
CS 677: Parallel Programming for

Many-core Processors

Lecture 13

Instructor: Philippos Mordohai

Webpage: mordohai.github.io

E-mail: Philippos.Mordohai@stevens.edu

1

mailto:Philippos.Mordohai@stevens.edu

Outline

• Deep learning

• Hardware Developments

• Developments in CUDA

2

Deep Learning

3© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Machine Learning

• A way of building software from input-output
pairs
– Use labeled data – data that come with the input values and their

desired output values – to learn what the logic should be

– Capture each labeled data item by adjusting the program logic

• Training Phase
– The system learns the logic for the application from labeled data.

• Deployment (inference) Phase
– The system applies the learned program logic on new data

View deep neural network as function approximators

4© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Recent Explosion of Deep Learning

Applications

• GPU computing hardware and programming interfaces

such as CUDA has enabled very fast research cycle of

deep neural net training

• Computer Vision, Speech Recognition, Document

Translation, Self Driving Cars, …

• Using big labeled data to train and specialize DNN

based classifiers

5© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Background: Combinations Logic

Specification – Truth Table

6

Input
outputa b c

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

a’ a b’ b c’ c

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Different modalities of Real-world Data

Image Vision features Detection

Images/vide

o

Audio Audio features Speaker ID

Audio

Text

Text Text features

Text classification,

machine

translation,

information

retrieval,
Slide courtesy of Andrew Ng, Stanford

University
7

What if we did not know the truth

table?

• Look at enough observation data to
construct the rule
000 → 0

011 → 0

100 → 1

110 → 0

• If we have enough observational data to
cover all input patterns, we can construct
the truth table and derive the logic

8© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

SYNAPTIC
WEIGHTS

[Cybenko, 1989; etc.]

Multilayer Perceptron Synaptic Weights
Universal for function approximation

SYNAPTIC
WEIGHTS

9

9

LeNet-5, a convolutional neural

network for hand-written digit

recognition

10

This is a 1024*8-bit input, which will have a truth

table of 2 8196 entries

Forward Propagation Path of a

Convolution Layer

• All input feature maps contribute to all output

feature maps. One convolution mask is

provided for each input-output combination.
11

Convolutional
Layer

Weights
W

Input
Features

X Output
Features

Y

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Example of the Forward Path of a

Convolution Layer

12

7 5

1*1+ 1*2 +
2*1 + 2*1

1*0+ 1*2 +
1*0 + 1*3

2

1*0+ 1*2 +
1*0 + 1*3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Sequential Code for the Forward Path of a

Convolution Layer

13

void convLayer_forward(int M, int C, int H, int W, int K, float* X, float* W, float* Y)
{

int m, c, h, w, p, q;
int H_out = H – K + 1;
int W_out = W – K + 1;

for(int m = 0; m < M; m++) // for each output feature map
for(int h = 0; h < H_out; h++) // for each output element

for(int w = 0; w < W_out; w++) {
Y[m, h, w] = 0;
for(int c = 0; c < C; c++) // sum over all input feature maps

for(int p = 0; p < K; p++) // KxK filter
for(int q = 0; q < K; q++)

Y[m, h, w] += X[c, h + p, w + q] * W[m, c, p, q];
}

}
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Sequential code for the Forward Path of a

Sub-sampling Layer

14

void poolingLayer_forward(int M, int H, int W, int K, float* Y, float* S)
{

for(int m = 0; m < M; m++) // for each output feature maps
for(int h = 0; h < H/K; h++) // for each output element
for(int w = 0; w < W/K; w++) {
S[m, x, y] = 0.;
for(int p = 0; p < K; p++) { // loop over KxK input samples

for(int q = 0; q < K; q++)
S[m, h, w] += Y[m, K*h + p, K*w + q] /(K*K);

}
// add bias and apply non-linear activation
S[m, h, w] = sigmoid(S[m, h, w] + b[m])

}
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

A Small Convolution Layer Example

Generating Y[0,0,1]
1 2 0 1

1 1 3 2

0 2 2 0

2 1 0 3

1 1 1

2 2 3

2 1 0

0 2 1 0

0 3 2 1

1 1 0 2

2 1 0 3

1 2 3

1 1 0

3 0 1

1 2 1 0

0 1 3 2

3 3 2 0

1 3 2 0

0 1 1

1 0 2

1 2 1

X[0,_, _]

X[1,_, _]

X[2,_, _]

0 ?

? ?
Y[0,_, _]

W[0,0,_, _]

W[0,1,_, _]

W[0,2,_, _]

15© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

A Small Convolution Layer Example

Generating Y[0,0,0], c=0
1 2 0 1

1 1 3 2

0 2 2 0

2 1 0 3

1 1 1

2 2 3

2 1 0

0 2 1 0

0 3 2 1

1 1 0 2

2 1 0 3

1 2 3

1 1 0

3 0 1

1 2 1 0

0 1 3 2

3 3 2 0

1 3 2 0

0 1 1

1 0 2

1 2 1

X[0,_, _]

X[1,_, _]

X[2,_, _]

18 ?

? ?

Y[0,_, _]

W[0,0,_, _]

W[0,1,_, _]

W[0,2,_, _]

3+13+2

16© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

A Small Convolution Layer Example

Generating Y[0,0,0], c=1
1 2 0 1

1 1 3 2

0 2 2 0

2 1 0 3

1 1 1

2 2 3

2 1 0

0 2 1 0

0 3 2 1

1 1 0 2

2 1 0 3

1 2 3

1 1 0

3 0 1

1 2 1 0

0 1 3 2

3 3 2 0

1 3 2 0

0 1 1

1 0 2

1 2 1

X[0,_, _]

X[1,_, _]

X[2,_, _]

31 ?

? ?

Y[0,_, _]

W[0,0,_, _]

W[0,1,_, _]

W[0,2,_, _]

7+3+3

17© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

A Small Convolution Layer Example

Generating Y[0,0,0], c=2
1 2 0 1

1 1 3 2

0 2 2 0

2 1 0 3

1 1 1

2 2 3

2 1 0

0 2 1 0

0 3 2 1

1 1 0 2

2 1 0 3

1 2 3

1 1 0

3 0 1

1 2 1 0

0 1 3 2

3 3 2 0

1 3 2 0

0 1 1

1 0 2

1 2 1

X[0,_, _]

X[1,_, _]

X[2,_, _]

51 ?

? ?

Y[0,_, _]

W[0,0,_, _]

W[0,1,_, _]

W[0,2,_, _]

3+6+11

18© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Parallelism in a Convolution Layer

• All output feature maps can be calculated in
parallel
– A small number in general, not sufficient to fully utilize a

GPU

• All output feature map pixels can be calculated in
parallel
– All rows can be done in parallel

– All pixels in each row can be done in parallel

– Large number but diminishes as we go into deeper
layers

• All input feature maps can be processed in
parallel, but will need atomic operation or tree
reduction

19© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Design of a Basic Kernel

• Each block computes a tile of output pixels

– TILE_WIDTH pixels in each dimension

• The first (x) dimension in the grid maps to

the M output feature maps

• The second (y) dimension in the grid maps

to the tiles in the output feature maps

20© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Host Code for the Basic Kernel

• Defining the grid configuration

– W_out and H_out are the output feature map

width and height
define TILE_WIDTH 16 // We will use 4 for small examples.

W_grid = W_out/TILE_WIDTH; // number of horizontal tiles per output map

H_grid = H_out/TILE_WIDTH; // number of vertical tiles per output map

Y = H_grid * W_grid;

dim3 blockDim(TILE_WIDTH, TILE_WIDTH, 1);

dim3 gridDim(M, Y, 1);

ConvLayerForward_Kernel<<< gridDim, blockDim>>>(…);

21© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

A Small Example

• Assume that we will produce 4 output feature
maps
– Each output feature map is 8x8 image

– We have 4 blocks in the x dimension

• If we use tiles of 4 pixels on each side
(TILE_SIZE = 4)
– We have 4 blocks in the x dimension

• Top two blocks in each column calculate the top row of tiles
in the corresponding output feature map

• Bottom two blocks in each column calculate the bottom row
of tiles in the corresponding output feature map

22© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

A Basic Conv. Layer Forward Kernel

__global__ void ConvLayerForward_Basic_Kernel(int C, int W_grid, int K,
float* X, float* W, float* Y)

{
int m = blockIdx.x;
int h = blockIdx.y / W_grid + threadIdx.y;
int w = blockIdx.y % W_grid + threadIdx.x;
float acc = 0.;
for (int c = 0; c < C; c++) { // sum over all input channels

for (int p = 0; p < K; p++) // loop over KxK filter
for (int q = 0; q < K; q++)

acc += X[c, h + p, w + q] * W[m, c, p, q];
}
Y[m, h, w] = acc;

}

23© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Some Observations

• The amount of parallelism is quite high as

long as the total number of pixels across

all output feature maps is large

– This matches the CNN architecture well

• Each input tile is loaded multiple times,

once for each block that calculates the

output tile that requires it

– Not very efficient in global memory bandwidth

24© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Implementing a convolution layer with

matrix multiplication

25

14 20
15 24

12 24
17 26

1 1
2 2

1 1
1 1

0 1
1 0

1 0
0 1

2 1
2 1

1 2
2 0

1 2 0
1 1 3
0 2 2

0 2 1
0 3 2
1 1 0

1 2 1
0 1 3
3 3 2

Output
Features

Y

Input
Features

X

Convolution
Filtetrs

W

Convolution
Filtetrs
W’

2
0
1
3

2
1
3
2

2
1
1
3

1
2
1
1

0
2
0
3

1
2
0
1

1
1
0
2

0
3
1
1

1
0
3
3

1
3
2
2

3
2
1
0

1
3
3
2

Input
Features

X_unrolled

1 1 2 2 1 1 1 1 0 1 1 0

1 0 0 1 2 1 2 1 1 2 2 0 * =
14 20 15 24

12 24 17 26

Output
Features

Y

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Simple Matrix Multiplication

1 1 2 2 1 1 1 1 0 1 1 0

1 0 0 1 2 1 2 1 1 2 2 0

1 2 1 1

2 0 1 3

1 1 0 2

1 3 2 2

0 2 0 3

2 1 3 2

0 3 1 1

3 2 1 0

1 2 1 1

2 1 0 3

0 1 3 3

1 3 3 2

In
p
u

t featu
re m

ap
s

0

1

2

Convolution Filters

0

1

Each product matrix element is an output

feature map pixel.

This inner product generates element 0 of

output feature map 0.

1
4

2
0

1
5

2
4

1
2

2
4

1
7

2
6

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Tiled Matrix Multiplication
2x2 example

1 1 2 2 1 1 1 1 0 1 1 0

1 0 0 1 2 1 2 1 1 2 2 0

1 2 1 1

2 0 1 3

1 1 0 2

1 3 2 2

0 2 0 3

2 1 3 2

0 3 1 1

3 2 1 0

1 2 1 1

2 1 0 3

0 1 3 3

1 3 3 2

In
p
u

t featu
re m

ap
s

0

1

2

Convolution Filters

0

1

Each block calculates one output tile – 2

elements from each output map

Each input element is reused 2 times in the

shared memory

1
4

2
0

1
5

2
4

1
2

2
4

1
7

2
6

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Tiled Matrix Multiplication
2x4 example

1 1 2 2 1 1 1 1 0 1 1 0

1 0 0 1 2 1 2 1 1 2 2 0

1 2 1 1

2 0 1 3

1 1 0 2

1 3 2 2

0 2 0 3

2 1 3 2

0 3 1 1

3 2 1 0

1 2 1 1

2 1 0 3

0 1 3 3

1 3 3 2

In
p
u

t featu
re m

ap
s

0

1

2

Convolution Filters

0

1

Each block calculates one output tile – 4

elements from each output map

Each input element is reused 2 times in the

shared memory

1
4

2
0

1
5

2
4

1
2

2
4

1
7

2
6

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Analysis of Efficiency
Total Input Replication

• Each output map requires its replicated input
feature map elements
– Not replicated for different output feature maps

– There are H_out * W_out output feature map
elements

– Each requires K*K replicated input feature map
elements

– So, the total number of input element after replication
is H_out*W_out*K*K times for each input feature map

– The total number of elements in each original input
feature map is (H_out+K-1) * (W_out+K-1)

29© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Analysis of Small Example

• H_out = 2

• W_out = 2

• K = 2

• There are 3 input maps
(channels)

• The total number of input
elements in the replicated
(“unrolled”) input matrix is
3*2*2*2*2

• The replicating factor is

• (3*2*2*2*2)/(3*3*3) = 1.78

14 20
15 24

12 24
17 26

1 1
2 2

1 1
1 1

0 1
1 0

1 0
0 1

2 1
2 1

1 2
2 0

1 2 0
1 1 3
0 2 2

0 2 1
0 3 2
1 1 0

1 2 1
0 1 3
3 3 2

Output
Features

Y

Input
Features

X

Convolution
Filtetrs

W

Convolution
Filtetrs
W’

2
0
1
3

2
1
3
2

2
1
1
3

1
2
1
1

0
2
0
3

1
2
0
1

1
1
0
2

0
3
1
1

1
0
3
3

1
3
2
2

3
2
1
0

1
3
3
2

Input
Features

X_unrolled

1 1 2 2 1 1 1 1 0 1 1 0

1 0 0 1 2 1 2 1 1 2 2 0 * =
14 20 15 24

12 24 17 26

Output
Features

Y

30© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Memory Access Efficiency of Original

Convolution Algorithm

• Assume that we use tiled 2D convolution

• For input elements
– Each output tile has TILE_WIDTH2 elements

– Each input tile has (TILE_WIDTH+K-1)2

– The total number of input feature map element accesses is

TILE_WIDTH2*K2

– The reduction factor of the tiled algorithm is

K2*TILE_WIDTH2/(TILE_WIDTH+K-1)2

• The convolution filter weight elements are reused within

each output tile

31© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Efficiency of Tiled Matrix Multiplication

• Assuming we use TILE_WIDTH2 input and

output tiles

– Each replicated input feature map element is reused

TILE_WIDTH times

– Each convolution filter weight element is reused

TILE_WIDTH times

– Matrix multiplication is better if TILE_WIDTH is larger

than K2*TILE_WIDTH2/(TILE_WIDTH+K-1)2

32© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Problem with the Later Stages

• The size (H_out, W_out) of each output

feature map decreases as we go to the

later stages of the CNN

– The TILE_WIDTH may be limited to very

small sizes relative to K

– The benefit of 2D tiling will diminish as we go

down the pipeline

– This is an intrinsic problem for 2D tiled

convolution

33© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Mini-Batching

• One can use mini-batching to further

increase the amount of work done in each

kernel launch

– Collect several sets of input feature maps of

an input sequence

– Use a larger unrolled input feature matrix that

has all the inputs from the mini-batch

34© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Other Optimizations

• Use streams to overlap the reading of the
next set of input feature maps with the
processing of the previous input feature
maps.

• Create unrolled matrix elements on the fly,
only when they are loaded into shared
memory

• Use more advanced algorithms such as
FFT to implement convolution

35© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Gradient Back-Propagation
• Training of ConvNets is based on a procedure called back-

propagation.

• The training data set is labeled with the “correct answer.”

• For each training image, the final stage of the network

calculates the loss function or the error as the difference

between the generated output vector element values and the

“correct” output vector element values.

• Given a sequence of training images, we can numerically

calculate the gradient of the loss function with respect to the

output vector. Intuitively, it gives the rate at which the error

changes when the value of the output vector changes – dE/dY

36© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Gradient Back Propagation (Cont.)

• The process propagates the gradient from

the last layer towards the first layer

through all layers of network.

• Each layer receives as dE/dY – gradient

with respect to its output feature maps and

computes dE/dX – gradient with respect to

its input feature maps

37© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Convolution Layer – Back

Propagation of dE/DY

38© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Adjusting Weights

• After the dE/dW values at all feature map

element positions are computed, weights

are updated:

• For each weight value

w(t+1) = w(t) – λ/ dE/dw,

where λ is the learning rate.

39© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016
ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign

Other layer types

• Fully-connected

• Pooling/downsampling

• Upsampling

• Activation

The same operation is applied on all inputs,

with same or different parameters (weights)

40

The Fermi Architecture

Selected notes from

presentation by:

Michael C. Shebanow
Principal Research Scientist,

NV Research

mshebanow@nvidia.com

(2010)
41

Much Better Compute
• Programmability

– C++ Support

– Exceptions/Debug support

• Performance
– Dual issue SMs

– L1 cache

– Larger Shared Memory

– Much better DP math

– Much better atomic support

• Reliability: ECC

GT200 GF100 Benefit

L1 Texture

Cache (per

quad)

12 KB 12 KB Fast texture

filtering

Dedicated

L1 LD/ST

Cache

X 16 or 48 KB Efficient

physics and

ray tracing

Total

Shared

Memory

16KB 16 or 48 KB More data reuse

among threads

L2 Cache 256KB

(TEX read

only)

768 KB

(all clients

read/write)

Greater texture

coverage,

robust compute

performance

Double

Precision

Throughput

30

FMAs/clock

256

FMAs/clock

Much higher

throughputs for

Scientific codes

42

Instruction Set Architecture

• Enables C++ : virtual functions,

new/delete, try/catch

• Unified load/store addressing

• 64-bit addressing for large

problems

• Optimized for CUDA C, OpenCL

& Direct Compute

– Direct Compute is Microsoft’s

general-purpose computing on GPU

API

• Enables system call functionality

– stdio.h, etc.

43

Local

Shared

Global

GlobalLocal Shared

Non-unified Address Space

Unified Address Space

0 32-bit

0 40-bit

*p_local

*p_shared

*p_global

*p

Unified Load/Store Addressing

44

Instruction Issue and Control Flow

• Decouple internal execution resources

– Deliver peak IPC on branchy / int-heavy / LD-ST - heavy codes

• Dual issue pipelines select two warps to issue

Instruction Dispatch Unit

Warp Scheduler

Warp 8 instruction 11 Warp 9 instruction 11

Warp 2 instruction 42 Warp 3 instruction 33

Warp 14 instruction 95 Warp 15 instruction 95

Instruction Dispatch Unit

Warp Scheduler

Warp 8 instruction 12 Warp 9 instruction 12

Warp 14 instruction 96 Warp 3 instruction 34

Warp 2 instruction 43 Warp 15 instruction 96

ti
m

e

45

Caches

• Configurable L1 cache per SM

– 16KB L1$ / 48KB Shared
Memory

– 48KB L1$ / 16KB Shared
Memory

• Shared 768KB L2 cache

• Compute motivation:

– Caching captures locality,
amplifies bandwidth

– Caching more effective than
Shared Memory for irregular or
unpredictable access

• Ray tracing, sparse matrix
multiplication, physics kernels …

– Caching helps latency sensitive
cases

Register File

DRAM

Thread

Register File

DRAM

Thread

L1 Cache / Shared Memory

L2 Cache

Tesla Memory Hiearchy

S
h

a
re

d

M
e

m
o

ry

Fermi Memory Hiearchy

46

GigaThread Hardware Thread Scheduler

• Hierarchically manages tens of

thousands of simultaneously

active threads

• 10x faster

context

switching

on Fermi

• Concurrent

kernel execution

47

GigaThread Streaming Data Transfer Engine

• Dual DMA engines

• Simultaneous CPU→GPU

and GPU→CPU data

transfer

• Fully overlapped with

CPU/GPU processing

48

Fermi runs independent kernels in parallel

Concurrent Kernel Execution + Faster Context Switch

Serial Kernel Execution Parallel Kernel Execution

T
im

e

Kernel

1

Kernel

1

Kernel 2

Kernel 2 Kernel 3

Kernel 3

K

er

4
ne

l
Kernel 5

Kernel 5

Kernel

4

Kernel 2

Kernel 2

Inside Kepler
Manuel Ujaldon

Nvidia CUDA Fellow

Computer Architecture Department

University of Malaga (Spain)

Modified by P. Mordohai

50

Summary of Features

• Released in 2012

• Architecture: Between 7 and 15 multiprocessors
SMX, endowed with 192 cores each.

• Arithmetic: More than 1 TeraFLOP in double
precision (64 bits IEEE-754 floating-point format).

– Specific values depend on the clock frequency for
each model (usually, more on GeForces, less on
Teslas).

• Major innovations in core design:

– Dynamic parallelism

– Thread scheduling (Hyper-Q)

51

How the Architecture Scales Up

52

Fermi

53

Kepler GK110

54

From SM to SMX in Kepler

55

Differences in Memory Hierarchy

56

New Data Cache

• Additional 48 Kbytes to expand L1 cache size

• Avoids the texture unit

• Allows a global address to be fetched and
cached, using a pipeline different from that of
L1/shared

• Flexible (does not require aligned accesses)

• Eliminates texture setup

• Managed automatically by compiler ("const__
restrict“ indicates eligibility). Next slide shows
an example.

57

How to use Data Cache

• Annotate eligible kernel parameters with "const __restrict"

• Compiler will automatically map loads to use read-only data cache
path.

__global__ void saxpy(float x, float y,

const float * __restrict input,

float * output)

{

size_t offset = threadIdx.x +

(blockIdx.x * blockDim.x);

// Compiler will automatically use cache for "input"

output[offset] = (input[offset] * x) + y;

}

58

GPUDirect now supports RDMA

[Remote Direct Memory Access]

• This allows direct transfers between GPUs and network

devices, for reducing the penalty on the extraordinary

bandwidth of GDDR5 video memory

59

Relaxing Software Constraints for

Massive Parallelism

60

Major Hardware Enhancements

• Large scale computations

• New architectural features

61

Dynamic Parallelism

• The ability to launch new grids from the GPU:

– Dynamically: Based on run-time data

– Simultaneously: From multiple threads at once

– Independently: Each thread can launch a different grid

62

Dynamic Parallelism

63

Workload Balance

• Plenty of factors, unpredictable at run time, may

transform workload balancing among

multiprocessors into an impossible goal

• See below the duration of 8 warps on an SM of

the G80:

64

Hyper-Q
• In Fermi, several CPU processes can send thread blocks

to the same GPU, but a kernel cannot start its execution

until the previous one has finished

• In Kepler, we can execute simultaneously up to 32

kernels launched from different:

– MPI processes, CPU threads (POSIX threads) or CUDA streams

• This increments the % of temporal occupancy on the

GPU

65

Without Hyper-Q

66

With Hyper-Q

67

Six Ways to Improve Code on Kepler

68

Dynamic Work Generation

69

Parallelism based on Level of Detail

70

Grid Management Unit

71

Software and Hardware Queues

72

Software and Hardware Queues

73

Instruction Issue and Execution

74

Data-Dependent Parallelism
• The simplest possible parallel program:

– Loops are parallelizable

– Workload is known at compile-time
for i = 1 to N

for j = 1 to M

convolution(i,j);

• The simplest impossible program:
– Workload is unknown at compile-time.

– The challenge is data partitioning
for i = 1 to N

for j = 1 to x[i]

convolution(i,j);

75

Data-Dependent Parallelism

• Kepler version:

__global__ void convolution(int x[])

{

for j = 1 to x[blockIdx]

// Each block launches x[blockIdx]
// kernels from GPU

kernel <<< ... >>> (blockIdx, j)

}

// Launch N blocks of 1 thread

// on GPU (rows start in parallel)

convolution <<< N, 1 >>> (x);

• Up to 24 nested loops supported in CUDA 5.0

76

Recursive Parallel Algorithms prior

to Kepler

• Early CUDA programming model did not
support recursion at all

• CUDA started to support recursive functions
in version 3.1, but they can easily crash if the
size of the arguments is large

• A user-defined stack in global memory can be
employed instead, but at the cost of a
significant performance penalty

• An efficient solution is possible using
dynamic parallelism

77

Parallel Recursion: Quicksort
• Typical divide-and-conquer algorithm, hard to do

on Fermi

78

Quicksort

79

Quicksort

80

Quicksort with Dynamic Parallelism

81

Quicksort Results

82

brownsbrowns

Maxwell
(2nd generation)

Released in 2014

Material by Mark Harris (NVIDIA)
and others

83

Energy Efficiency

Performance per Watt

GTX 680: Kepler GTX 980: Maxwell
84

New Features

85

New Features

• Improved instruction scheduling

– Four warp schedulers per SMM (Maxwell
SM), no shared core functional units

• Increased occupancy

– Maximum active blocks per SMM has doubled

• Larger dedicated shared memory

– L1 is now with texture cache

• Faster shared memory atomics

• Broader support for dynamic parallelism

86

Graphics

87

Pascal

Released in 2016

88

Key New Features

• Smaller manufacturing process

– 16 nm vs. 28 nm of previous generations

• Much faster memory

• Higher clock frequency

– 1607 MHz vs. 1216 MHz

• Dynamic load balancing including graphics

pipeline

• Page Migration Engine

89

Volta

Released in 2017

90

Key New Features

• Up to 640 Tensor Cores for deep learning

– Multiply and add floating point matrices (64
operations per clock)

– Over 125 TFLOPS (5x more than Pascal)

• Next generation NVLink doubles
bandwidth (up to 300 GB/s)

• 84 SMs

• Simultaneous execution of FP32 and
INT32 operations

91

92

Turing

Released in 2018

93

Key New Features

• CUDA, Ray-tracing and Tensor cores
– 14.2 TFLOPS of FP32 performance, 113.8

Tensor TFLOPS and 10 Giga Rays/sec

• Up to 24 GB of RAM in Titan RTX and up to
48 GB in Quadro RTX 8000

• Independent integer and floating-point
datapaths and unified shared memory,
texture caching and memory load caching
lead to 50% performance improvement per
core

94

Turing Tensor Cores

95

Memory Compression

• Several lossless memory compression

techniques to reduce bandwidth demands

• Improvements over Pascal

96

Reflections Demo

97

NVIDIA DGX-1

98

99

100

NVIDIA DGX-2

101

102

NVIDIA DGX STATION

103

104

AMD RX Vega

• 8 GB high bandwidth memory (HBM2)

– 14 nm production process

• 4096 cores

• 12.7 TFLOPS

– Compared to 11 TFLOPS of NVIDIA GTX

Titan X and 15.7 TFLOPS of NVIDIA GV100

(Volta)

105

AMD RADEON VII

• 16 GB high bandwidth memory (HBM2)

– 7 nm production process

• 3840 cores

• 13.2 billion transistors

• 13.8 TFLOPS

106

CUDA 4.0

107

108

CUDA 4.0 Release

• March 2011

• Independent software release

• Unlike:

– CUDA 1.0 released with G80/G9x in 2007

(nearly a year later than the hardware)

– CUDA 2.0 released for GT200 in 2008

– CUDA 3.0 released for Fermi in 2009

109

CUDA 4.0 – Application Porting

• Unified Virtual Addressing

• Faster Multi-GPU Programming

– NVIDIA GPUDirect 2.0

• Easier Parallel Programming in C++

– Thrust

110

Easier Porting of Existing Applications

Share GPUs across multiple
threads

• Easier porting of multi-
threaded apps
– pthreads / OpenMP threads

share a GPU

• Launch concurrent kernels
from different host threads
– Eliminates context switching

overhead

• New, simple context
management APIs
– Old context migration APIs

still supported

Single thread access to all
GPUs

• Each host thread can now
access all GPUs in the
system
– One thread per GPU

limitation removed

• Easier than ever for
applications to take
advantage of multi-GPU
– Single-threaded applications

can now benefit from
multiple GPUs

– Easily coordinate work
across multiple GPUs

111

New CUDA C/C++ Language Features

• C++ new/delete

– Dynamic memory management

• C++ virtual functions

– Easier porting of existing applications

• Inline PTX

– Enables assembly-level optimization

112

GPU-Accelerated Image Processing

• NVIDIA Performance Primitives (NPP) library
– 10x to 36x faster image processing

– Initial focus on imaging and video related
primitives
• Data exchange and initialization

• Color conversion

• Threshold and compare operations

• Statistics

• Filter functions

• Geometry transforms

• Arithmetic and logical operations

• JPEG

113

NVIDIA GPUDirect:Towards

Eliminating the CPU Bottleneck

114

Before GPUDirect 2.0

Two copies required

115

GPUDirect 2.0: Peer-to-Peer

Communication
Only one copy required

116

GPUDirect 2.0: Peer-to-Peer

Communication

• Direct communication between GPUs

– Faster - no system memory copy overhead

– More convenient multi-GPU programming

• Direct Transfers

– Copy from GPU0 memory to GPU1 memory

– Works transparently with UVA

• Direct Access

– GPU0 reads or writes GPU1 memory
(load/store)

117

Unified Virtual Addressing

• No UVA: Multiple

Memory Spaces

• UVA: Single Address

Space

118

Unified Virtual Addressing

• One address space for all CPU and GPU memory

– Determine physical memory location from pointer
value

– Enables libraries to simplify their interfaces (e.g.
cudaMemcpy)

• Supported on Tesla 20-series and other Fermi
GPUs

119

New Developer Tools

• Auto Performance Analysis: Visual Profiler

– Identify limiting factor

– Analyze instruction throughput

– Analyze memory throughput

– Analyze kernel occupancy

• C++ Debugging

– cuda-gdb for MacOS

• GPU Binary Disassembler

120

CUDA 5.0

Mark Harris

Chief Technologist, GPU

Computing

121

Open Source LLVM Compiler

• Provides ability for anyone to add CUDA to new

languages and processors

122

NVIDIA Nsight, Eclipse Edition

123

For Linux and Mac OS

CUDA 4: Whole-Program

Compilation & Linking

124

CUDA 5: GPU Library Object

Linking
• Separate compilation allows building independent

object files

• CUDA 5 can link multiple object files into one
program

• Can also combine object files into static libraries
– Link and externally call device code

125

CUDA 5: GPU Library Object

Linking

• Enables 3rd party

closed-source

device libraries

• User-defined device

callback functions

126

CUDA 5.0: Run-time Syntax and

Semantics

127

CUDA 6.0

Manuel Ujaldon

Nvidia CUDA Fellow

Computer Architecture

Department

University of Malaga (Spain)

128

CUDA 6 Highlights

• Unified Memory:
– CPU and GPU can share data without much programming

effort

• Extended Library Interface (XT) and Drop-in Libraries:
– Libraries much easier to use

• GPUDirect RDMA:
– A key achievement in multi-GPU environments

• Developer tools:
– Visual Profiler enhanced with:

• Side-by-side source and disassembly view showing.

• New analysis passes (per SM activity level), generates a kernel
analysis report.

• Multi-Process Server (MPS) support in nvprof and cuda-
memcheck

• Nsight Eclipse Edition supports remote development (x86
and ARM)

129

CUDA 6.0: Performance

Improvements in Key Use Cases

• Kernel launch

• Repeated launch of the same set of

kernels

• cudaDeviceSynchronize()

• Back-to-back grids in a stream

130

Unified Memory

131

Unified Memory Contributions

• Creates pool of managed memory between
CPU and GPU

• Simpler programming and memory model:
– Single pointer to data, accessible anywhere

– Eliminate need for cudaMemcpy(), use
cudaMallocManaged()

– No need for deep copies

• Performance through data locality:
– Migrate data to accessing processor

– Guarantee global coherency

– Still allows cudaMemcpyAsync() hand tuning

132

Memory Types

133

Additions to the CUDA API

• New call: cudaMallocManaged()
– Drop-in replacement for cudaMalloc() allocates

managed memory

– Returns pointer accessible from both Host and
Device

• New call: cudaStreamAttachMemAsync()
– Manages concurrency in multi-threaded CPU

applications

• New keyword: __managed__
– Declares global-scope migratable device variable

– Symbol accessible from both GPU and CPU code

134

Code without Unified Memory

135

Code with Unified Memory

• What remains the same:
– Data movement

– GPU accesses a local
copy of text

• What has changed:
– Programmer sees a

single pointer

– CPU and GPU both
reference the same object

– There is coherence

136

CUDA 7.0

By Mark Harris
NVIDIA

137

New Features: C++11

• C++11 features on device including:

– auto,

– lambda,

– variadic templates,

– rvalue references,

– range-based for loops

138

Example
#include <initializer_list>

#include <iostream>

#include <cstring>

// Generic parallel find routine. Threads search through the

// array in parallel. A thread returns the index of the

// first value it finds that satisfies predicate `p`, or -1.

template <typename T, typename Predicate>

__device__ int find(T *data, int n, Predicate p)

{

for (int i = blockIdx.x * blockDim.x + threadIdx.x;

i < n;

i += blockDim.x * gridDim.x)

{

if (p(data[i])) return i;

}

return -1;

}
139

// Use find with a lambda function that searches for x, y, z

// or w. Note the use of range-based for loop and

// initializer_list inside the functor, and auto means we

// don't have to know the type of the lambda or the array

__global__

void xyzw_frequency(unsigned int *count, char *data, int n)

{

auto match_xyzw = [](char c) {

const char letters[] = { 'x','y','z','w' };

for (const auto x : letters)

if (c == x) return true;

return false;

};

int i = find(data, n, match_xyzw);

if (i >= 0) atomicAdd(count, 1);

}

140

int main(void)

{

char text[] = "zebra xylophone wax";

char *d_text;

cudaMalloc(&d_text, sizeof(text));

cudaMemcpy(d_text, text, sizeof(text),cudaMemcpyHostToDevice);

unsigned int *d_count;

cudaMalloc(&d_count, sizeof(unsigned int));

cudaMemset(d_count, 0, sizeof(unsigned int));

xyzw_frequency<<<1, 64>>>(d_count, d_text, strlen(text));

unsigned int count;

cudaMemcpy(&count, d_count, sizeof(unsigned int), cudaMemcpyDeviceToHost);

std::cout << count << " instances of 'x', 'y', 'z', 'w'"

<< "in " << text << std::endl;

cudaFree(d_count);

cudaFree(d_text);

return 0;

} 141

Other Features

• Thrust version 1.8

– Thrust algorithms can now be invoked from
the device

• cuSOLVER, cuFFT

– cuSolver library is a high-level package based
on the cuBLAS and cuSPARSE libraries

• Runtime compilation

– No need to generate multiple optimized
kernels at compile time

142

CUDA 8.0

By Milind Kukanur
NVIDIA

143

What’s New

144

Unified Memory

• Oversubscribe GPU memory, up to system

memory size

void foo() {

// Allocate 64 GB

char *data;

size_t size = 64*1024*1024*1024;

cudaMallocManaged(&data, size);

}

145

Unified Memory

__global__ void mykernel(char *data) {

data[1] = ‘g’;

}

void foo() {

char *data;

cudaMallocManaged(&data, 2);

mykernel<<<...>>>(data);

// no synchronize here

data[0] = ‘c’;

cudaFree(data);

}

146

CUDA 9.0

By Mark Harris
NVIDIA

147

New Features

• Support for Volta

• Cooperative groups

• Tensor Core API

• New Visual Profiler

• Support for C++ 14

148

Cooperative Groups
Ability to define groups of threads explicitly at sub-block and multiblock
granularities

__global__ void cooperative_kernel(...)

{

// obtain default "current thread block" group

thread_group my_block = this_thread_block();

// subdivide into 32-thread, tiled subgroups

// Tiled subgroups evenly partition a parent group into

// adjacent sets of threads - in this case each one warp in size

thread_group my_tile = tiled_partition(my_block, 32);

// This operation will be performed by only the

// first 32-thread tile of each block

if (my_block.thread_rank() < 32) {

…

my_tile.sync();

}

}

149

Cooperative Groups – Particle Simulation

150

Old Implementation

// threads update particles in parallel

integrate<<<blocks, threads, 0, s>>>(particles);

// Note: implicit sync between kernel launches

// Collide each particle with others in neighborhood

collide<<<blocks, threads, 0, s>>>(particles);

151

New Implementation

__global__ void particleSim(Particle *p, int N) {

grid_group g = this_grid();

// phase 1

for (i = g.thread_rank(); i < N; i += g.size())

integrate(p[i]);

g.sync() // Sync whole grid

// phase 2

for (i = g.thread_rank(); i < N; i += g.size())

collide(p[i], p, N);

}

152

CUDA 10.0

By Pramod Ramarao
NVIDIA

153

New Features

• Support for Turing

• CUDA graphs

• New asynchronous task-graph

programming model

• New profiler and debugger

154

New Turing Warp Matrix Functions

155

CUDA graphs

// Define graph of work + dependencies

cudaGraphCreate(&graph);

cudaGraphAddNode(graph, kernel_a, {}, ...);

cudaGraphAddNode(graph, kernel_b, { kernel_a }, ...);

cudaGraphAddNode(graph, kernel_c, { kernel_a }, ...);

cudaGraphAddNode(graph, kernel_d, { kernel_b, kernel_c }, ...);

// Instantiate graph and apply optimizations

cudaGraphInstantiate(&instance, graph);

// Launch executable graph 100 times

for(int i=0; i<100; i++)

cudaGraphLaunch(instance, stream);

156

