
CS 677: Parallel Programming for 

Many-core Processors 

Lecture 10

Instructor: Philippos Mordohai

Webpage: mordohai.github.io

E-mail: Philippos.Mordohai@stevens.edu

1

mailto:Philippos.Mordohai@stevens.edu


Logistics

• Project progress reports due next week

1. What is the status of the CPU version? If you are 
using existing code for this part, cite the source of 
the code.

2. What is the status of the GPU version in terms of 
completeness? Which functionalities have been 
implemented and what is missing?

3. What is the status of the GPU version in terms of 
correctness? Is the, potentially unoptimized, GPU 
version correct? If not, what is your plan for 
achieving correctness?

2



Outline

• Sparse matrix and vector multiplication

• Summed area tables

• Parallel Sorting 

3



Sparse Matrix-Vector 

Multiplication

slides by

Jared Hoberock and David Tarjan

(Stanford CS 193G)

4



Overview

• GPUs deliver high Sparse Matrix Vector 
(SpMV) performance

• No one-size-fits-all approach

– Match method to matrix structure

• Exploit structure when possible

– Fast methods for regular portion

– Robust methods for irregular portion

5



Characteristics of SpMV

• Memory bound

– FLOP : MemOp ratio is very low

• Generally irregular & unstructured

– Unlike dense matrix operations

6



Finite-Element Methods

• Discretized on structured or unstructured 

meshes

– Determines matrix sparsity structure

7



Objectives

• Expose sufficient parallelism

– Develop 1000s of independent threads

• Minimize execution path divergence

– SIMD utilization

• Minimize memory access divergence

– Memory coalescing

8



Sparse Matrix Formats

Structured                                                            Unstructured

9



Compressed Sparse Row (CSR)

• Rows laid out in sequence

• Inconvenient for fine-grained parallelism

10



CSR (scalar) kernel

• One thread per row

– Poor memory coalescing

– Unaligned memory access

… … ……

11



CSR (vector) kernel

• One SIMD vector or warp per row

– Partial memory coalescing

– Unaligned memory access

12



ELLPACK (ELL)

• Storage for K nonzeros per row

– Pad rows with fewer than K nonzeros

– Inefficient when row length varies

13



Hybrid Format

• ELL handles typical entries

• COO handles exceptional entries

– Implemented with segmented reduction

14



Exposing Parallelism

• DIA, ELL & CSR (scalar)

– One thread per row

• CSR (vector)

– One warp per row

• COO

– One thread per nonzero

F
in

er
 G

r
a
n

u
la

r
it

y
 

15



0

2

4

6

8

10

12

14

16

18

20

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

G
FL

O
P/

s

Matrix Rows

COO CSR (scalar) CSR (vector) ELL

Exposing Parallelism

16



Execution Divergence

• Variable row lengths can be problematic

– Idle threads in CSR (scalar)

– Idle processors in CSR (vector)

• Robust strategies exist

– COO is insensitive to row length

17



Memory Access Divergence

• Uncoalesced memory access is costly
– Sometimes mitigated by cache

• Misaligned access is suboptimal
– Align matrix format to coalescing boundary

• Access to matrix representation
– DIA, ELL and COO are fully coalesced

– CSR (vector) is partially coalesced

– CSR (scalar) is seldom coalesced

18



Performance Comparison

System Cores Clock (GHz) Notes

GTX 285 240 1.5 NVIDIA GeForce GTX 285

Cell 8 (SPEs) 3.2 IBM QS20 Blade (half)

Core i7 4 3.0 Intel Core i7 (Nehalem)

Implementing Sparse Matrix-Vector Multiplication on Throughput-Oriented Processors

N. Bell and M. Garland, Proc. Supercomputing '09, November 2009

Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms

Samuel Williams et al., Supercomputing 2007.

Sources:

19



Performance Comparison

0

2

4

6

8

10

12

14

16

18

G
FL

O
P/

s

GTX 285 Cell Core i7

20



ELL kernel
__global__ void ell_spmv(const int num_rows,         const int num_cols, 

const int num_cols_per_row, const int stride,

const double * Aj,          const double * Ax,

const double * x,                 double * y)
{

const int thread_id = blockDim.x * blockIdx.x + threadIdx.x;
const int grid_size = gridDim.x * blockDim.x;

for (int row = thread_id; row < num_rows; row += grid_size) {
double sum = y[row];

int offset = row;

for (int n = 0; n < num_cols_per_row; n++) {
const int col = Aj[offset];

if (col != -1)
sum += Ax[offset] * x[col];

offset += stride;
}

y[row] = sum;
}

}
21



#include <cusp/hyb_matrix.h>

#include <cusp/io/matrix_market.h>

#include <cusp/krylov/cg.h>

int main(void)

{
// create an empty sparse matrix structure (HYB format)
cusp::hyb_matrix<int, double, cusp::device_memory> A;

// load a matrix stored in MatrixMarket format
cusp::io::read_matrix_market_file(A, "5pt_10x10.mtx");

// allocate storage for solution (x) and right hand side (b)
cusp::array1d<double, cusp::device_memory> x(A.num_rows, 0);
cusp::array1d<double, cusp::device_memory> b(A.num_rows, 1);

// solve linear system with the Conjugate Gradient method

cusp::krylov::cg(A, x, b);

return 0;

}

cusplibrary.github.com

22
A library for sparse linear algebra and graph computations on CUDA

http://cusplibrary.github.com/


Summed Area Tables

Patrick Cozzi

University of Pennsylvania

CIS 565 - Spring 2011

23

Gabriel Zachmann

University of Bremen

Massively Parallel Algorithms - 2018



Summed Area Table

• Summed Area Table (SAT):  2D table where 

each element stores the sum of all elements 

in an input image between the lower left 

corner and the entry location.

24
Slides by P. Cozzi, UPenn



Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2 2 4

2 5 6 8

2 6 9 11

4 9 12 14

SAT

(1 + 1 + 0) + (1 + 2 + 1) + (0 + 1 + 2) = 9

◼ Example:

25
Slides by P. Cozzi, UPenn



Summed Area Table

• Benefit

– Used to compute different width filters at every 

pixel in the image in constant time per pixel

– Just sample four pixels in SAT:

26
Slides by P. Cozzi, UPenn



Summed Area Table

• Uses

– Glossy 

environment 

reflections and 

refractions

– Approximate depth 

of field

Image from http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html
27



Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image SAT

28
Slides by P. Cozzi, UPenn



Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1

SAT

29
Slides by P. Cozzi, UPenn



Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2

SAT

30
Slides by P. Cozzi, UPenn



Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2 2

SAT

31
Slides by P. Cozzi, UPenn



Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2 2 4

SAT

32
Slides by P. Cozzi, UPenn



Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2 2 4

2

SAT

33
Slides by P. Cozzi, UPenn



Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2 2 4

2 5

SAT

34
Slides by P. Cozzi, UPenn



Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2 2 4

2 5 6 8

2 6 9 11

4 9

SAT

35
Slides by P. Cozzi, UPenn



Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2 2 4

2 5 6 8

2 6 9 11

4 9 12

SAT

36
Slides by P. Cozzi, UPenn



Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2 2 4

2 5 6 8

2 6 9 11

4 9 12 14

SAT

37
Slides by P. Cozzi, UPenn



Summed Area Table

How would you implement 

this on the GPU?

38
Slides by P. Cozzi, UPenn



Summed Area Table

• Recall Inclusive Scan:

0 1 52 3 4 6 7

0 1 153 6 10 21 28

39
Slides by P. Cozzi, UPenn



Summed Area Table

1 1 0 2

1 2 1 0

0 1 2 0

2 1 0 0

Input image

1 2 2 4

1 3 4 4

0 1 3 3

2 3 3 3

Partial SAT

One inclusive scan for each row

◼ Step 1 of 2:

40
Slides by P. Cozzi, UPenn



Summed Area Table

1 2 2 4

1 3 4 4

0 1 3 3

2 3 3 3

Partial SAT

One inclusive scan for each

Column, bottom to top

◼ Step 2 of 2:

1 2 2 4

2 5 6 8

2 6 9 11

4 9 12 14

Final SAT

41
Slides by P. Cozzi, UPenn



Issues

• Caveat: precision of integer/floating-point 

arithmetic

– Assumption: each Tij needs b bits

– Consequence: number of bits needed for 

Swh = logw + logh + b

– Example: 1024x1024 grey scale input image, 

each pixel = 8 bits

• 28 bits needed in S-pixels

42
Slides by G. Zachmann, University of Bremen



Increasing Precision (1)

• Signed offset representation:

• Set

• Effectively "removes the DC component 

from the signal"

43
Slides by G. Zachmann, University of Bremen



Increasing Precision (1)

• Consequence:

i.e., the values of S' are now in the same order 

as the values of T (fewer bits have to be thrown 

away during the summation)

• Note 1: we need to set aside 1 bit (sign bit)

• Note 2: S’ (w,h) = 0 (modulo rounding errors)

44
Slides by G. Zachmann, University of Bremen



Example

45
Slides by G. Zachmann, University of Bremen



Increasing Precision (2)

• Move the "origin" of the i,j
"coordinate

• frame“ 

• Compute 4 different S-tables, 
one for each quadrant

• Result: each S-table comprises 
only ¼ of the pixels of T

• For computation of S(k,l) do a 
simple case switch

46
Slides by G. Zachmann, University of Bremen



47
Slides by G. Zachmann, University of Bremen



Application: Depth of Field

48
Slides by G. Zachmann, University of Bremen



Application: Viola-Jones Face Detector

• The (simple) idea:
– Move sliding window across image

(all possible locations, all possible 
sizes)

– Check, whether a face is in the 
window

– We are interested only in windows 
that are filled by a face

• Observation:
– Image contains 10s of faces

– But ≈ 106 candidate windows

• Consequence:
– To avoid having a false positive in every image, 

our false positive rate has to be < 10-6

49
Slides by G. Zachmann, University of Bremen



Application: Viola-Jones Face Detector

• Feature types used in the Viola-Jones face 
detector:
– 2, 3, or 4 rectangles placed next to each other

– Called Haar features

• Feature value: gi = pixel-sum( white rectangle(s) ) 
– pixel-sum( black rectangle(s) )

50
Slides by G. Zachmann, University of Bremen



Application: Viola-Jones Face Detector

• Constant time per feature extraction

– In a 24x24 window (e.g., one of the 

sliding windows), there are ≈ 160,000 

possible features

– All variations of type, size, location within 

the window

51
Slides by G. Zachmann, University of Bremen



Application: Viola-Jones Face Detector

• Define a weak classifier 

for each feature

– "Weak" because such a classifier is only slightly 

better than a random "classifier"

• Goal: combine lots of weak classifiers to 

form one strong classifier

52
Slides by G. Zachmann, University of Bremen



Parallel Sorting

Scott B. Baden 

UCSD, CSE 160 

Winter 2013

53



Parallel Sorting

• We’ll consider in-memory sorting of integer 

keys

– Bucket sort

– Sample sort

– Bitonic sort (later)

54



Rank Sorting

• Compute the rank of each input value

• Move each value in sorted position according to its 
rank

• Makes idealizing assumptions
– An ideal parallel computer with no memory contention and 

an infinite number of processors

– The forall loops parallelize perfectly

forall i=0:n-1, j=0:n-1

if ( x[i] > x[j] ) then rank[i] += 1 end if

forall i=0:n-1

y[rank[i]] = x[i]

55



In Search of a Fast and Practical 

Sort

• Rank sorting is impractical on real 

hardware

• Let’s borrow the concept: compute the 

thread owner for each key

• Shuffle data in sorted order in one step

• But how do we know which thread should 

be the owner?

• Subdivide the key space

56



First Attempt: Bucket Sort

• Divide the range of keys into equal subranges 
and associate a bucket with each range

• Each processor maintains p local buckets
– Assigns each key to a bucket:

– Routes the buckets to the correct owner (each 
local bucket has ≈ n/p2 elements)

– Sort all incoming data in each bucket

57



Runtime

• Assume that the keys are distributed 

uniformly over 0 to Kmax-1

• Local bucket assignment: O(n/p)

• Route each local bucket to the correct 

owner O(n)

• Local sorting (using radix sort) : O(n/p))

http://users.monash.edu/~lloyd/tildeAlgDS/

Sort/Radix/

58

http://users.monash.edu/~lloyd/tildeAlgDS/Sort/Radix/


Worst Case Behavior

• The assignment of keys to threads is based solely on the 
knowledge of Kmax

• If the keys are integers in the range [0,Q-1] ….thread k has 
keys in the range

• E.g. for Q=230, P=64, each thread gets 224 = 16 M elements

• For a non-uniform distribution, we need more information to 
balance keys (and communication) over the processors

• In the worst case, all the keys could go to one processor

59



Improving on Bucket Sort

Sample sort

• Uses a heuristic to estimate the 
distribution of the global key range over 
the p threads

• Each processor gets about the same 
number of keys

• Sample the keys to determine a set of p-1 
splitters that partition the key space into p 
disjoint regions (buckets)

60



Sample Selection

61



Splitter Selection: Regular Sampling

• Shi and Schaeffer [1992]

• Each processor sorts its local keys, then 

selects s evenly spaced samples

• These candidate splitters are collected by 

one thread

– Sorted

– Sampled at uniform positions to generate a 

p-1 element splitter list

62



Performance
• Assuming n ≥ p3 …

• TP = O((n/p) log n)
• If s= p, each processor will merge no more than 

2n/p + n/s – p elements

• If s > p, each processor will merge no more than

• (3/2)(n/p) - (n/(ps)) + 1 + d elements

• Duplicates d do not impact performance unless d = O(n/p)
• Tradeoff: increasing s …

– Spreads the final distribution more evenly over the processors

– Increases the cost of determining the splitters

• For some inputs, communication patterns can be highly 
irregular with some pairs of processors communicating 
more heavily than others, lowering performance

63



Radix Sort

• We need a stable sorting algorithm to do the 

local sorts: the output preserves the order of 

inputs having the same associated key

• radix sort meets our needs: sort the keys in 

passes, choosing an r-bit block at a time, 

O(n) running time

• Explanation with a demo 

www.csse.monash.edu.au/~lloyd/tildeAlgDS/

Sort/Radix/

64

http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Radix/


Radix Sort Example

• Consider the input keys

34, 12, 42, 32, 44, 41, 34, 11, 32, and 23

• Use 4 buckets

• Sort on each digit in succession, least significant 

to most significant

65



Radix Sort Example

• Consider the input keys

34, 12, 42, 32, 44, 41, 34, 11, 32, and 23

• Use 4 buckets

• Sort on each digit in succession, least 
significant to most significant

• After pass 1
41 11    12 42 32 32    23    34 44 34

66



Radix Sort Example

• Consider the input keys

34, 12, 42, 32, 44, 41, 34, 11, 32, and 23

• Use 4 buckets

• Sort on each digit in succession, least 
significant to most significant

• After pass 1

41 11    12 42 32 32    23    34 44 34

• After pass 2

11 12   23    32 32 34 34     41 42 44

67


