
CS 677: Parallel Programming for 

Many-core Processors 
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Instructor: Philippos Mordohai

Webpage: mordohai.github.io

E-mail: Philippos.Mordohai@stevens.edu
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Outline

• Deep learning

• Hardware Developments

• Developments in CUDA
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Deep Learning 
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Machine Learning

• A way of building software from input-output 
pairs
– Use labeled data – data that come with the input values and their 

desired output values – to learn what the logic should be

– Capture each labeled data item by adjusting the program logic 

• Training Phase
– The system learns the logic for the application from labeled data.

• Deployment (inference) Phase
– The system applies the learned program logic on new data

View deep neural network as function approximators
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Recent Explosion of Deep Learning 

Applications

• GPU computing hardware and programming interfaces 

such as CUDA has enabled very fast research cycle of 

deep neural net training

• Computer Vision, Speech Recognition, Document 

Translation, Self Driving Cars, …

• Using big  labeled data to train  and specialize DNN 

based classifiers 
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Background: Combinations Logic 

Specification – Truth Table
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Input
outputa b c

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

a’ a b’ b c’ c
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Different modalities of Real-world Data

Image Vision features Detection

Images/vide

o

Audio Audio features Speaker ID

Audio

Text

Text Text  features

Text classification, 

machine 

translation, 

information 

retrieval, ....
Slide courtesy of Andrew Ng, Stanford 

University
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What if we did not know the truth 

table?

• Look at enough observation data to 
construct the rule
000 → 0

011 → 0

100 → 1

110 → 0

• If we have enough observational data to 
cover all input patterns, we can construct 
the truth table and derive the logic
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SYNAPTIC
WEIGHTS

[Cybenko, 1989; etc.]

Multilayer Perceptron Synaptic Weights
Universal for function approximation 

SYNAPTIC
WEIGHTS

9
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LeNet-5, a convolutional neural 

network for hand-written digit 

recognition
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This is a 1024*8-bit input, which will have a truth 

table of 2 8196 entries



Forward Propagation Path of a 

Convolution Layer

• All input feature maps contribute to all output 

feature maps. One convolution mask is 

provided for each input-output combination.
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Convolutional 
Layer

Weights 
W

Input 
Features

X Output
Features

Y
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Example of the Forward Path of a 

Convolution Layer
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7 5

1*1+ 1*2 + 
2*1 + 2*1

1*0+ 1*2 + 
1*0 + 1*3

2

1*0+ 1*2 + 
1*0 + 1*3
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Sequential Code for the Forward Path of a 

Convolution Layer 
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void convLayer_forward(int M, int C, int H, int W, int K, float* X, float* W, float* Y)
{

int m, c, h, w, p, q;
int H_out = H – K + 1;
int W_out = W – K + 1;

for(int m = 0; m < M; m++) // for each output feature map
for(int h = 0; h < H_out; h++) // for each output element

for(int w = 0; w < W_out; w++) {
Y[m, h, w] = 0;
for(int c = 0; c < C; c++) // sum over all input feature maps

for(int p = 0; p < K; p++) // KxK filter
for(int q = 0; q < K; q++)

Y[m, h, w] += X[c, h + p, w + q] * W[m, c, p, q];
}

}
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Sequential code for the Forward Path of a 

Sub-sampling Layer
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void poolingLayer_forward(int M, int H, int W, int K, float* Y, float* S)
{

for(int m = 0; m < M; m++) // for each output feature maps
for(int h = 0; h < H/K; h++) // for each output element
for(int w = 0; w < W/K; w++) {
S[m, x, y] = 0.;
for(int p = 0; p < K; p++) { // loop over KxK input samples

for(int q = 0; q < K; q++)
S[m, h, w] += Y[m, K*h + p, K*w + q] /(K*K);

}
// add bias and apply non-linear activation
S[m, h, w] = sigmoid(S[m, h, w] + b[m])

}
}
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A Small Convolution Layer Example

Generating Y[0,0,1]
1 2 0 1

1 1 3 2

0 2 2 0

2 1 0 3

1 1 1

2 2 3

2 1 0

0 2 1 0

0 3 2 1

1 1 0 2

2 1 0 3

1 2 3

1 1 0

3 0 1

1 2 1 0

0 1 3 2

3 3 2 0

1 3 2 0

0 1 1

1 0 2

1 2 1

X[0,_, _]

X[1,_, _]

X[2,_, _]

0 ?

? ?
Y[0,_, _]

W[0,0,_, _]

W[0,1,_, _]

W[0,2,_, _]
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A Small Convolution Layer Example

Generating Y[0,0,0], c=0
1 2 0 1

1 1 3 2

0 2 2 0

2 1 0 3

1 1 1

2 2 3

2 1 0

0 2 1 0

0 3 2 1

1 1 0 2

2 1 0 3

1 2 3

1 1 0

3 0 1

1 2 1 0

0 1 3 2

3 3 2 0

1 3 2 0

0 1 1

1 0 2

1 2 1

X[0,_, _]

X[1,_, _]

X[2,_, _]

18 ?

? ?

Y[0,_, _]

W[0,0,_, _]

W[0,1,_, _]

W[0,2,_, _]

3+13+2
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A Small Convolution Layer Example

Generating Y[0,0,0], c=1
1 2 0 1

1 1 3 2

0 2 2 0

2 1 0 3

1 1 1

2 2 3

2 1 0

0 2 1 0

0 3 2 1

1 1 0 2

2 1 0 3

1 2 3

1 1 0

3 0 1

1 2 1 0

0 1 3 2

3 3 2 0

1 3 2 0

0 1 1

1 0 2

1 2 1

X[0,_, _]

X[1,_, _]

X[2,_, _]

31 ?

? ?

Y[0,_, _]

W[0,0,_, _]

W[0,1,_, _]

W[0,2,_, _]

7+3+3
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A Small Convolution Layer Example

Generating Y[0,0,0], c=2
1 2 0 1

1 1 3 2

0 2 2 0

2 1 0 3

1 1 1

2 2 3

2 1 0

0 2 1 0

0 3 2 1

1 1 0 2

2 1 0 3

1 2 3

1 1 0

3 0 1

1 2 1 0

0 1 3 2

3 3 2 0

1 3 2 0

0 1 1

1 0 2

1 2 1

X[0,_, _]

X[1,_, _]

X[2,_, _]

51 ?

? ?

Y[0,_, _]

W[0,0,_, _]

W[0,1,_, _]

W[0,2,_, _]

3+6+11
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Parallelism in a Convolution Layer

• All output feature maps can be calculated in 
parallel
– A small number in general, not sufficient to fully utilize a 

GPU

• All output feature map pixels can be calculated in 
parallel
– All rows can be done in parallel

– All pixels in each row can be done in parallel

– Large number but diminishes as we go into deeper 
layers

• All input feature maps can be processed in 
parallel, but will need atomic operation or tree 
reduction
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Design of a Basic Kernel

• Each block computes a tile of output pixels

– TILE_WIDTH pixels in each dimension

• The first (x) dimension in the grid maps to 

the M output feature maps

• The second (y) dimension in the grid maps 

to the tiles in the output feature maps
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Host Code for the Basic Kernel

• Defining the grid configuration

– W_out and H_out are the output feature map 

width and height
# define TILE_WIDTH 16 // We will use 4 for small examples.

W_grid = W_out/TILE_WIDTH; // number of horizontal tiles per output map

H_grid = H_out/TILE_WIDTH; // number of vertical tiles per output map

Y = H_grid * W_grid;

dim3 blockDim(TILE_WIDTH, TILE_WIDTH, 1);

dim3 gridDim(M, Y, 1);

ConvLayerForward_Kernel<<< gridDim, blockDim>>>(…);
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A Small Example

• Assume that we will produce 4 output feature 
maps
– Each output feature map is 8x8 image

– We have 4 blocks in the x dimension

• If we use tiles of 4 pixels on each side 
(TILE_SIZE = 4)
– We have 4 blocks in the x dimension

• Top two blocks in each column calculate the top row of tiles 
in the corresponding output feature map

• Bottom two blocks in each column calculate the bottom row 
of tiles in the corresponding output feature map
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A Basic Conv. Layer Forward Kernel

__global__ void ConvLayerForward_Basic_Kernel(int C, int W_grid, int K, 
float* X, float* W, float* Y) 

{
int m = blockIdx.x;
int h = blockIdx.y / W_grid + threadIdx.y;
int w = blockIdx.y % W_grid + threadIdx.x;
float acc = 0.;
for (int c = 0;  c < C; c++) { // sum over all input channels

for (int p = 0; p < K; p++) // loop over KxK filter
for (int q = 0; q < K; q++)  

acc += X[c, h + p, w + q] * W[m, c, p, q];
}
Y[m, h, w] = acc;

}
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Some Observations 

• The amount of parallelism is quite high as 

long as the total number of pixels across 

all output feature maps is large

– This matches the CNN architecture well

• Each input tile is loaded multiple times, 

once for each block that calculates the 

output tile that requires it

– Not very efficient in global memory bandwidth
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Implementing a convolution layer with 

matrix multiplication
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Simple Matrix Multiplication

1 1 2 2 1 1 1 1 0 1 1 0

1 0 0 1 2 1 2 1 1 2 2 0

1 2 1 1

2 0 1 3

1 1 0 2

1 3 2 2

0 2 0 3

2 1 3 2

0 3 1 1

3 2 1 0

1 2 1 1

2 1 0 3

0 1 3 3

1 3 3 2

In
p
u

t featu
re m

ap
s

0

1

2

Convolution Filters

0

1

Each product matrix element is an output 

feature map pixel.

This inner product generates element 0 of 

output feature map 0.

1
4

2
0

1
5

2
4

1
2

2
4

1
7

2
6
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Tiled Matrix Multiplication
2x2 example

1 1 2 2 1 1 1 1 0 1 1 0

1 0 0 1 2 1 2 1 1 2 2 0

1 2 1 1

2 0 1 3

1 1 0 2

1 3 2 2

0 2 0 3

2 1 3 2

0 3 1 1

3 2 1 0

1 2 1 1

2 1 0 3

0 1 3 3

1 3 3 2

In
p
u

t featu
re m

ap
s

0

1

2

Convolution Filters

0

1

Each block calculates one output tile – 2 

elements from each output map

Each input element is reused 2 times in the 

shared memory

1
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2
0

1
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2
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2
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1
7

2
6
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Tiled Matrix Multiplication
2x4 example

1 1 2 2 1 1 1 1 0 1 1 0

1 0 0 1 2 1 2 1 1 2 2 0

1 2 1 1

2 0 1 3

1 1 0 2

1 3 2 2

0 2 0 3
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0 3 1 1

3 2 1 0

1 2 1 1

2 1 0 3

0 1 3 3

1 3 3 2
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p
u
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Convolution Filters

0

1

Each block calculates one output tile – 4 

elements from each output map

Each input element is reused 2 times in the 

shared memory
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Analysis of Efficiency
Total Input Replication

• Each output map requires its replicated input 
feature map elements
– Not replicated for different output feature maps

– There are H_out * W_out output feature map 
elements

– Each requires K*K replicated input feature map 
elements

– So, the total number of input element after replication 
is H_out*W_out*K*K times for each input feature map

– The total number of elements in each original input 
feature map is (H_out+K-1) * (W_out+K-1)
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Analysis of Small Example

• H_out = 2

• W_out = 2

• K = 2

• There are 3 input maps 
(channels)

• The total number of input 
elements in the replicated 
(“unrolled”) input matrix is 
3*2*2*2*2

• The replicating factor is

• (3*2*2*2*2)/(3*3*3) = 1.78
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Memory Access Efficiency of Original 

Convolution Algorithm

• Assume that we use tiled 2D convolution 

• For input elements
– Each output tile has TILE_WIDTH2 elements

– Each input tile has (TILE_WIDTH+K-1)2

– The total number of input feature map element accesses is 

TILE_WIDTH2*K2

– The reduction factor of the tiled algorithm is 

K2*TILE_WIDTH2/(TILE_WIDTH+K-1)2 

• The convolution filter weight elements are reused within 

each output tile
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Efficiency of Tiled Matrix Multiplication

• Assuming we use TILE_WIDTH2 input and 

output tiles

– Each replicated input feature map element is reused 

TILE_WIDTH times

– Each convolution filter weight element is reused 

TILE_WIDTH times

– Matrix multiplication is better if TILE_WIDTH is larger 

than K2*TILE_WIDTH2/(TILE_WIDTH+K-1)2 
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Problem with the Later Stages

• The size (H_out, W_out) of each output 

feature map decreases as we go to the 

later stages of the CNN 

– The TILE_WIDTH may be limited to very 

small sizes relative to K

– The benefit of 2D tiling will diminish as we go 

down the pipeline

– This is an intrinsic problem for 2D tiled 

convolution
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Mini-Batching

• One can use mini-batching to further 

increase the amount of work done in each 

kernel launch

– Collect several sets of input feature maps of 

an input sequence

– Use a larger unrolled input feature matrix that 

has all the inputs from the mini-batch
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Other Optimizations

• Use streams to overlap the reading of the 
next set of input feature maps with the 
processing of the previous input feature 
maps.

• Create unrolled matrix elements on the fly, 
only when they are loaded into shared 
memory

• Use more advanced algorithms such as 
FFT to implement convolution
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Gradient Back-Propagation
• Training of ConvNets is based on a procedure called back-

propagation.

• The training data set is labeled with the “correct answer.” 

• For each training image, the final stage of the network 

calculates the loss function or the error as the difference 

between the generated output vector element values and the 

“correct” output vector element values. 

• Given a sequence of training images, we can numerically 

calculate the gradient of the loss function with respect to the 

output vector. Intuitively, it gives the rate at which the error 

changes when the value of the output vector changes – dE/dY
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Gradient Back Propagation (Cont.)

• The process propagates the gradient from 

the last layer towards the first layer 

through all layers of network. 

• Each layer receives as dE/dY – gradient 

with respect to its output feature maps and 

computes dE/dX – gradient with respect to 

its input feature maps
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Convolution Layer – Back 

Propagation of dE/DY
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Adjusting Weights

• After the dE/dW values at all feature map 

element positions are computed, weights 

are updated:  

• For each weight value

w(t+1) = w(t) – λ/ dE/dw, 

where  λ is the learning rate. 
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Other layer types

• Fully-connected

• Pooling/downsampling

• Upsampling

• Activation

The same operation is applied on all inputs, 

with same or different parameters (weights)
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The Fermi Architecture

Selected notes from 

presentation by:

Michael C. Shebanow
Principal Research Scientist, 

NV Research

mshebanow@nvidia.com

(2010)
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Much Better Compute
• Programmability

– C++ Support

– Exceptions/Debug support

• Performance
– Dual issue SMs

– L1 cache

– Larger Shared Memory

– Much better DP math

– Much better atomic support

• Reliability: ECC

GT200 GF100 Benefit

L1 Texture 

Cache (per 

quad)

12 KB 12 KB Fast texture 

filtering

Dedicated 

L1 LD/ST 

Cache

X 16 or 48 KB Efficient 

physics and

ray tracing

Total 

Shared 

Memory

16KB 16 or 48 KB More data reuse

among threads

L2 Cache 256KB

(TEX read 

only)

768 KB

(all clients 

read/write)

Greater texture 

coverage, 

robust compute 

performance

Double

Precision 

Throughput

30 

FMAs/clock

256 

FMAs/clock

Much higher 

throughputs for 

Scientific codes
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Instruction Set Architecture

• Enables C++ : virtual functions, 

new/delete, try/catch

• Unified load/store addressing

• 64-bit addressing for large 

problems

• Optimized for CUDA C, OpenCL

& Direct Compute 

– Direct Compute is Microsoft’s 

general-purpose computing on GPU 

API 

• Enables system call functionality 

– stdio.h, etc.
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Local

Shared

Global

GlobalLocal Shared

Non-unified Address Space

Unified Address Space

0 32-bit

0 40-bit

*p_local

*p_shared

*p_global

*p

Unified Load/Store Addressing
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Instruction Issue and Control Flow 

• Decouple internal execution resources

– Deliver peak IPC on branchy / int-heavy / LD-ST - heavy codes

• Dual issue pipelines select two warps to issue

Instruction Dispatch Unit

Warp Scheduler

Warp 8 instruction 11 Warp 9 instruction 11

Warp 2 instruction 42 Warp 3 instruction 33

Warp 14 instruction 95 Warp 15 instruction 95

Instruction Dispatch Unit

Warp Scheduler

Warp 8 instruction 12 Warp 9 instruction 12

Warp 14 instruction 96 Warp 3 instruction 34

Warp 2 instruction 43 Warp 15 instruction 96

ti
m

e
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Caches

• Configurable L1 cache per SM

– 16KB L1$ / 48KB Shared 
Memory

– 48KB L1$ / 16KB Shared 
Memory

• Shared 768KB L2 cache

• Compute motivation:

– Caching captures locality, 
amplifies bandwidth

– Caching more effective than 
Shared Memory for irregular or 
unpredictable access

• Ray tracing, sparse matrix 
multiplication, physics kernels …

– Caching helps latency sensitive 
cases

Register File

DRAM

Thread

Register File

DRAM

Thread

L1 Cache / Shared Memory

L2 Cache

Tesla Memory Hiearchy

S
h

a
re

d
 

M
e

m
o

ry

Fermi Memory Hiearchy
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GigaThread Hardware Thread Scheduler

• Hierarchically manages tens of 

thousands of simultaneously 

active threads

• 10x faster 

context 

switching 

on Fermi

• Concurrent 

kernel execution
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GigaThread Streaming Data Transfer Engine

• Dual DMA engines

• Simultaneous CPU→GPU

and GPU→CPU data 

transfer

• Fully overlapped with 

CPU/GPU processing
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Fermi runs independent kernels in parallel

Concurrent Kernel Execution + Faster Context Switch

Serial Kernel Execution Parallel Kernel Execution

T
im

e

Kernel 

1

Kernel 

1

Kernel 2

Kernel 2 Kernel 3

Kernel 3

K

er

4
ne

l
Kernel 5

Kernel 5

Kernel 

4

Kernel 2

Kernel 2



Inside Kepler
Manuel Ujaldon

Nvidia CUDA Fellow
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Modified by P. Mordohai
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Summary of Features

• Released in 2012

• Architecture: Between 7 and 15 multiprocessors 
SMX, endowed with 192 cores each.

• Arithmetic: More than 1 TeraFLOP in double 
precision (64 bits IEEE-754 floating-point format).

– Specific values depend on the clock frequency for 
each model (usually, more on GeForces, less on 
Teslas).

• Major innovations in core design:

– Dynamic parallelism

– Thread scheduling (Hyper-Q)
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How the Architecture Scales Up
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Fermi
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Kepler GK110
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From SM to SMX in Kepler
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Differences in Memory Hierarchy

56



New Data Cache

• Additional 48 Kbytes to expand L1 cache size

• Avoids the texture unit

• Allows a global address to be fetched and 
cached, using a pipeline different from that of 
L1/shared

• Flexible (does not require aligned accesses)

• Eliminates texture setup

• Managed automatically by compiler ("const__ 
restrict“ indicates eligibility). Next slide shows 
an example.
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How to use Data Cache

• Annotate eligible kernel parameters with "const  __restrict"

• Compiler will automatically map loads to use read-only data cache 
path.

__global__ void saxpy(float x, float y,

const float * __restrict input,

float * output)

{

size_t offset = threadIdx.x +

(blockIdx.x * blockDim.x);

// Compiler will automatically use cache for "input"

output[offset] = (input[offset] * x) + y;

}
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GPUDirect now supports RDMA

[Remote Direct Memory Access]

• This allows direct transfers between GPUs and network 

devices, for reducing the penalty on the extraordinary 

bandwidth of GDDR5 video memory
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Relaxing Software Constraints for 

Massive Parallelism
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Major Hardware Enhancements

• Large scale computations

• New architectural features
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Dynamic Parallelism

• The ability to launch new grids from the GPU:

– Dynamically: Based on run-time data

– Simultaneously: From multiple threads at once

– Independently: Each thread can launch a different grid
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Dynamic Parallelism
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Workload Balance

• Plenty of factors, unpredictable at run time, may 

transform workload balancing among 

multiprocessors into an impossible goal

• See below the duration of 8 warps on an SM of 

the G80:
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Hyper-Q
• In Fermi, several CPU processes can send thread blocks 

to the same GPU, but a kernel cannot start its execution 

until the previous one has finished

• In Kepler, we can execute simultaneously up to 32 

kernels launched from different:

– MPI processes, CPU threads (POSIX threads) or CUDA streams

• This increments the % of temporal occupancy on the 

GPU
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Without Hyper-Q
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With Hyper-Q
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Six Ways to Improve Code on Kepler
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Dynamic Work Generation
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Parallelism based on Level of Detail
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Grid Management Unit
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Software and Hardware Queues
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Software and Hardware Queues
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Instruction Issue and Execution
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Data-Dependent Parallelism
• The simplest possible parallel program:

– Loops are parallelizable

– Workload is known at compile-time
for i = 1 to N

for j = 1 to M

convolution(i,j);

• The simplest impossible program:
– Workload is unknown at compile-time.

– The challenge is data partitioning
for i = 1 to N

for j = 1 to x[i]

convolution(i,j);
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Data-Dependent Parallelism

• Kepler version:

__global__ void convolution(int x[])

{

for j = 1 to x[blockIdx] 

// Each block launches x[blockIdx] 
// kernels from GPU

kernel <<< ... >>> (blockIdx, j) 

}

// Launch N blocks of 1 thread

// on GPU (rows start in parallel)

convolution <<< N, 1 >>> (x); 

• Up to 24 nested loops supported in CUDA 5.0
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Recursive Parallel Algorithms prior 

to Kepler

• Early CUDA programming model did not 
support recursion at all

• CUDA started to support recursive functions 
in version 3.1, but they can easily crash if the 
size of the arguments is large

• A user-defined stack in global memory can be 
employed instead, but at the cost of a 
significant performance penalty

• An efficient solution is possible using 
dynamic parallelism
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Parallel Recursion: Quicksort
• Typical divide-and-conquer algorithm, hard to do 

on Fermi
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Quicksort
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Quicksort
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Quicksort with Dynamic Parallelism
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Quicksort Results
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Maxwell 
(2nd generation)

Released in 2014

Material by Mark Harris (NVIDIA) 
and others
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Energy Efficiency

Performance per Watt

GTX 680: Kepler GTX 980: Maxwell
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New Features
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New Features

• Improved instruction scheduling

– Four warp schedulers per SMM (Maxwell 
SM), no shared core functional units

• Increased occupancy

– Maximum active blocks per SMM has doubled

• Larger dedicated shared memory

– L1 is now with texture cache

• Faster shared memory atomics

• Broader support for dynamic parallelism
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Graphics
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Pascal

Released in 2016
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Key New Features

• Smaller manufacturing process

– 16 nm vs. 28 nm of previous generations

• Much faster memory

• Higher clock frequency 

– 1607 MHz vs. 1216 MHz

• Dynamic load balancing including graphics 

pipeline

• Page Migration Engine
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Volta

Released in 2017

90



Key New Features

• Up to 640 Tensor Cores for deep learning

– Multiply and add floating point matrices (64 
operations per clock)

– Over 125 TFLOPS (5x more than Pascal)

• Next generation NVLink doubles 
bandwidth (up to 300 GB/s)

• 84 SMs

• Simultaneous execution of FP32 and 
INT32 operations
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Turing

Released in 2018
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Key New Features

• CUDA, Ray-tracing and Tensor cores
– 14.2 TFLOPS of FP32 performance, 113.8 

Tensor TFLOPS and 10 Giga Rays/sec

• Up to 24 GB of RAM in Titan RTX and up to 
48 GB in Quadro RTX 8000 

• Independent integer and floating-point 
datapaths and unified shared memory, 
texture caching and memory load caching 
lead to 50% performance improvement per 
core
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Turing Tensor Cores
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Memory Compression

• Several lossless memory compression 

techniques to reduce bandwidth demands

• Improvements over Pascal
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Reflections Demo
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NVIDIA DGX-1
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NVIDIA DGX-2
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NVIDIA DGX STATION
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AMD RX Vega

• 8 GB high bandwidth memory (HBM2)

– 14 nm production process

• 4096 cores

• 12.7 TFLOPS

– Compared to 11 TFLOPS of NVIDIA GTX 

Titan X and 15.7 TFLOPS of NVIDIA GV100 

(Volta)

105



AMD RADEON VII

• 16 GB high bandwidth memory (HBM2)

– 7 nm production process

• 3840 cores

• 13.2 billion transistors

• 13.8 TFLOPS
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CUDA 4.0
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CUDA 4.0 Release

• March 2011

• Independent software release

• Unlike:

– CUDA 1.0 released with G80/G9x in 2007 

(nearly a year later than the hardware) 

– CUDA 2.0 released for GT200 in 2008 

– CUDA 3.0 released for Fermi in 2009
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CUDA 4.0 – Application Porting

• Unified Virtual Addressing

• Faster Multi-GPU Programming

– NVIDIA GPUDirect 2.0

• Easier Parallel Programming in C++

– Thrust
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Easier Porting of Existing Applications

Share GPUs across multiple 
threads 

• Easier porting of multi-
threaded apps 
– pthreads / OpenMP threads 

share a GPU 

• Launch concurrent kernels 
from different host threads 
– Eliminates context switching 

overhead 

• New, simple context 
management APIs 
– Old context migration APIs 

still supported 

Single thread access to all 
GPUs 

• Each host thread can now 
access all GPUs in the 
system 
– One thread per GPU 

limitation removed 

• Easier than ever for 
applications to take 
advantage of multi-GPU 
– Single-threaded applications 

can now benefit from 
multiple GPUs 

– Easily coordinate work 
across multiple GPUs
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New CUDA C/C++ Language Features

• C++ new/delete 

– Dynamic memory management 

• C++ virtual functions 

– Easier porting of existing applications 

• Inline PTX 

– Enables assembly-level optimization 
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GPU-Accelerated Image Processing

• NVIDIA Performance Primitives (NPP) library
– 10x to 36x faster image processing

– Initial focus on imaging and video related 
primitives
• Data exchange and initialization

• Color conversion

• Threshold and compare operations

• Statistics

• Filter functions

• Geometry transforms

• Arithmetic and logical operations

• JPEG
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NVIDIA GPUDirect:Towards

Eliminating the CPU Bottleneck 
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Before GPUDirect 2.0

Two copies required
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GPUDirect 2.0: Peer-to-Peer 

Communication
Only one copy required
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GPUDirect 2.0: Peer-to-Peer 

Communication 

• Direct communication between GPUs 

– Faster - no system memory copy overhead 

– More convenient multi-GPU programming 

• Direct Transfers 

– Copy from GPU0 memory to GPU1 memory 

– Works transparently with UVA 

• Direct Access 

– GPU0 reads or writes GPU1 memory 
(load/store) 
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Unified Virtual Addressing

• No UVA: Multiple 

Memory Spaces

• UVA: Single Address 

Space
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Unified Virtual Addressing

• One address space for all CPU and GPU memory 

– Determine physical memory location from pointer 
value 

– Enables libraries to simplify their interfaces (e.g. 
cudaMemcpy) 

• Supported on Tesla 20-series and other Fermi 
GPUs 
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New Developer Tools

• Auto Performance Analysis: Visual Profiler

– Identify limiting factor

– Analyze instruction throughput

– Analyze memory throughput

– Analyze kernel occupancy

• C++ Debugging 

– cuda-gdb for MacOS

• GPU Binary Disassembler
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CUDA 5.0

Mark Harris 

Chief Technologist, GPU 

Computing
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Open Source LLVM Compiler

• Provides ability for anyone to add CUDA to new 

languages and processors
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NVIDIA Nsight, Eclipse Edition

123

For Linux and Mac OS



CUDA 4: Whole-Program 

Compilation & Linking

124



CUDA 5: GPU Library Object 

Linking
• Separate compilation allows building independent 

object files

• CUDA 5 can link multiple object files into one 
program

• Can also combine object files into static libraries
– Link and externally call device code
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CUDA 5: GPU Library Object 

Linking

• Enables 3rd party 

closed-source 

device libraries

• User-defined device 

callback functions
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CUDA 5.0: Run-time Syntax and 

Semantics
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CUDA 6.0

Manuel Ujaldon

Nvidia CUDA Fellow

Computer Architecture 

Department

University of Malaga (Spain)

128



CUDA 6 Highlights

• Unified Memory:
– CPU and GPU can share data without much programming 

effort

• Extended Library Interface (XT) and Drop-in Libraries:
– Libraries much easier to use

• GPUDirect RDMA:
– A key achievement in multi-GPU environments

• Developer tools:
– Visual Profiler enhanced with:

• Side-by-side source and disassembly view showing.

• New analysis passes (per SM activity level), generates a kernel 
analysis report.

• Multi-Process Server (MPS) support in nvprof and cuda-
memcheck

• Nsight Eclipse Edition supports remote development (x86 
and ARM)
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CUDA 6.0: Performance 

Improvements in Key Use Cases

• Kernel launch

• Repeated launch of the same set of 

kernels

• cudaDeviceSynchronize()

• Back-to-back grids in a stream
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Unified Memory
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Unified Memory Contributions

• Creates pool of managed memory between 
CPU and GPU

• Simpler programming and memory model:
– Single pointer to data, accessible anywhere

– Eliminate need for cudaMemcpy(), use 
cudaMallocManaged()

– No need for deep copies

• Performance through data locality:
– Migrate data to accessing processor

– Guarantee global coherency

– Still allows cudaMemcpyAsync() hand tuning
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Memory Types
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Additions to the CUDA API

• New call: cudaMallocManaged()
– Drop-in replacement for cudaMalloc() allocates 

managed memory

– Returns pointer accessible from both Host and 
Device

• New call: cudaStreamAttachMemAsync()
– Manages concurrency in multi-threaded CPU 

applications

• New keyword: __managed__
– Declares global-scope migratable device variable

– Symbol accessible from both GPU and CPU code
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Code without Unified Memory
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Code with Unified Memory

• What remains the same:
– Data movement

– GPU accesses a local 
copy of text

• What has changed:
– Programmer sees a 

single pointer

– CPU and GPU both 
reference the same object

– There is coherence
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CUDA 7.0

By Mark Harris
NVIDIA
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New Features: C++11

• C++11 features on device including: 

– auto, 

– lambda, 

– variadic templates, 

– rvalue references, 

– range-based for loops
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Example
#include <initializer_list>

#include <iostream>

#include <cstring>

// Generic parallel find routine. Threads search through the

// array in parallel. A thread returns the index of the 

// first value it finds that satisfies predicate `p`, or -1.

template <typename T, typename Predicate>

__device__ int find(T *data, int n, Predicate p)

{

for (int i = blockIdx.x * blockDim.x + threadIdx.x;

i < n;

i += blockDim.x * gridDim.x)

{

if (p(data[i])) return i;

}

return -1;

}
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// Use find with a lambda function that searches for x, y, z

// or w. Note the use of range-based for loop and 

// initializer_list inside the functor, and auto means we 

// don't have to know the type of the lambda or the array

__global__

void xyzw_frequency(unsigned int *count, char *data, int n)

{

auto match_xyzw = [](char c) {

const char letters[] = { 'x','y','z','w' };

for (const auto x : letters) 

if (c == x) return true;

return false;

};

int i = find(data, n, match_xyzw);

if (i >= 0) atomicAdd(count, 1);

}
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int main(void)

{   

char text[] = "zebra xylophone wax";

char *d_text;

cudaMalloc(&d_text, sizeof(text));

cudaMemcpy(d_text, text, sizeof(text),cudaMemcpyHostToDevice);

unsigned int *d_count;

cudaMalloc(&d_count, sizeof(unsigned int));

cudaMemset(d_count, 0, sizeof(unsigned int));

xyzw_frequency<<<1, 64>>>(d_count, d_text, strlen(text));

unsigned int count;

cudaMemcpy(&count, d_count, sizeof(unsigned int), cudaMemcpyDeviceToHost);

std::cout << count << " instances of 'x', 'y', 'z', 'w'"

<< "in " << text << std::endl;

cudaFree(d_count);

cudaFree(d_text);

return 0;
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Other Features

• Thrust version 1.8

– Thrust algorithms can now be invoked from 
the device

• cuSOLVER, cuFFT

– cuSolver library is a high-level package based 
on the cuBLAS and cuSPARSE libraries

• Runtime compilation

– No need to generate multiple optimized 
kernels at compile time
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CUDA 8.0

By Milind Kukanur
NVIDIA
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What’s New
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Unified Memory

• Oversubscribe GPU memory, up to system 

memory size

void foo() {

// Allocate 64 GB

char *data;

size_t size = 64*1024*1024*1024;

cudaMallocManaged(&data, size);

}
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Unified Memory

__global__ void mykernel(char *data) {

data[1] = ‘g’;

}

void foo() {

char *data;

cudaMallocManaged(&data, 2);

mykernel<<<...>>>(data);

// no synchronize here

data[0] = ‘c’;

cudaFree(data);

}
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CUDA 9.0

By Mark Harris
NVIDIA
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New Features

• Support for Volta

• Cooperative groups

• Tensor Core API

• New Visual Profiler

• Support for C++ 14
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Cooperative Groups
Ability to define groups of threads explicitly at sub-block and multiblock
granularities

__global__ void cooperative_kernel(...)

{

// obtain default "current thread block" group

thread_group my_block = this_thread_block();

// subdivide into 32-thread, tiled subgroups

// Tiled subgroups evenly partition a parent group into

// adjacent sets of threads - in this case each one warp in size

thread_group my_tile = tiled_partition(my_block, 32);

// This operation will be performed by only the 

// first 32-thread tile of each block

if (my_block.thread_rank() < 32) {

…

my_tile.sync();

}

}
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Cooperative Groups – Particle Simulation
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Old Implementation

// threads update particles in parallel

integrate<<<blocks, threads, 0, s>>>(particles);

// Note: implicit sync between kernel launches

// Collide each particle with others in neighborhood

collide<<<blocks, threads, 0, s>>>(particles);
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New Implementation

__global__ void particleSim(Particle *p, int N) {

grid_group g = this_grid();

// phase 1

for (i = g.thread_rank(); i < N; i += g.size())

integrate(p[i]);

g.sync() // Sync whole grid

// phase 2

for (i = g.thread_rank(); i < N; i += g.size())

collide(p[i], p, N);

}
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CUDA 10.0

By Pramod Ramarao
NVIDIA
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New Features

• Support for Turing

• CUDA graphs

• New asynchronous task-graph 

programming model

• New profiler and debugger
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New Turing Warp Matrix Functions
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CUDA graphs

// Define graph of work + dependencies

cudaGraphCreate(&graph);

cudaGraphAddNode(graph, kernel_a, {}, ...);

cudaGraphAddNode(graph, kernel_b, { kernel_a }, ...);

cudaGraphAddNode(graph, kernel_c, { kernel_a }, ...);

cudaGraphAddNode(graph, kernel_d, { kernel_b, kernel_c }, ...);

// Instantiate graph and apply optimizations

cudaGraphInstantiate(&instance, graph);

// Launch executable graph 100 times

for(int i=0; i<100; i++)

cudaGraphLaunch(instance, stream);
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