CS 677: Parallel Programming for Many-core Processors Lecture 13

Instructor: Philippos Mordohai Webpage: mordohai.github.io E-mail: Philippos.Mordohai@stevens.edu

Outline

- Deep learning
- Hardware Developments
- Developments in CUDA

Deep Learning

Machine Learning

- A way of building software from input-output pairs
 - Use labeled data data that come with the input values and their desired output values - to learn what the logic should be
 - Capture each labeled data item by adjusting the program logic
- Training Phase
 - The system learns the logic for the application from labeled data.
- Deployment (inference) Phase
 - The system applies the learned program logic on new data

View deep neural network as function approximators

Recent Explosion of Deep Learning Applications

- GPU computing hardware and programming interfaces such as CUDA has enabled very fast research cycle of deep neural net training
- Computer Vision, Speech Recognition, Document Translation, Self Driving Cars, ...
- Using big labeled data to train and specialize DNN based classifiers

Background: Combinations Logic Specification - Truth Table

•	

а	b	С	output
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Slide courtesy of Andrew Ng, Stanford University

What if we did not know the truth table?

- Look at enough observation data to construct the rule
 - $000 \rightarrow 0$
 - $011 \rightarrow 0$
 - $100 \rightarrow 1$
 - $110 \rightarrow 0$
- If we have enough observational data to cover all input patterns, we can construct the truth table and derive the logic

Multilayer Perceptron Synaptic Weights Universal for function approximation

[Cybenko, 1989; etc.]

LeNet-5, a convolutional neural network for hand-written digit recognition

This is a 1024*8-bit input, which will have a truth table of 2⁸¹⁹⁶ entries

Forward Propagation Path of a Convolution Layer

• All input feature maps contribute to all output feature maps. One convolution mask is provided for each input-output combination.

Example of the Forward Path of a Convolution Layer

Sequential Code for the Forward Path of a **Convolution Layer**

void convLayer_forward(int M, int C, int H, int W, int K, float* X, float* W, float* Y)

```
int m, c, h, w, p, q;
int H_out = H - K + 1;
int W out = W - K + 1;
```

```
for(int m = 0; m < M; m++)
 for(int h = 0; h < H_out; h++)
   for(int w = 0; w < W_out; w++) {
     Y[m, h, w] = 0;
     for(int c = 0; c < C; c++)
       for(int p = 0; p < K; p++)
                                            // KxK filter
         for(int q = 0; q < K; q++)
             Y[m, h, w] += X[c, h + p, w + q] * W[m, c, p, q];
   }
```

// for each output feature map // for each output element

// sum over all input feature maps

```
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign
```

Sub-sampling Layer

void poolingLayer_forward(int M, int H, int W, int K, float* Y, float* S)

```
for(int m = 0; m < M; m++)
                                            // for each output feature maps
 for(int h = 0; h < H/K; h++)
                                            // for each output element
  for(int w = 0; w < W/K; w++) {
   S[m, x, y] = 0.;
    for(int p = 0; p < K; p++) {
                                             // loop over KxK input samples
     for(int q = 0; q < K; q++)
       S[m, h, w] += Y[m, K^*h + p, K^*w + q] /(K^*K);
    }
   // add bias and apply non-linear activation
   S[m, h, w] = sigmoid(S[m, h, w] + b[m])
```

A Small Convolution Layer Example Generating Y[0,0,1]

 0
 1
 1

 1
 0
 2

 1
 2
 1

A Small Convolution Layer Example Generating Y[0,0,0], c=1

 1
 1
 1

 2
 2
 3

 2
 1
 0

7+3+3

A Small Convolution Layer Example Generating Y[0,0,0], c=2

1

1

1

0 2

₩[0,2,_, _]

Parallelism in a Convolution Layer

- All output feature maps can be calculated in parallel
 - A small number in general, not sufficient to fully utilize a GPU
- All output feature map pixels can be calculated in parallel
 - All rows can be done in parallel
 - All pixels in each row can be done in parallel
 - Large number but diminishes as we go into deeper layers
- All input feature maps can be processed in parallel, but will need atomic operation or tree reduction

Design of a Basic Kernel

- Each block computes a tile of output pixels

 TILE_WIDTH pixels in each dimension
- The first (x) dimension in the grid maps to the M output feature maps
- The second (y) dimension in the grid maps to the tiles in the output feature maps

Host Code for the Basic Kernel

- Defining the grid configuration
 - W_out and H_out are the output feature map width and height

define TILE_WIDTH 16

```
W_grid = W_out/TILE_WIDTH;
```

```
H_grid = H_out/TILE_WIDTH;
```

```
Y = H_grid * W_grid;
```

// We will use 4 for small examples.

// number of horizontal tiles per output map

```
// number of vertical tiles per output map
```

```
dim3 blockDim(TILE_WIDTH, TILE_WIDTH, 1);
```

```
dim3 gridDim(M, Y, 1);
```

ConvLayerForward_Kernel<<< gridDim, blockDim>>>(...);

A Small Example

- Assume that we will produce 4 output feature maps
 - Each output feature map is 8x8 image
 - We have 4 blocks in the x dimension
- If we use tiles of 4 pixels on each side (TILE_SIZE = 4)
 - We have 4 blocks in the x dimension
 - Top two blocks in each column calculate the top row of tiles in the corresponding output feature map
 - Bottom two blocks in each column calculate the bottom row of tiles in the corresponding output feature map

A Basic Conv. Layer Forward Kernel

```
_global___ void ConvLayerForward_Basic_Kernel(int C, int W_grid, int K,
         float* X, float* W, float* Y)
{
  int m = blockldx.x;
  int h = blockIdx.y / W_grid + threadIdx.y;
  int w = blockIdx.y % W_grid + threadIdx.x;
  float acc = 0.;
  for (int c = 0; c < C; c++) {
                                               // sum over all input channels
   for (int p = 0; p < K; p++)
                                               // loop over KxK filter
     for (int q = 0; q < K; q++)
       acc += X[c, h + p, w + q] * W[m, c, p, q];
  }
  Y[m, h, w] = acc;
}
```

Some Observations

 The amount of parallelism is quite high as long as the total number of pixels across all output feature maps is large

– This matches the CNN architecture well

 Each input tile is loaded multiple times, once for each block that calculates the output tile that requires it

- Not very efficient in global memory bandwidth

Implementing a convolution layer with matrix multiplication

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign Input Features X_unrolled

Simple Matrix Multiplication

Each product matrix element is an output feature map pixel.

This inner product generates element 0 of output feature map 0.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016 ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Input feature maps

Tiled Matrix Multiplication 2x2 example

Each block calculates one output tile -2 elements from each output map

Each input element is reused 2 times in the shared memory

Input feature maps

Convolution Filters

Tiled Matrix Multiplication 2x4 example

Each block calculates one output tile -4 elements from each output map

Each input element is reused 2 times in the shared memory

Input feature maps

Convolution Filters

Analysis of Efficiency Total Input Replication

- Each output map requires its replicated input feature map elements
 - Not replicated for different output feature maps
 - There are H_out * W_out output feature map elements
 - Each requires K*K replicated input feature map elements
 - So, the total number of input element after replication is H_out*W_out*K*K times for each input feature map
 - The total number of elements in each original input feature map is (H_out+K-1) * (W_out+K-1)

Analysis of Small Example

- H_out = 2
- W_out = 2
- K = 2
- There are 3 input maps (channels)
- The total number of input elements in the replicated ("unrolled") input matrix is 3*2*2*2*2
- The replicating factor is
- $(3^{2}2^{2}2^{2}2)/(3^{3}3) = 1.78$

X_unrolled

Memory Access Efficiency of Original Convolution Algorithm

- Assume that we use tiled 2D convolution
- For input elements
 - Each output tile has TILE_WIDTH² elements
 - Each input tile has (TILE_WIDTH+K-1)²
 - The total number of input feature map element accesses is TILE_WIDTH²*K²
 - The reduction factor of the tiled algorithm is K²*TILE_WIDTH²/(TILE_WIDTH+K-1)²
- The convolution filter weight elements are reused within each output tile

Efficiency of Tiled Matrix Multiplication

- Assuming we use TILE_WIDTH² input and output tiles
 - Each replicated input feature map element is reused TILE_WIDTH times
 - Each convolution filter weight element is reused
 TILE_WIDTH times
 - Matrix multiplication is better if TILE_WIDTH is larger than K²*TILE_WIDTH²/(TILE_WIDTH+K-1)²

Problem with the Later Stages

- The size (H_out, W_out) of each output feature map decreases as we go to the later stages of the CNN
 - The TILE_WIDTH may be limited to very small sizes relative to K
 - The benefit of 2D tiling will diminish as we go down the pipeline
 - This is an intrinsic problem for 2D tiled convolution

Mini-Batching

- One can use mini-batching to further increase the amount of work done in each kernel launch
 - Collect several sets of input feature maps of an input sequence
 - Use a larger unrolled input feature matrix that has all the inputs from the mini-batch

Other Optimizations

- Use streams to overlap the reading of the next set of input feature maps with the processing of the previous input feature maps.
- Create unrolled matrix elements on the fly, only when they are loaded into shared memory
- Use more advanced algorithms such as FFT to implement convolution

Gradient Back-Propagation

- Training of ConvNets is based on a procedure called backpropagation.
- The training data set is labeled with the "correct answer."
- For each training image, the final stage of the network calculates the loss function or the error as the difference between the generated output vector element values and the "correct" output vector element values.
- Given a sequence of training images, we can numerically calculate the gradient of the loss function with respect to the output vector. Intuitively, it gives the rate at which the error changes when the value of the output vector changes - dE/dY
Gradient Back Propagation (Cont.)

 The process propagates the gradient from the last layer towards the first layer through all layers of network.

 Each layer receives as dE/dY - gradient with respect to its output feature maps and computes dE/dX - gradient with respect to its input feature maps

Adjusting Weights

 After the dE/dW values at all feature map element positions are computed, weights are updated:

For each weight value
w(t+1) = w(t) - λ/ dE/dw,

where λ is the learning rate.

Other layer types

- Fully-connected
- Pooling/downsampling
- Upsampling
- Activation

The same operation is applied on all inputs, with same or different parameters (weights)

The Fermi Architecture Selected notes from presentation by: Michael C. Shebanow

Principal Research Scientist, NV Research mshebanow@nvidia.com

(2010)

Much Better Compute

- Programmability
 - C++ Support
 - Exceptions/Debug support
- Performance
 - Dual issue SMs
 - L1 cache
 - Larger Shared Memory
 - Much better DP math
 - Much better atomic support
- Reliability: ECC

	GT200	GF100	Benefit
L1 Texture	12 KB	12 KB	Fast texture
Cache (per			filtering
quad)			
Dedicated	X	16 or 48 KB	Efficient
L1 LD/ST			physics and
Cache			ray tracing
Total	16KB	16 or 48 KB	More data reuse
Shared			among threads
Memory			
L2 Cache	256KB	768 KB	Greater texture
	(TEX read	(all clients	coverage,
	only)	read/write)	robust compute
			performance
Double	30	256	Much higher
Precision	FMAs/clock	FMAs/clock	throughputs for
Throughput			Scientific codes

Instruction Set Architecture

FP Unit

- Enables C++ : virtual functions, • new/delete, try/catch
- Unified load/store addressing ٠
- 64-bit addressing for large ٠ problems
- Optimized for CUDA C, OpenCL ۲ & Direct Compute
 - Direct Compute is Microsoft's _ general-purpose computing on GPU API
- Enables system call functionality ۲
 - stdio.h, etc.

Unified Load/Store Addressing

Instruction Issue and Control Flow

- Decouple internal execution resources
 - Deliver peak IPC on branchy / int-heavy / LD-ST heavy codes
- Dual issue pipelines select two warps to issue

Warp Scheduler	Warp Scheduler					
Instruction Dispatch Unit	Instruction Dispatch Unit					
Warp 8 instruction 11	Warp 9 instruction 11					
Warp 2 instruction 42	Warp 3 instruction 33					
Warp 14 instruction 95	Warp 15 instruction 95					
Warp 8 instruction 12	Warp 9 instruction 12					
Warp 14 instruction 96	Warp 3 instruction 34					
Warp 2 instruction 43	Warp 15 instruction 96					

Caches

- Configurable L1 cache per SM
 - 16KB L1\$ / 48KB Shared Memory
 - 48KB L1\$ / 16KB Shared Memory
- Shared 768KB L2 cache
- Compute motivation:
 - Caching captures locality, amplifies bandwidth
 - Caching more effective than Shared Memory for irregular or unpredictable access
 - Ray tracing, sparse matrix multiplication, physics kernels ...
 - Caching helps latency sensitive cases

GigaThread Hardware Thread Scheduler

- Hierarchically manages tens of thousands of simultaneously
 - active threads
- 10x faster context switching on Fermi
- Concurrent kernel execution

GigaThread Streaming Data Transfer Engine

- Dual DMA engines
- Simultaneous CPU→GPU and GPU→CPU data transfer
- Fully overlapped with CPU/GPU processing

Fermi runs independent kernels in parallel

Concurrent Kernel Execution + Faster Context Switch

Serial Kernel Execution

Parallel Kernel Execution

Inside Kepler

Manuel Ujaldon Nvidia CUDA Fellow Computer Architecture Department University of Malaga (Spain)

Modified by P. Mordohai

Summary of Features

- Released in 2012
- Architecture: Between 7 and 15 multiprocessors SMX, endowed with 192 cores each.
- Arithmetic: More than 1 TeraFLOP in double precision (64 bits IEEE-754 floating-point format).
 - Specific values depend on the clock frequency for each model (usually, more on GeForces, less on Teslas).
- Major innovations in core design:
 - Dynamic parallelism
 - Thread scheduling (Hyper-Q)

How the Architecture Scales Up

Architecture	G80	GT200	Fermi GF100	Fermi GF104	Kepler GK104	Kepler GK110
Time frame	2006-07	2008-09	2010	2011	2012	2013
CUDA Compute Capability (CCC)	1.0	1.2	2.0	2.1	3.0	3.5
N (multiprocs.)	16	30	16	7	8	15
M (cores/multip.)	8	8	32	48	192	192
Number of cores	128	240	512	336	1536	2880

Fermi

Kepler GK110

From SM to SMX in Kepler

SM	SM							
	Instruction Cache							
War	p Sched	uler	War					
Dis	spatch U	nit	Dis	patch U	nit			
				•				
	Registe	er File (3	2,768 x	32-bit)				
-	+	+	-	INST	-			
Core	Core	Core	Core	LD/ST				
Core	Core	Core	Core	LD/ST	Sru			
Core	Core	Core	Core	LD/ST				
Core	Core	Core	Core	LD/ST	SFU	2		
Core	Core	Core	Core	LD/ST LD/ST				
Core	Core	Core	Core	LD/ST LD/ST	SFU			
Core	Core	Core	Core	LD/ST LD/ST				
Core	Core	Core	Core	LD/ST LD/ST	SPU			
Interconnect Network								
64 KB Shared Memory / L1 Cache								
		Uniform	1 Cache					
Tex	Tex Tex Tex							
Texture Cache								

Instruction Cache																			
	Wa	rp Sch	eduler	er Warp Scheduler						Warp Scheduler				Warp Scheduler					
Diaș	atch Ur	iit	Dispatch	Unit	Dia	Dispatch Unit Dispatch Unit			Dia	Dispatch Unit Dispatch Unit			Unit	Dispatch Unit Dispatch Unit					
							F	Register	File (65,536	x 32-l	oit)							
÷	÷	÷	÷	÷	÷	÷	+	+	+	÷	÷	+	÷	÷	÷	÷	÷	÷	•
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Coro	DP Unit	Core	Core	Core	DP Unit	LDIST	SFL
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
ore	Core	Core	DP Unit	Core	Core	Core	DP Uni	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
ore	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFL
ore	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFL
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
ore	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFL
ore	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFL
ore	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFL
re	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFL
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDVST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Uni	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Uni	LD/ST	SFU	Core	Core	Corp	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
2000	06000	\$2665	\$22223	00000	88880	2002		a KB Shi	rcóńne ared M	ict Néti emory /	vork /L1 Ca	che	000000	56060	\$2505	8060	\$\$\$\$\$	00000	AXA
								48 K	3 Read	-Only (Cache								
	Tex		Tex			Tex		Tex	:		Tex		Tex	:		Tex		Tex	:
	Toy		Tov			Tax		T			_		-			.		T	

Differences in Memory Hierarchy

Kepler Memory Hierarchy

New Data Cache

- Additional 48 Kbytes to expand L1 cache size
- Avoids the texture unit
- Allows a global address to be fetched and cached, using a pipeline different from that of L1/shared
- Flexible (does not require aligned accesses)
- Eliminates texture setup
- Managed automatically by compiler ("const_ restrict" indicates eligibility). Next slide shows an example.

How to use Data Cache

- Annotate eligible kernel parameters with "const ____restrict"
- Compiler will automatically map loads to use read-only data cache path.

GPUDirect now supports RDMA [Remote Direct Memory Access]

 This allows direct transfers between GPUs and network devices, for reducing the penalty on the extraordinary bandwidth of GDDR5 video memory

Relaxing Software Constraints for Massive Parallelism

GPU generation	Fei	rmi		Kepler			
Hardware model	GF100	GF10	4	GK104	GK110		
CUDA Compute Capability (CCC)	2.0	2.1		3.0	3.5		
Number of threads / warp (warp size)	32		32	32	32		
Max. number of warps / Multiprocessor	48	ſ	48	64	64		
Max. number of blocks / Multiprocessor	8		8	16	16		
Max. number of threads / Block	1024	10	024	1024	1024		
Max. number of threads / Multiprocessor	1536	19	536	2048	2048		

Crucial enhancement for Hyper-Q (see later)

Major Hardware Enhancements

Large scale computations

GPU generation	Fermi		Кер	oler			
Hardware model	GF100 GF104		GK104	GK110	Limitation	Impact	
Compute Capability (CCC)	2.0	2.1	3.0	3.5			
Max. grid size (on X dimension)	2^16-1	2^16-1	2^32-1	2^32-1	Software	Problem size	

New architectural features

GPU generation	Fermi		Kep	oler			
Hardware model	GF100 GF104 GK104 GK110		GK110	Limitation	Impact		
Compute Capability (CCC)	2.0	2.1	3.0	3.5			
Dynamic Parallelism	No	No	No	Yes	Hardware	Problem structure	
Hyper-Q	No	No	No	Yes	Hardware	Thread scheduling	

Dynamic Parallelism

- The ability to launch new grids from the GPU:
 - Dynamically: Based on run-time data
 - Simultaneously: From multiple threads at once
 - Independently: Each thread can launch a different grid

Dynamic Parallelism

The pre-Kepler GPU is a co-processor

The Kepler GPU is autonomous: Dynamic parallelism

Now programs run faster and are expressed in a more natural way.

Workload Balance

- Plenty of factors, unpredictable at run time, may transform workload balancing among multiprocessors into an impossible goal
- See below the duration of 8 warps on an SM of the G80:

SM Warp Vis - test.bin.gz	
<u>File View H</u> elp	
😰 । 🝙 । 🍳 🔍 । 🍳 🔍 iselection: RESET ZOOM iside: SHOW	
0	time (cycles)
0_0 9	
0_1 0	
0_2 0	
0_3 0	
1_0 9	
1_1 0	
1_2 0	
1_3 0	
2_0 Ø	
2_1 0	
2_2 0	
2_3 0	
3_0 9	
3_1 0	
3_2 0	
3_3 0	

54

Hyper-Q

- In Fermi, several CPU processes can send thread blocks to the same GPU, but a kernel cannot start its execution until the previous one has finished
- In Kepler, we can execute simultaneously up to 32 kernels launched from different:

– MPI processes, CPU threads (POSIX threads) or CUDA streams

 This increments the % of temporal occupancy on the GPU

KEPLER 32 Simultaneous MPI Tasks

Without Hyper-Q

With Hyper-Q

Six Ways to Improve Code on Kepler

Dynamic Work Generation

Coarse grid

Higher performance, lower accuracy

Fine grid

Lower performance, higher accuracy

Dynamic grid

Target performance where accuracy is required

Parallelism based on Level of Detail

CUDA until 2012: • The CPU launches kernels regularly. • All pixels are treated the same. Computational power allocated to regions of interest

CUDA on Kepler: • The GPU launches a different number of kernels/blocks for each computational region.

Grid Management Unit

Fermi

Kepler GK110

Software and Hardware Queues

Software and Hardware Queues

Instruction Issue and Execution

	SM-SMX fetch & issue (front-end)	SM-SMX execution (back-end)
Fermi (GF100)	Can issue 2 warps, 1 instruction each. Total: 2 warps per cycle . Active warps: 48 on each SM, chosen from up to 8 blocks. In GTX480: 15 * 48 = 720 active warps.	32 cores (1 warp) for "int" and "float". 16 cores for "double" (1/2 warp). 16 load/store units (1/2 warp). 4 special function units (1/8 warp). A total of up to 4 concurrent warps .
Kepler (GK110)	Can issue 4 warps, 2 instructions each. Total: 8 warps per cycle . Active warps: 64 on each SMX, chosen from up to 16 blocks. In K20: 13 * 64 = 832 active warps.	 192 cores (6 warps) for "int" and "float". 64 cores for "double" (2 warps). 32 load/store units (1 warp). 32 special function units (1 warp). A total of up to 10 concurrent warps.

Data-Dependent Parallelism

- The simplest possible parallel program:
 - Loops are parallelizable
 - Workload is known at compile-time

```
for i = 1 to N
for j = 1 to M
convolution(i,j);
```

- The simplest impossible program:
 - Workload is unknown at compile-time.
 - The challenge is data partitioning

```
for i = 1 to N
for j = 1 to x[i]
    convolution(i,j);
```

Data-Dependent Parallelism

• Kepler version:

// Launch N blocks of 1 thread
// on GPU (rows start in parallel)
convolution <<< N, 1 >>> (x);

• Up to 24 nested loops supported in CUDA 5.0

Recursive Parallel Algorithms prior to Kepler

- Early CUDA programming model did not support recursion at all
- CUDA started to support recursive functions in version 3.1, but they can easily crash if the size of the arguments is large
- A user-defined stack in global memory can be employed instead, but at the cost of a significant performance penalty
- An efficient solution is possible using dynamic parallelism

Parallel Recursion: Quicksort

Typical divide-and-conquer algorithm, hard to do
 on Fermi

Quicksort

```
__device___ WorkStack stack;
__global___ void quicksort(int *data, int left, int right)
{
    int nleft, nright;
    // Partitions data based on pivot of first element.
    // Returns counts in nleft & nright
    partition(data+left, data+right, data[left], nleft, nright);
    // If a sub-array needs sorting, push it on the stack
    if(left < nright)
        stack.push(data, left, nright);
    if(nleft < right)
        stack.push(data, nleft, right);
    }
}
```

Quicksort

```
host void launch quicksort(int *data, int count)
  // Launch initial quicksort to populate the stack
  quicksort <<< ... >>> (data, 0, count-1);
  // Loop more quicksorts until no more work exists
  while(1)
  Ł
      // Wait for all sorts at this stage to finish
      cudaDeviceSynchronize();
      // Copy our stack from the device.
      WorkStack stack copy;
      stack copy = CopyFromDevice(stack);
      // Count of things on stack. We're done if it's zero!
      if(stack copy.size() == 0)
          break:
      // Pop the stack and launch each new sort in its own stream
      while(stack copy.size())
          WorkStack elem = stack copy.pop();
          cudaStream t s;
          cudaStreamCreate(&s);
          quicksort<<< ..., s >>>(data, elem.left, elem.right);
```

Quicksort with Dynamic Parallelism

```
global void quicksort(int *data, int left, int right)
  int nleft, nright;
  cudaStream t s1, s2;
 // Partitions data based on pivot of first element.
 // Returns counts in nleft & nright
 partition(data+left, data+right, data[left], nleft, nright);
 // If a sub-array needs sorting, launch a new grid for it.
 // Note use of streams to get concurrency between sub-sorts
  if(left < nright) {</pre>
      cudaStreamCreateWithFlags(&s1, cudaStreamNonBlocking);
      quicksort<<< ..., s1 >>>(data, left, nright);
  if(nleft < right) {</pre>
      cudaStreamCreateWithFlags(&s2, cudaStreamNonBlocking);
      quicksort<<< ..., s2 >>>(data, nleft, right);
host void launch quicksort(int *data, int count)
  quicksort <<< ... >>> (data, 0, count-1);
```

Quicksort Results

Quicksort

Problem Size (Million of Elements)

Maxwell (2nd generation) Released in 2014

Material by Mark Harris (NVIDIA) and others

Energy Efficiency

Performance per Watt GTX 680: Kepler GTX 980: Maxwell

New Features

GPU	GeForce GTX 680 (Kepler)	GeForce GTX 980 (Maxwell)
SMs	8	16
CUDA Cores	1536	2048
Base Clock	1006 MHz	1126 MHz
GPU Boost Clock	1058 MHz	1216 MHz
GFLOPs	3090	4612 ¹
Texture Units	128	128
Texel fill-rate	128.8 Gigatexels/sec	144.1 Gigatexels/sec
Memory Clock	6000 MHz	7000 MHz
Memory Bandwidth	192 GB/sec	224 GB/sec
ROPs	32	64
L2 Cache Size	512KB	2048KB
TDP	195 Watts	165 Watts
Transistors	3.54 billion	5.2 billion
Die Size	294 mm ²	398 mm²
Manufacturing Process	28-nm	28-nm

New Features

- Improved instruction scheduling
 - Four warp schedulers per SMM (Maxwell SM), no shared core functional units
- Increased occupancy

 Maximum active blocks per SMM has doubled
- Larger dedicated shared memory
 - L1 is now with texture cache
- Faster shared memory atomics
- Broader support for dynamic parallelism

Graphics

NEXT GENERATION GRAPHICS

Enabling New Algorithms and Superior Image Quality

- Voxel Global Illumination
- Multi Projection
- Conservative Raster
- Shader : Raster Ordered View
- Tiled Resources
- Advanced Sampling

Pascal

Released in 2016

Key New Features

- Smaller manufacturing process
 16 nm vs. 28 nm of previous generations
- Much faster memory
- Higher clock frequency – 1607 MHz vs. 1216 MHz
- Dynamic load balancing including graphics pipeline
- Page Migration Engine

Volta

Released in 2017

Key New Features

- Up to 640 Tensor Cores for deep learning
 - Multiply and add floating point matrices (64 operations per clock)
 - Over 125 TFLOPS (5x more than Pascal)
- Next generation NVLink doubles bandwidth (up to 300 GB/s)
- 84 SMs
- Simultaneous execution of FP32 and INT32 operations

Tesla Product	Tesla K40	Tesla M40	Tesla P100	Tesla V100
GPU	GK180 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)	GV100 (Volta)
SMs	15	24	56	80
TPCs	15	24	28	40
FP32 Cores / SM	192	128	64	64
FP32 Cores / GPU	2880	3072	3584	5120
FP64 Cores / SM	64	4	32	32
FP64 Cores / GPU	960	96	1792	2560
Tensor Cores / SM	NA	NA	NA	8
Tensor Cores / GPU	NA	NA	NA	640
GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz	1530 MHz
Peak FP32 TFLOPS ¹	5	6.8	10.6	15.7
Peak FP64 TFLOPS ¹	1.7	.21	5.3	7.8
Peak Tensor TFLOPS ¹	NA	NA	NA	125
Texture Units	240	192	224	320
Memory Interface	384-bit GDDR5	384-bit GDDR5	4096-bit HBM2	4096-bit HBM2
Memory Size	Up to 12 GB	Up to 24 GB	16 GB	16 GB
L2 Cache Size	1536 KB	3072 KB	4096 KB	6144 KB
Shared Memory Size / SM	16 KB/32 KB/48 KB	96 KB	64 KB	Configurable up to 96 KB
Register File Size / SM	256 KB	256 KB	256 KB	256KB
Register File Size / GPU	3840 KB	6144 KB	14336 KB	20480 KB
TDP	235 Watts	250 Watts	300 Watts	300 Watts
Transistors	7.1 billion	8 billion	15.3 billion	21.1 billion
GPU Die Size	551 mm ²	601 mm ²	610 mm ²	815 mm ²
Manufacturing Process	28 nm	28 nm	16 nm FinFET+	12 nm FFN
¹ Peak TELOPS rates are based on GPU Boost Clock				

.

Turing

Released in 2018

Key New Features

- CUDA, Ray-tracing and Tensor cores

 14.2 TFLOPS of FP32 performance, 113.8 Tensor TFLOPS and 10 Giga Rays/sec
- Up to 24 GB of RAM in Titan RTX and up to 48 GB in Quadro RTX 8000
- Independent integer and floating-point datapaths and unified shared memory, texture caching and memory load caching lead to 50% performance improvement per core

Turing Tensor Cores

Memory Compression

- Several lossless memory compression techniques to reduce bandwidth demands
- Improvements over Pascal

Reflections Demo

NVIDIA DGX-1

NVIDIA DGX-1 WORLD'S FIRST DEEP LEARNING SUPERCOMPUTER

Engineered for deep learning | 170TF FP16 | 8x Tesla P100 NVLink hybrid cube mesh | Accelerates major Al frameworks

"250 SERVERS IN-A-BOX"

	DUAL XEON	DGX-1
FLOPS (CPU + GPU)	3 TF	170 TF
AGGREGATE NODE BW	76 GB/ s	768 GB/ s
ALEXNET TRAIN TIME	150 HOURS	2 HOURS
TRAIN IN 2 HOURS	>250 NODES*	1 NODE

*Caffe Training on Multi-node Distributed-memory Systems Based on Intel® Xeon® Processor E5 Family (extrapolated) Gennady Fedorov (Intel)'s picture Submitted by Gennady Fedorov (Intel), Vadim P. (Intel) on October 29, 2015 https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems-based-on-intel-xeon-processor-e5

SYSTEM SPECIFICATIONS

GPUs	8X Tesla V100
Performance (Mixed Precision)	1 petaFLOPS
GPU Memory	256 GB total system
CPU	Dual 20-Core Intel Xeon E5-2698 v4 2.2 GHz
NVIDIA CUDA® Cores	40,960
NVIDIA Tensor Cores (on V100 based systems)	5,120
Power Requirements	3,500 W
System Memory	512 GB 2,133 MHz DDR4 RDIMM
Storage	4X 1.92 TB SSD RAID 0
Network	Dual 10 GbE, 4 IB EDR
Operating System	Canonical Ubuntu, Red Hat Enterprise Linux
System Weight	134 lbs
System Dimensions	866 D x 444 W x 131 H (mm)
Packing Dimensions	1,180 D x 730 W x 284 H (mm)
Operating Temperature Range	5–35 °C

NVIDIA DGX-2

SYSTEM SPECIFICATIONS

GPUs	16X NVIDIA® Tesla V100
GPU Memory	512GB total
Performance	2 petaFLOPS
NVIDIA CUDA [®] Cores	81920
NVIDIA Tensor Cores	10240
NVSwitches	12
Maximum Power Usage	10kW
CPU	Dual Intel Xeon Platinum 8168, 2.7 GHz, 24-cores
System Memory	1.5TB
Network	8X 100Gb/sec Infiniband/100GigE Dual 10/25/40/50/100GbE
Storage	OS: 2X 960GB NVME SSDs Internal Storage: 30TB (8X 3.84TB) NVME SSDs
Software	Ubuntu Linux OS Red Hat Enterprise Linux OS See Software stack for details
System Weight	360 lbs (163.29 kgs)
Packaged System Weight	400lbs (181.44kgs)
System Dimensions	Height: 17.3 in (440.0 mm) Width: 19.0 in (482.3 mm) Length: 31.3 in (795.4 mm) - No Front Bezel 32.8 in (834.0 mm) - With Front Bezel
Operating Temperature Range	5°C to 35°C (41°F to 95°F)

NVIDIA DGX STATION

SYSTEM SPECIFICATIONS

GPUs	4X Tesla V100
TFLOPS (Mixed precision)	500
GPU Memory	128 GB total system
NVIDIA Tensor Cores	2,560
NVIDIA CUDA® Cores	20,480
CPU	Intel Xeon E5-2698 v4 2.2 GHz (20-Core)
System Memory	256 GB RDIMM DDR4
Storage	Data: 3X 1.92 TB SSD RAID 0 OS: 1X 1.92 TB SSD
Network	Dual 10GBASE-T (RJ45)
Display	3X DisplayPort, 4K resolution
Additional Ports	2x eSATA, 2x USB 3.1, 4x USB 3.0
Acoustics	< 35 dB
System Weight	88 lbs / 40 kg
System Dimensions	518 D x 256 W x 639 H (mm)
Maximum Power Requirements	1,500 W
Operating Temperature Range	10-30 °C
Software	Ubuntu Desktop Linux OS, Red Hat Enterprise Linux OS, DGX Recommended GPU Driver CUDA Toolkit

NVIDIA DGX STATION | DATA SHEET | FEB20

AMD RX Vega

- 8 GB high bandwidth memory (HBM2)
 14 nm production process
- 4096 cores
- 12.7 TFLOPS
 - Compared to 11 TFLOPS of NVIDIA GTX
 Titan X and 15.7 TFLOPS of NVIDIA GV100
 (Volta)

AMD RADEON VII

- 16 GB high bandwidth memory (HBM2)
 7 nm production process
- 3840 cores
- 13.2 billion transistors
- 13.8 TFLOPS

CUDA 4.0

CUDA 4.0: Highlights

© NV/DIA Corporation 2011
CUDA 4.0 Release

- March 2011
- Independent software release
- Unlike:
 - CUDA 1.0 released with G80/G9x in 2007 (nearly a year later than the hardware)
 - CUDA 2.0 released for GT200 in 2008
 - CUDA 3.0 released for Fermi in 2009

CUDA 4.0 - Application Porting

- Unified Virtual Addressing
- Faster Multi-GPU Programming – NVIDIA GPUDirect 2.0
- Easier Parallel Programming in C++

 Thrust

Easier Porting of Existing Applications

Share GPUs across multiple threads

- Easier porting of multithreaded apps
 - pthreads / OpenMP threads share a GPU
- Launch concurrent kernels from different host threads
 - Eliminates context switching overhead
- New, simple context management APIs
 - Old context migration APIs still supported

Single thread access to all GPUs

- Each host thread can now access all GPUs in the system
 - One thread per GPU limitation removed
- Easier than ever for applications to take advantage of multi-GPU
 - Single-threaded applications can now benefit from multiple GPUs
 - Easily coordinate work across multiple GPUs

New CUDA C/C++ Language Features

• C++ new/delete

– Dynamic memory management

C++ virtual functions

 Easier porting of existing applications

- Inline PTX
 - Enables assembly-level optimization

GPU-Accelerated Image Processing

- NVIDIA Performance Primitives (NPP) library
 - 10x to 36x faster image processing
 - Initial focus on imaging and video related primitives
 - Data exchange and initialization
 - Color conversion
 - Threshold and compare operations
 - Statistics
 - Filter functions
 - Geometry transforms
 - Arithmetic and logical operations
 - JPEG

NVIDIA GPUDirect:Towards Eliminating the CPU Bottleneck

Before GPUDirect 2.0

Two copies required

GPUDirect 2.0: Peer-to-Peer Communication

Only one copy required

GPUDirect 2.0: Peer-to-Peer Communication

- Direct communication between GPUs
 - Faster no system memory copy overhead
 - More convenient multi-GPU programming
- Direct Transfers
 - Copy from GPU0 memory to GPU1 memory
 - Works transparently with UVA
- Direct Access
 - GPU0 reads or writes GPU1 memory (load/store)

Unified Virtual Addressing

No UVA: Multiple
 Memory Spaces

UVA: Single Address
 Space

Unified Virtual Addressing

- One address space for all CPU and GPU memory
 - Determine physical memory location from pointer value
 - Enables libraries to simplify their interfaces (e.g. cudaMemcpy)
- Supported on Tesla 20-series and other Fermi GPUs

Before UVA	With UVA
Separate options for each permutation	One function handles all cases
cudaMemcpyHostToHost cudaMemcpyHostToDevice cudaMemcpyDeviceToHost cudaMemcpyDeviceToDevice	cudaMemcpyDefault (data location becomes an implementation detail)

New Developer Tools

- Auto Performance Analysis: Visual Profiler
 - Identify limiting factor
 - Analyze instruction throughput
 - Analyze memory throughput
 - Analyze kernel occupancy
- C++ Debugging

 cuda-gdb for MacOS
- GPU Binary Disassembler

CUDA 5.0

Mark Harris Chief Technologist, GPU Computing

Open Source LLVM Compiler

 Provides ability for anyone to add CUDA to new languages and processors

NVIDIA Nsight, Eclipse Edition

Callen Calug-Fadman, Inn, Findman, so - Cider							
The Dill Darres Advisor Margara Search Bar Depart genome pay	21111						
			1000		- 185 m		
B Debug E C C C C C C C C C C C C C C C C C C	TO PR Variables Cas	Alleformation II	By Brushpoords		0.0	1	
+ E toqute [c/c++ stitutes]	ep f				1		
7 Provide/TandMass (2) [phenoles al (Suspensitive) - (Sep)]	* E Di codalindato	Ruhming	Device 0	-0++CEE.9.70	D196.4.19444	1.	
 CUDA Treased (0.3, 0) March (0.1.0) 	1 IL 11 4/08	Buttong.	1947			12	
 Construction of the max of the sector met 	2 ⁸ (235.0.0)	-burning	WWID71ate0	ill fridmas.ou	111000171100	12	
 B Block (R. A. Block of 1998 Artist Threads) 	P 025,820	Haring	Wep/TLane1	 R feilinacos 	1134266772100	Ľ	
* Thinkek CLUVBOurt 21 (756 ective Threads)	P GDAR.D	having	Weip 71, and 2	III Fenderhale cos	113404917316		
il festmatus II		- 0	2 Outline IN 18	ussamily 22 sep	oteri II - C		
x10132 1 restElement:			A P P H T				
sinthr, 1 - riverscommittees + thready, sort,	sist22_1 1 = firstflomotindes + threadelost;			TRADEGAS	DALWARD AND MILLION AND		
THE (] A BOART SIZE;] THERMOSTOWER) (121.813	10	1.		
1 If inextlement is named			10.41	16216272	14710372		
<pre>HEN = nextElement;</pre>			FFF #2	4153129	2024586		
Providence of Fi	b Andrawa All De De Three States (Three Stat			\$192	8193		
And an and a second				3148538	8115414		
throutheaster[throut]co.s] + atclings;							
and and an end of the second s			10.44	Toellow.	- COMPLEX		
	Concession of the local diversion of		all an	arres .	ALTER .		
E Caviale II		* B- 71- *D	12.89		8		
Hindman [C/Con-Application] Hindman			00.010	6387951	10770746		
Museung Kungle-threades bost code	Rumning single-threaded boot code			0	#12250		
			ALC: 4 ()	1048579	+648576		
Wakerul werti-takenged wetter cose			100 PT 3	9	0.1111		
11			Million .	18.	1.0. :		
1277							
14.1							
12							
State and a second state of the							

CUDA-Aware Editor

- Automated CPU to GPU code refactoring
- Semantic highlighting of CUDA code
- Integrated code samples & docs

Nsight Debugger

- Simultaneously debug of CPU and GPU
- Inspect variables across CUDA threads
- Use breakpoints & single-step debugging

Nsight Profiler

- Quickly identifies performance issues
- Integrated expert system
- Automated analysis
- Source line correlation

For Linux and Mac OS

CUDA 4: Whole-Program Compilation & Linking

CUDA 5: GPU Library Object Linking

- Separate compilation allows building independent object files
- CUDA 5 can link multiple object files into one program
- Can also combine object files into static libraries
 - Link and externally call *device* code

CUDA 5: GPU Library Object Linking

- Enables 3rd party closed-source device libraries
- User-defined device callback functions

CUDA 5.0: Run-time Syntax and Semantics

CUDA 6.0

Manuel Ujaldon Nvidia CUDA Fellow Computer Architecture Department University of Malaga (Spain)

CUDA 6 Highlights

- Unified Memory:
 - CPU and GPU can share data without much programming effort
- Extended Library Interface (XT) and Drop-in Libraries:
 - Libraries much easier to use
- GPUDirect RDMA:
 - A key achievement in multi-GPU environments
- Developer tools:
 - Visual Profiler enhanced with:
 - Side-by-side source and disassembly view showing.
 - New analysis passes (per SM activity level), generates a kernel analysis report.
- Multi-Process Server (MPS) support in nvprof and cudamemcheck
- Nsight Eclipse Edition supports remote development (x86 and ARM)

CUDA 6.0: Performance Improvements in Key Use Cases

- Kernel launch
- Repeated launch of the same set of kernels
- cudaDeviceSynchronize()
- Back-to-back grids in a stream

Unified Memory

Unified Memory Contributions

- Creates pool of managed memory between CPU and GPU
- Simpler programming and memory model:
 - Single pointer to data, accessible anywhere
 - Eliminate need for cudaMemcpy(), use cudaMallocManaged()
 - No need for deep copies
- Performance through data locality:
 - Migrate data to accessing processor
 - Guarantee global coherency
 - Still allows cudaMemcpyAsync() hand tuning

Memory Types

	Zero-Copy (pinned memory)	Unified Virtual Addressing	Unified Memory
CUDA call	cudaMallocHost(&A, 4);	cudaMalloc(&A, 4);	cudaMallocManaged(&A, 4);
Allocation fixed in	Main memory (DDR3)	Video memory (GDDR5)	Both
Local access for	CPU	Home GPU	CPU and home GPU
PIC-e access for	All GPUs	Other GPUs	Other GPUs
Other features	Avoid swapping to disk	No CPU access	On access CPU/GPU migration
Coherency	At all times	Between GPUs	Only at launch & sync.
Full support in	CUDA 2.2	CUDA 1.0	CUDA 6.0

Additions to the CUDA API

- New call: cudaMallocManaged()
 - Drop-in replacement for cudaMalloc() allocates managed memory
 - Returns pointer accessible from both Host and Device
- New call: cudaStreamAttachMemAsync()
 - Manages concurrency in multi-threaded CPU applications
- New keyword: <u>managed</u>
 - Declares global-scope migratable device variable
 - Symbol accessible from both GPU and CPU code

Code without Unified Memory

sizeof(g text));

Code with Unified Memory

CPU memory

GPU memory

void launch(dataElem *elem) { kernel<<< ... >>>(elem);

- What remains the same:
 - Data movement
 - GPU accesses a local copy of text
- What has changed:
 - Programmer sees a single pointer
 - CPU and GPU both reference the same object
 - There is coherence

CUDA 7.0

By Mark Harris NVIDIA

New Features: C++11

- C++11 features on device including:
 - auto,
 - lambda,
 - variadic templates,
 - rvalue references,
 - range-based for loops

Example

#include <initializer_list>
#include <iostream>
#include <cstring>

```
// Generic parallel find routine. Threads search through the
// array in parallel. A thread returns the index of the
// first value it finds that satisfies predicate p_{,} or -1.
template <typename T, typename Predicate>
 device int find(T *data, int n, Predicate p)
{
    for (int i = blockIdx.x * blockDim.x + threadIdx.x;
         i < n;
         i += blockDim.x * gridDim.x)
    {
        if (p(data[i])) return i;
    }
    return -1;
```

```
// Use find with a lambda function that searches for x, y, z
// or w. Note the use of range-based for loop and
// initializer_list inside the functor, and auto means we
// don't have to know the type of the lambda or the array
__global___
void xyzw_frequency(unsigned int *count, char *data, int n)
{
```

```
auto match_xyzw = [](char c) {
   const char letters[] = { 'x', 'y', 'z', 'w' };
   for (const auto x : letters)
      if (c == x) return true;
   return false;
};
int i = find(data, n, match xyzw);
```

```
if (i >= 0) atomicAdd(count, 1);
```

}

```
int main(void)
{
    char text[] = "zebra xylophone wax";
    char *d text;
    cudaMalloc(&d text, sizeof(text));
    cudaMemcpy(d text, text, sizeof(text),cudaMemcpyHostToDevice);
   unsigned int *d count;
    cudaMalloc(&d count, sizeof(unsigned int));
    cudaMemset(d count, 0, sizeof(unsigned int));
   xyzw frequency<<<1, 64>>>(d count, d text, strlen(text));
   unsigned int count;
    cudaMemcpy(&count, d count, sizeof(unsigned int), cudaMemcpyDeviceToHost);
    std::cout << count << " instances of 'x', 'y', 'z', 'w'"</pre>
              << "in " << text << std::endl;
    cudaFree(d count);
    cudaFree(d text);
```

```
return 0;
```

Other Features

- Thrust version 1.8
 - Thrust algorithms can now be invoked from the device
- cuSOLVER, cuFFT
 - cuSolver library is a high-level package based on the cuBLAS and cuSPARSE libraries
- Runtime compilation
 - No need to generate multiple optimized kernels at compile time

CUDA 8.0

By Milind Kukanur NVIDIA

What's New

Unified Memory

 Oversubscribe GPU memory, up to system memory size

```
void foo() {
    // Allocate 64 GB
    char *data;
    size_t size = 64*1024*1024*1024;
    cudaMallocManaged(&data, size);
```

Unified Memory

```
__global__ void mykernel(char *data) {
    data[1] = `g';
}
```

```
void foo() {
    char *data;
    cudaMallocManaged(&data, 2);
```

```
mykernel<<<...>>>(data);
// no synchronize here
data[0] = `c';
```

```
cudaFree(data);
```

}

CUDA 9.0

By Mark Harris NVIDIA

New Features

- Support for Volta
- Cooperative groups
- Tensor Core API
- New Visual Profiler
- Support for C++ 14

Cooperative Groups

Ability to define groups of threads explicitly at sub-block and multiblock granularities

```
global___ void cooperative kernel(...)
  // obtain default "current thread block" group
  thread group my block = this thread block();
  // subdivide into 32-thread, tiled subgroups
  // Tiled subgroups evenly partition a parent group into
  // adjacent sets of threads - in this case each one warp in size
  thread group my tile = tiled partition (my block, 32);
  // This operation will be performed by only the
  // first 32-thread tile of each block
  if (my block.thread rank() < 32) {
      my tile.sync();
```


Figure 2: Two phases of a particle simulation, with numbered arrows representing the mapping of parallel threads to particles. Note that after integration and construction of the regular grid data structure, the ordering of particles in memory and mapping to threads changes, necessitating a synchronization between phases.

Old Implementation

// threads update particles in parallel
integrate<<<blocks, threads, 0, s>>>(particles);

// Note: implicit sync between kernel launches

// Collide each particle with others in neighborhood
collide<<<blocks, threads, 0, s>>>(particles);

New Implementation

__global___void particleSim(Particle *p, int N) {

```
grid_group g = this_grid();
// phase 1
for (i = g.thread_rank(); i < N; i += g.size())
    integrate(p[i]);</pre>
```

g.sync() // Sync whole grid

}

```
// phase 2
for (i = g.thread_rank(); i < N; i += g.size())
    collide(p[i], p, N);</pre>
```

CUDA 10.0

By Pramod Ramarao NVIDIA

New Features

- Support for Turing
- CUDA graphs
- New asynchronous task-graph programming model
- New profiler and debugger

New Turing Warp Matrix Functions

	Input Precision	Output	Supported Sizes	Max Ops/Clock/SM
Native Types	half	half or float	16 x 16 x 16	1024
	char	integer (int32)	32 x 8 x 16 8 x 32 x 16	2048
	unsigned char			
Experimental	precision::u4 (4-bit unsigned)	integer (int32)	8 x 8 x 32	4096
	precision::s4 (4-bit signed)			
	precision::b1 (1-bit)		8 x 8 x 128	16384

CUDA graphs

// Define graph of work + dependencies

```
cudaGraphCreate(&graph);
CudaGraphAddNode(graph, kernel_a, {}, ...);
CudaGraphAddNode(graph, kernel_b, { kernel_a }, ...);
CudaGraphAddNode(graph, kernel_c, { kernel_a }, ...);
CudaGraphAddNode(graph, kernel d, { kernel b, kernel c }, ...);
```

// Instantiate graph and apply optimizations

cudaGraphInstantiate(&instance, graph);

// Launch executable graph 100 times

```
for(int i=0; i<100; i++)
    cudaGraphLaunch(instance, stream);</pre>
```

