraries

* Runtime compilation

— No need to generate multiple optimized
kernels at compile time

CUDA 8.0

By Milind Kukanur
NVIDIA

143

PASCAL SUPPORT UNIFIED MEMORY

New Architecture
NVLINK

HBM2 Stacked Memory
Page Migration Engine

What’'s New

Larger Datasets
Demand Paging
New Tuning APIs
Data Coherence & Atomics

New nvGRAPH library

CuBLAS improvements
for Deep Learning

Critical Path Analysis
2x Faster Compile Time
OpenACC Profiling

Debug CUDA Apps on Display
GPU

144

Unified Memory

* Oversubscribe GPU memory, up to system
memory size

void foo () {
// Allocate 64 GB
char *data;
size t size = 064*1024*1024*1024;

cudaMallocManaged (&data, size);

Unified Memory

global voild mykernel (char *data) {
datall] = ‘g’;

volid foo () {
char *data;
cudaMallocManaged (&data, 2);

mykernel<<<...>>>(data);
// no synchronize here

data[0] = ‘c’;

cudaFree (data) ;

CUDA 9.0

By Mark Harris
NVIDIA

147

New Features

Support for Volta
Cooperative groups
Tensor Core API
New Visual Profiler
Support for C++ 14

Cooperative Groups

Ability to define groups of threads explicitly at sub-block and multiblock
granularities

__global void cooperative kernel (...)

{

// obtain default "current thread block" group
thread group my block = this thread block();

// subdivide into 32-thread, tiled subgroups

// Tiled subgroups evenly partition a parent group into

// adjacent sets of threads - in this case each one warp in size
thread group my tile = tiled partition(my block, 32);

// This operation will be performed by only the
// first 32-thread tile of each block
i1f (my block.thread rank() < 32) {

my tile.sync();

Cooperative Groups - Particle Simulation
o 4 g
o = ’

°” *’

CIRINC 37 _ ""?%"é‘é""i"é% _______ |

Phase 1: Integration Phase 2: Collision Detection

Figure 2: Two phases of a particle simulation, with numbered arrows representing the mapping of parallel threads to particles. Nate that after
integration and construction of the regular grid data structure, the ordering of particles in memory and mapping to threads changes, necessitating a
synchronization between phases.

150

Old Implementation

// threads update particles in parallel
integrate<<<blocks, threads, 0, s>>>(particles);

// Note: implicit sync between kernel launches

// Collide each particle with others in neighborhood
collide<<<blocks, threads, 0, s>>>(particles);

New Implementation

__global wvoid particleSim(Particle *p, int N) {

grid group g = this grid();

// phase 1

for (i1 = g.thread rank(); 1 < N; 1 += g.size())
integrate(p[i]);

g.sync () // Sync whole grid
// phase 2

for (i1 = g.thread rank(); 1 < N; 1 += g.size())
collide(p[i], p, N);

CUDA 10.0

By Pramod Ramarao
NVIDIA

153

New Features

Support for Turing
CUDA graphs

New asynchronous task-graph
programming model

New profiler and debugger

New Turing Warp Matrix Functions

Input Precision Output Supported Sizes Max Ops/Clock/SM
half half or float 1024
16 x 16 x 16
char 32x8x16
integer (int32) 8x32x16 2048
unsigned char
g precision::u4 (4-bit unsigned)
(7] 8 x 8 x32 4096
E precision::s4 (4-bit signed) integer (int32)
@
X precision::b1 (1-bit) 8 x 8 x 128 16384

155

CUDA graphs

// Define graph of work + dependencies

cudaGraphCreate (&graph) ;

cudaGraphAddNode (graph, kernel a, {}, ...);

cudaGraphAddNode (graph, kernel b, { kernel a }, ...);

cudaGraphAddNode (graph, kernel ¢, { kernel a }, ...);
(

cudaGraphAddNode (graph, kernel d, { kernel b, kernel c },
// Instantiate graph and apply optimizations
cudaGraphInstantiate (&instance, graph);

// Launch executable graph 100 times

for (int 1=0; 1i<100; i++)
cudaGraphLaunch (instance, stream);

<)

