
CS 677: Parallel Programming for

Many-core Processors

Lecture 11

Instructor: Philippos Mordohai

Webpage: mordohai.github.io

E-mail: Philippos.Mordohai@stevens.edu

1

mailto:Philippos.Mordohai@stevens.edu

Outline

• Parallel Sorting – continued

• More CUDA Libraries

• OpenGL Interface

• Introduction to OpenCL

2

Parallel Sorting

• We’ll consider in-memory sorting of integer

keys

– Bucket sort (last week)

– Sample sort (last week)

– Compare and Exchange sort

– Bitonic sort

3

Compare and Exchange Sort

• Simplest sort, based on the bubble sort
algorithm

• The fundamental operation is compare-
exchange

• Compare-exchange(a[j] , a[j+1])

– swaps its arguments if they are in decreasing
order

– satisfies the post-condition that a[j] ≤ a[j+1]

– returns FALSE if a swap was made

4
Scott B. Baden, UCSD

Compare and Exchange Sort

5
Scott B. Baden, UCSD

Loop Carried Dependencies

• We cannot parallelize bubble sort owing to

the loop carried dependence in the inner

loop

• The value of a[j] computed in iteration j

depends on the a[i] computed in iterations

0, 1, …, j-1

6
Scott B. Baden, UCSD

Odd/Even Sort

• If we re-order the comparisons, we can

parallelize the algorithm

– label the points as even and odd

– alternate between sorting the odd and even points

• This algorithm parallelizes since there are no

loop carried dependences

• All the odd (even) points are decoupled

7
Scott B. Baden, UCSD

Odd/Even Sorting Code

8
Scott B. Baden, UCSD

Bitonic Sorting

Ricardo Rocha and Fernando Silva

(University of Porto)

9

Bitonic Mergesort

A bitonic sequence is defined as a list with no more than

one LOCAL MAXIMUM and no more than one LOCAL

MINIMUM. (Endpoints must be considered - wraparound)

10

Binary Split
1. Divide the bitonic list into two equal halves.

2. Compare-Exchange each item on the first half with the
corresponding item in the second half.

Result:

Two bitonic sequences where the numbers in one sequence are all less
than the numbers in the other sequence.

11

Repeated Application of Binary Split
Bitonic list:

24 20 15 9 4 2 5 8 | 10 11 12 13 22 30 32 45

Result after Binary-split:

10 11 12 9 4 2 5 8 | 24 20 15 13 22 30 32 45

If you keep applying the BINARY-SPLIT to each half repeatedly, you

will get a SORTED LIST !

10 11 12 9 . 4 2 5 8 | 24 20 15 13 . 22 30 32 45

4 2 . 5 8 10 11 . 12 9 | 22 20 . 15 13 24 30 . 32 45

4 . 2 5 . 8 10 . 9 12 .11 15 . 13 22 . 20 24 . 30 32 . 45

2 4 5 8 9 10 11 12 13 15 20 22 24 30 32 45

Q: How many parallel steps does it take to sort ?

A: log n
12

Sorting a Bitonic Sequence

• Compare-and-exchange moves smaller numbers of each pair to left

and larger numbers of pair to right.

• Given a bitonic sequence, recursively performing ‘binary split’ will

sort the list.

13

Sorting an Arbitrary Sequence

• To sort an unordered sequence, sequences
are merged into larger bitonic sequences,
starting with pairs of adjacent numbers.

• A sequence of length 2 is a bitonic sequence.

• A bitonic sequence of length 4 can be built by
sorting the first two elements using a positive
bitonic merge and the next two using a
negative bitonic merge

14

Sorting an Arbitrary Sequence

• By a compare-and-exchange operation, pairs
of adjacent numbers form increasing
sequences and decreasing sequences. Pairs
form a bitonic sequence of twice the size of
each original sequences.

• By repeating this process, bitonic sequences
of larger and larger lengths obtained.

• In the final step, a single bitonic sequence is
sorted into a single increasing sequence.

15

Bitonic Mergesort

• Whenever two numbers reach the two ends of an arrow, they are compared
to ensure that the arrow points toward the larger number.

• If they are out of order, they are swapped.

Source: Wikipedia
16

17

Python Example
def bitonic_sort(up, x):

if len(x) <= 1:

return x

else:

first = bitonic_sort(True, x[:len(x) // 2])

second = bitonic_sort(False, x[len(x) // 2:])

return bitonic_merge(up, first + second)

def bitonic_merge(up, x):

assume input x is bitonic, and sorted list is returned

if len(x) == 1:

return x

else:

bitonic_compare(up, x)

first = bitonic_merge(up, x[:len(x) // 2])

second = bitonic_merge(up, x[len(x) // 2:])

return first + second

def bitonic_compare(up, x):

dist = len(x) / 2

for i in range(dist):

if (x[i] > x[i + dist]) == up:

x[i], x[i + dist] = x[i + dist], x[i] #swap
18

CUDA

Libraries

Based on slides by
Joseph Kider

(University of
Pennsylvania), adapted
over time

19

CUDA Specialized Libraries:

PyCUDA

• PyCUDA lets you access Nvidia‘s CUDA

parallel computation API from Python

20

PyCUDA

• Third party open source, written by Andreas
Klöckner – now maintained by NVIDIA

• Exposes all of CUDA via Python bindings

• Compiles CUDA on the fly
– CUDA is presented as an interpreted language

• Integrated with numpy

• Handles memory management, resource
allocation

• CUDA programs are Python strings
– Metaprogramming – modify source code on the fly

https://developer.nvidia.com/pycuda

21

PyCUDA - Differences

• Object cleanup tied to lifetime of objects
– Easier to write correct, leak- and crash-free code

– PyCUDA knows about dependencies, too, so it won’t detach
from a context before all memory allocated in it is also freed

• Convenience: Abstractions like
pycuda.driver.SourceModule and
pycuda.gpuarray.GPUArray make CUDA programming
even more convenient than with Nvidia’s C-based
runtime

• Completeness: PyCUDA provides the full power of
CUDA’s driver API

• Automatic Error Checking: All CUDA errors are
automatically translated into Python exceptions

• Speed: PyCUDA’s base layer is written in C++

22

PyCUDA - Example

23

24

CUDA Specialized Libraries:

CUDPP

• CUDPP: CUDA Data Parallel Primitives

Library

– CUDPP is a library of data-parallel algorithm

primitives such as parallel prefix-sum (”scan”),

parallel sort and parallel reduction

http://cudpp.github.io/

25

CUDPP – Design Goals

• CUDPP is implemented as 4 layers:
– The Public Interface is the external library interface, which is the

intended entry point for most applications. The public interface calls into
the Application-Level API.

– The Application-Level API comprises functions callable from CPU code.
These functions execute code jointly on the CPU (host) and the GPU by
calling into the Kernel-Level API below them.

– The Kernel-Level API comprises functions that run entirely on the GPU
across an entire grid of thread blocks. These functions may call into the
CTA-Level API below them.

– The CTA-Level API comprises functions that run entirely on the GPU
within a single Cooperative Thread Array (CTA, aka thread block).
These are low-level functions that implement core data-parallel
algorithms, typically by processing data within shared memory

26

CUDPP + Thrust
• CUDPP's interface is optimized for performance

while Thrust is oriented towards productivity

int main(void)
{
unsigned int numElements = 32768;

// allocate host memory
thrust::host_vector<float> h_idata(numElements);
// initialize the memory
thrust::generate(h_idata.begin(), h_idata.end(),

rand);

27

CUDPP + Thrust
// set up plan
CUDPPConfiguration config;
config.op = CUDPP_ADD;
config.datatype = CUDPP_FLOAT;
config.algorithm = CUDPP_SCAN;
config.options = CUDPP_OPTION_FORWARD | CUDPP_OPTION_EXCLUSIVE;

CUDPPHandle scanplan = 0;
CUDPPResult result = cudppPlan(&scanplan, config, numElements,

1,0);

if(CUDPP_SUCCESS != result)
{
printf("Error creating CUDPPPlan\n");
exit(-1);

}

// Run the scan
cudppScan(scanplan,

thrust::raw_pointer_cast(&d_odata[0]),
thrust::raw_pointer_cast(&d_idata[0]),
numElements);

28

CUDA Specialized Libraries:

CUBLAS

• CUDA accelerated BLAS (Basic Linear Algebra

Subprograms)

https://developer.nvidia.com/cublas

29

CUBLAS

• Complete support for all 152 standard BLAS
routines

• Turing optimized GEMMs and GEMM extensions
for Tensor Cores

• Supports single, double, complex, and double
complex data types

• Supports half-precision (FP16) and integer (INT8)
matrix multiplication operations

• Support for multiple GPUs and concurrent kernels

• Supports CUDA streams for concurrent operations

• Fortran bindings

30

CUDA Specialized Libraries:

CUFFT

• Cuda Based Fast Fourier Transform Library

• The FFT is a divide-and-conquer algorithm for efficiently
computing discrete Fourier transforms of complex or real-
valued data sets

• One of the most important and widely used numerical
algorithms, with applications that include computational
physics and general signal processing

https://developer.nvidia.com/cufft

31

CUFFT

• Computes parallel FFT on the GPU

• Uses “plans” like FFTW*

– A plan contains information about optimal

configuration for a given transform

– Plans can prevent recalculation

– Good fit for CUFFT because different kinds of

FFTs require different thread/block

configurations

32* FFTW is a popular CPU library for FFT

CUFFT

• 1D, 2D and 3D transforms of complex and real-

valued data

• Batched execution for doing multiple 1D

transforms in parallel

• 1D transform size up to 8M elements

• 2D and 3D transform sizes in the range [2,

16384]

• In-place and out-of-place transforms

33

CUDA Specialized Libraries:

CULA

• CULA is EM Photonics' GPU-accelerated numerical linear
algebra library that contains a growing list of LAPACK
functions.

• LAPACK stands for Linear Algebra PACKage. It is an industry
standard computational library that has been in development
for over 15 years and provides a large number of routines for
factorization, decomposition, system solvers, and eigenvalue
problems.

http://www.culatools.com/

34

OpenGL Interface

Utah CS 6235

by Mary Hall

35

OpenGL Rendering

• OpenGL buffer objects can be mapped into the CUDA

address space and then used as global memory

– Vertex buffer objects

– Pixel buffer objects

• Allows direct visualization of data from computation

– No device to host transfer

– Data stays in device memory –very fast compute /

viz cycle

• Data can be accessed from the kernel like any other

global data (in device memory)

36

OpenGL Interoperability

1. Register a buffer object with CUDA

– cudaGLRegisterBufferObject(GLuintbuffObj);

– OpenGL can use a registered buffer only as a source

– Unregister the buffer prior to rendering to it by OpenGL

2. Map the buffer object to CUDA memory

– cudaGLMapBufferObject(void**devPtr, GLuintbuffObj);

– Returns an address in global memory

– Buffer must be registered prior to mapping

37

OpenGL Interoperability

3. Launch a CUDA kernel to process the buffer

— Unmap the buffer object prior to use by OpenGL

– cudaGLUnmapBufferObject(GLuintbuffObj);

4. Unregister the buffer object

– cudaGLUnregisterBufferObject(GLuintbuffObj);

– Optional: needed if the buffer is a render target

5. Use the buffer object in OpenGL code

38

Example from simpleGL in SDK

1. GL calls to create and initialize buffer, then
register with CUDA:

// create buffer object

glGenBuffers(1, vbo);

glBindBuffer(GL_ARRAY_BUFFER, *vbo);

// initialize buffer object

unsigned int size = mesh_width * mesh_height * 4 *

sizeof(float)*2;

glBufferData(GL_ARRAY_BUFFER, size, 0,

GL_DYNAMIC_DRAW);

glBindBuffer(GL_ARRAY_BUFFER, 0);

// register buffer object with CUDA

cudaGLRegisterBufferObject(*vbo);

39

2. Map OpenGL buffer object for writing from CUDA

float4 *dptr;

cudaGLMapBufferObject((void**)&dptr, vbo));

3. Execute the kernel to compute values for dptr

dim3 block(8, 8, 1);

dim3 grid(mesh_width / block.x, mesh_height

/ block.y, 1);

kernel<<< grid, block>>>(dptr, mesh_width,

mesh_height, anim);

4. Unregister the OpenGL buffer object and return to Open

GL

cudaGLUnmapBufferObject(vbo);

Example from simpleGL in SDK

40

OpenCL
Patrick Cozzi

University of Pennsylvania
CIS 565 - Spring 2011

with additional material from
Joseph Kider

University of Pennsylvania
CIS 565 - Spring 2009

41

OpenCL

• Open Compute Language

• For heterogeneous parallel-computing

systems

• Cross-platform

– Implementations for

• ATI GPUs

• NVIDIA GPUs

• x86 CPUs

– Is cross-platform really one size fits all?

42

OpenCL

• Standardized

• Initiated by Apple

• Developed by the Khronos Group

43

Image from: http://www.khronos.org/opencl/

OpenCL Ecosystem

44

SPIR

• Standard Portable Intermediate

Representation

– SPIR-V is first open standard, cross-API,

intermediate language for natively

representing parallel compute and graphics

– Part of the core specification of:

• OpenCL 2.1

• the new Vulkan graphics and compute API

45

Vulkan

46
Source: www.khronos.org/assets/uploads/developers/library/overview/2015_vulkan_v1_Overview.pdf

Vulkan

47
Source: https://www.khronos.org/assets/uploads/developers/library/overview/vulkan-overview.pdf

Design Goals of OpenCL

• Use all computational resources in the
system

– GPUs and CPUs as peers

– Data- and task-parallel computing

• Efficient parallel programming model

– Based on C

– Abstract the specifics of underlying hardware

– Define maximum allowable errors of math
functions

• Drive future hardware requirements

48

OpenCL

• API similar to OpenGL

• Based on the C language

• Easy transition form CUDA to OpenCL

49

OpenCL and CUDA

• Many OpenCL features have a one to one
mapping to CUDA features

• OpenCL

– More complex platform and device management

– More complex kernel launch

➢OpenCL is more complex due to its support for
multiplatform and multivendor portability

50

OpenCL and CUDA

• Compute Unit (CU) corresponds to

– CUDA streaming multiprocessor (SMs)

– CPU core

– etc.

• Processing Element corresponds to

– CUDA streaming processor (SP)

– CPU ALU

51

OpenCL and CUDA

Image from: http://developer.amd.com/zones/OpenCLZone/courses/pages/Introductory-OpenCL-SAAHPC10.aspx
52

OpenCL and CUDA

CUDA OpenCL

Kernel Kernel

Host program Host program

Thread Work item

Block Work group

Grid NDRange (index space)

53

OpenCL and CUDA

• Work Item (CUDA thread) – executes

kernel code

• Index Space (CUDA grid) – defines work

items and how data is mapped to them

• Work Group (CUDA block) – work items in

a work group can synchronize

54

OpenCL and CUDA

• CUDA: threadIdx and blockIdx

– Combine to create a global thread ID

– Example

• blockIdx.x * blockDim.x + threadIdx.x

55

OpenCL and CUDA

• OpenCL: each thread has a unique global

index

– Retrieve with get_global_id()

CUDA OpenCL

threadIdx.x get_local_id(0)

blockIdx.x *

blockDim.x +

threadIdx.x

get_global_id(0)

56

OpenCL and CUDA

CUDA OpenCL

gridDim.x get_num_groups(0)

blockIdx.x get_group_id(0)

blockDim.x get_local_size(0)

gridDim.x * blockDim.x get_global_size(0)

57

OpenCL and CUDA

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter2-CudaProgrammingModel.pdf

• Recall CUDA:

58

get_

local_

size(1)

Index Space
• In OpenCL:

get_global_size(0)

get_

global_

size(1)

Work Group

(0, 0)

Work Group

(1, 0)

Work Group

(2, 0)

Work Group

(0, 1)

Work Group

(1, 1)

Work Group

(2, 1)

get_local_size(0)

Work

Item

(0, 0)

Work Group (0,0)

Work

Item

(1, 0)

Work

Item

(2, 0)

Work

Item

(3, 0)

Work

Item

(4, 0)

Work

Item

(0, 1)

Work

Item

(1, 1)

Work

Item

(2, 1)

Work

Item

(3, 1)

Work

Item

(4, 1)

Work

Item

(0, 2)

Work

Item

(1, 2)

Work

Item

(2, 2)

Work

Item

(3, 2)

Work

Item

(4, 2)

59

OpenCL and CUDA

Image from http://developer.amd.com/zones/OpenCLZone/courses/pages/Introductory-OpenCL-SAAHPC10.aspx

OpenCL and CUDA

• Recall the CUDA

memory model:

61

OpenCL and CUDA

• In OpenCL:

Image from http://developer.amd.com/zones/OpenCLZone/courses/pages/Introductory-OpenCL-SAAHPC10.aspx
62

OpenCL and CUDA

CUDA OpenCL

Global memory Global memory

Constant memory Constant memory

Shared memory Local memory

Local memory Private memory

63

OpenCL and CUDA
CUDA Host Access Device Access OpenCL

Global
memory

Dynamic allocation;
read/write access

No allocation; read/write
access by all work items in all
work groups; large and slow
but may be cached in some
devices

Global
memory

Constant
memory

Dynamic allocation;
read/write access

Static allocation; read only
access by all work items

Constant
memory

Shared
memory

Dynamic allocation; no
access

Static allocation; shared
read/write access by all work
items in a work group

Local memory

Local
memory

No allocation; no access Static allocation; read/write
access by a single work item

Private
memory

64

OpenCL and CUDA

CUDA OpenCL

__syncthreads() __barrier()

• Both also have Fences

– In OpenCL

• mem_fence()

• read_mem_fence()

• write_mem_fence()

65

OpenCL Fence Examples

• mem_fence(CLK_LOCAL_MEM_FENCE
and/or CLK_GLOBAL_MEM_FENCE)

– waits until all reads/writes to local and/or global
memory made by the calling work item prior to
mem_fence() are visible to all threads in the
work-group

• barrier(CLK_LOCAL_MEM_FENCE
and/or CLK_GLOBAL_MEM_FENCE)

– waits until all work-items in the work-group have
reached this point and calls
mem_fence(CLK_LOCAL_MEM_FENCE and/or
CLK_GLOBAL_MEM_FENCE)

66

Slide from: http://developer.amd.com/zones/OpenCLZone/courses/pages/Introductory-OpenCL-SAAHPC10.aspx
67

Slide from: http://developer.amd.com/zones/OpenCLZone/courses/pages/Introductory-OpenCL-SAAHPC10.aspx
68

Slide from: http://developer.amd.com/zones/OpenCLZone/courses/pages/Introductory-OpenCL-SAAHPC10.aspx
69

Slide from: http://developer.amd.com/zones/OpenCLZone/courses/pages/Introductory-OpenCL-SAAHPC10.aspx
70

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

a, A, b, B, c, C, d, D, e, E, f, F

Slide from: http://developer.amd.com/zones/OpenCLZone/courses/pages/Introductory-OpenCL-SAAHPC10.aspx
71

Slide from: http://developer.amd.com/zones/OpenCLZone/courses/pages/Introductory-OpenCL-SAAHPC10.aspx
72

CUDA

Streams

OpenGL

Buffers

OpenGL

Shader Programs

73

OpenCL API

• Walkthrough OpenCL host code for
running vecAdd kernel:

__kernel void vecAdd(__global const

float *a, __global const float *b,

__global float *c)

{

int i = get_global_id(0);

c[i] = a[i] + b[i];

}

74

OpenCL API

// create OpenCL device & context

cl_context hContext;

hContext = clCreateContextFromType(0,

CL_DEVICE_TYPE_GPU, 0, 0, 0);

75

OpenCL API

// create OpenCL device & context

cl_context hContext;

hContext = clCreateContextFromType(0,

CL_DEVICE_TYPE_GPU, 0, 0, 0);

Create a context for a GPU

76

OpenCL API

// query all devices available to the context

size_t nContextDescriptorSize;

clGetContextInfo(hContext, CL_CONTEXT_DEVICES,

0, 0, &nContextDescriptorSize);

cl_device_id aDevices =

malloc(nContextDescriptorSize);

clGetContextInfo(hContext, CL_CONTEXT_DEVICES,

nContextDescriptorSize, aDevices, 0);

77

OpenCL API

// query all devices available to the context

size_t nContextDescriptorSize;

clGetContextInfo(hContext, CL_CONTEXT_DEVICES,

0, 0, &nContextDescriptorSize);

cl_device_id aDevices =

malloc(nContextDescriptorSize);

clGetContextInfo(hContext, CL_CONTEXT_DEVICES,

nContextDescriptorSize, aDevices, 0);

Retrieve an array of each GPU

78

Choosing Devices

79

• A system may have several devices – which is best?

• The “best” device is algorithm-dependent

• Query device info with: clGetDeviceInfo(device, param_name,
*value)

– Number of compute units CL_DEVICE_MAX_COMPUTE_UNITS

– Clock frequency CL_DEVICE_CLOCK_FREQUENCY

– Memory size CL_DEVICE_GLOBAL_MEM_SIZE

– Extensions (double precision, atomics, etc.)

• Pick best device for your algorithm

OpenCL API

// create a command queue for first

// device the context reported

cl_command_queue hCmdQueue;

hCmdQueue =

clCreateCommandQueue(hContext,

aDevices[0], 0, 0);

80

OpenCL API

// create a command queue for first

// device the context reported

cl_command_queue hCmdQueue;

hCmdQueue =

clCreateCommandQueue(hContext,

aDevices[0], 0, 0);

Create a command queue (CUDA stream) for the first GPU

81

OpenCL API

// create & compile program

cl_program hProgram;

hProgram =

clCreateProgramWithSource(hContext,

1, source, 0, 0);

clBuildProgram(hProgram, 0, 0, 0, 0,

0);

• A program contains one or more kernels. Think dll.

• Provide kernel source as a string

• Can also compile offline

82

OpenCL API

// create kernel

cl_kernel hKernel;

hKernel = clCreateKernel(hProgram,

“vecAdd”, 0);

Create kernel from program

83

Program and Kernel Objects

• Program objects encapsulate:
– a program source or binary

– list of devices and latest successfully built
executable for each device

– a list of kernel objects

• Kernel objects encapsulate:
– a specific kernel function in a program – declared

with the kernel qualifier

– argument values

– kernel objects created after the program
executable has been built

84

OpenCL API

// allocate host vectors

float* pA = new float[cnDimension];

float* pB = new float[cnDimension];

float* pC = new float[cnDimension];

// initialize host memory

randomInit(pA, cnDimension);

randomInit(pB, cnDimension);

85

OpenCL API

cl_mem hDeviceMemA = clCreateBuffer(

hContext,

CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

cnDimension * sizeof(cl_float),

pA, 0);

cl_mem hDeviceMemB = /* ... */

86

OpenCL API

cl_mem hDeviceMemA = clCreateBuffer(

hContext,

CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

cnDimension * sizeof(cl_float),

pA, 0);

cl_mem hDeviceMemB = /* ... */

Create buffers for kernel input. Read only in the kernel. Written by the host.
87

OpenCL API

hDeviceMemC = clCreateBuffer(hContext,

CL_MEM_WRITE_ONLY,

cnDimension * sizeof(cl_float),

0, 0);

Create buffer for kernel output.

88

OpenCL API

// setup parameter values

clSetKernelArg(hKernel, 0,

sizeof(cl_mem), (void

*)&hDeviceMemA);

clSetKernelArg(hKernel, 1,

sizeof(cl_mem), (void

*)&hDeviceMemB);

clSetKernelArg(hKernel, 2,

sizeof(cl_mem), (void

*)&hDeviceMemC);

Kernel arguments

set by index

89

OpenCL API

// execute kernel

clEnqueueNDRangeKernel(hCmdQueue,

hKernel, 1, 0, &cnDimension, 0, 0, 0,

0);

// copy results from device back to host

clEnqueueReadBuffer(hContext,

hDeviceMemC, CL_TRUE, 0,

cnDimension * sizeof(cl_float),

pC, 0, 0, 0);
90

OpenCL API

// execute kernel

clEnqueueNDRangeKernel(hCmdQueue,

hKernel, 1, 0, &cnDimension, 0, 0, 0,

0);

// copy results from device back to host

clEnqueueReadBuffer(hContext,

hDeviceMemC, CL_TRUE, 0,

cnDimension * sizeof(cl_float),

pC, 0, 0, 0);

Let OpenCL pick

work group size

Blocking read

91

clEnqueueNDRangeKernel

cl_int clEnqueueNDRangeKernel (

cl_command_queue command_queue,

cl_kernel kernel,

cl_uint work_dim,

const size_t *global_work_offset,

const size_t *global_work_size,

const size_t *local_work_size,

cl_uint num_events_in_wait_list,

const cl_event *event_wait_list,

cl_event *event)

92

<=3

NULL

global_work_size must be

divisible by local_work_size

OpenCL API

delete [] pA;

delete [] pB;

delete [] pC;

clReleaseMemObj(hDeviceMemA);

clReleaseMemObj(hDeviceMemB);

clReleaseMemObj(hDeviceMemC);

93

CUDA Pointer Traversal

struct Node { Node* next; }

n = n->next; // undefined operation in OpenCL,

// since ‘n’ here is a kernel input

94

OpenCL Pointer Traversal

struct Node { unsigned int next; }

…

n = bufBase + n; // pointer arithmetic is fine, bufBase is

// a kernel input param to the buffer’s beginning

// no pointers between OpenCL buffers are allowed

95

Intro OpenCL Tutorial

Benedict R. Gaster, AMD

Architect, OpenCL™

96

The “Hello World” program in OpenCL

• Programs are passed to the OpenCL runtime via API

calls expecting values of type char *

• Often, it is convenient to keep these programs in

separate source files

– For this tutorial, device programs are stored in files with names

of the form name_kernels.cl

– The corresponding device programs are loaded at runtime and

passed to the OpenCL API

97

Header Files

#include <utility>

#define __NO_STD_VECTOR

// Use cl::vector instead of STL version

#include <CL/cl.hpp>

// additional C++ headers, which are agnostic to

// OpenCL.

#include <cstdio>

#include <cstdlib>

#include <fstream>

#include <iostream>

#include <string>

#include <iterator>

const std::string hw("Hello World\n");

98

Error Handling

inline void checkErr(cl_int err, const char * name)

{

if (err != CL_SUCCESS) {

std::cerr << "ERROR: " << name

<< " (" << err << ")" << std::endl;

exit(EXIT_FAILURE);

}

}

99

OpenCL Contexts
int main(void)

{

cl_int err;

cl::vector< cl::Platform > platformList;

cl::Platform::get(&platformList);

checkErr(platformList.size()!=0 ? CL_SUCCESS
: -1,"cl::Platform::get");

std::cerr << "Platform number is: " <<
platformList.size() << std::endl;

std::string platformVendor;

platformList[0].getInfo((cl_platform_info)CL_
PLATFORM_VENDOR,&platformVendor);

std::cerr << "Platform is by: " <<
platformVendor << "\n";

100

OpenCL Contexts
cl_context_properties cprops[3] =

{CL_CONTEXT_PLATFORM,

(cl_context_properties)(platformList[0])(),

0};

cl::Context context(

CL_DEVICE_TYPE_CPU,

cprops,

NULL,

NULL,

&err);

checkErr(err, "Context::Context()");

101

Just pick first platform

OpenCL Buffer

char * outH = new char[hw.length()+1];

cl::Buffer outCL(

context,

CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR,

hw.length()+1,

outH,

&err);

checkErr(err, "Buffer::Buffer()");

102

OpenCL Devices

cl::vector<cl::Device> devices;

devices =

context.getInfo<CL_CONTEXT_DEVICES>();

checkErr(devices.size() > 0 ? CL_SUCCESS : -1,

"devices.size() > 0");

103

In OpenCL many operations are performed with respect to a given context.

For example, buffer (1D regions of memory) and image (2D and 3D regions

of memory) allocation are all context operations. But there are also device

specific operations. For example, program compilation and kernel execution are

on a per device basis, and for these a specific device handle is required.

Load Device Program

std::ifstream file("lesson1_kernels.cl");

checkErr(file.is_open() ? CL_SUCCESS:-1,

"lesson1_kernel.cl");

std::string

prog(std::istreambuf_iterator<char>(file),

(std::istreambuf_iterator<char>()));

cl::Program::Sources source(1,

std::make_pair(prog.c_str(),

prog.length()+1));

cl::Program program(context, source);

err = program.build(devices,"");

checkErr(err, "Program::build()");

104

Kernel Objects

cl::Kernel kernel(program, "hello", &err);

checkErr(err, "Kernel::Kernel()");

err = kernel.setArg(0, outCL);

checkErr(err, "Kernel::setArg()");

105

Launching the Kernel

cl::CommandQueue queue(context, devices[0], 0,
&err);

checkErr(err, "CommandQueue::CommandQueue()");

cl::Event event;

err = queue.enqueueNDRangeKernel(

kernel,

cl::NullRange,

cl::NDRange(hw.length()+1),

cl::NDRange(1, 1),

NULL,

&event);

checkErr(err,
"ComamndQueue::enqueueNDRangeKernel()");

106

Reading the Results

event.wait();

err = queue.enqueueReadBuffer(

outCL,

CL_TRUE,

0,

hw.length()+1,

outH);

checkErr(err,

"ComamndQueue::enqueueReadBuffer()");

std::cout << outH;

return EXIT_SUCCESS;

}

107

The Kernel

#pragma OPENCL EXTENSION cl_khr_byte_addressable_store

: enable

__constant char hw[] = "Hello World\n";

__kernel void hello(__global char * out)

{

size_t tid = get_global_id(0);

out[tid] = hw[tid];

}

108

