
CS 677: Parallel Programming for

Many-core Processors

Lecture 1

Instructor: Philippos Mordohai

Webpage: mordohai.github.io

E-mail: Philippos.Mordohai@stevens.edu

1

mailto:Philippos.Mordohai@stevens.edu

2

Objectives

• Learn how to program massively parallel
processors and achieve

– High performance

– Functionality and maintainability

– Scalability across future generations

• Acquire technical knowledge required to
achieve the above goals

– Principles and patterns of parallel programming

– Processor architecture features and constraints

– Programming API, tools and techniques

2

3

Important Points

• This is an elective course. You chose to be
here.

• Expect to work and to be challenged.

• If your programming background is weak,
you will probably suffer.

• This course will evolve to follow the rapid
pace of progress in GPU programming. It
is bound to always be a little behind…

3

4

Important Points II

• At any point ask me WHY?

• You can ask me anything about the course

in class, during a break, in my office, by

email.

– If you think a homework is taking too long or is

wrong.

– If you can’t decide on a project.

4

5

Logistics

• Class webpage:
http://mordohai.github.io/classes/cs677_s20.html

• Office hours: Tuesdays 5-6pm and by
email

• Evaluation:

– Homework assignments (40%)

– Quizzes (10%)

– Midterm (15%)

– Final project (35%)

5

6

Project

• Pick topic BEFORE middle of the
semester

• I will suggest ideas and datasets, if you
can’t decide

• Deliverables:

– Project proposal

– Presentation in class

– Poster in CS department event

– Final report (around 8 pages)

6

7

Project Examples

• k-means

• Perceptron

• Boosting

– General

– Face detector (group

of 2)

• Mean Shift

• Normal estimation for 3D point clouds

7

8

More Ideas

• Look for parallelizable problems in:

– Image processing

– Cryptanalysis

– Graphics

• GPU Gems

– Nearest neighbor search

8

9

Even More…

• Particle simulations

• Financial analysis

• MCMC

• Games/puzzles

9

10

Resources

• Textbook

– Kirk & Hwu. Programming Massively Parallel

Processors: A Hands-on Approach. Third

Edition, December 2016Slides and more

– Textbook’s companion site

https://booksite.elsevier.com/9780128119860/

– Companion site of second edition

http://booksite.elsevier.com/9780124159921/

10

https://booksite.elsevier.com/9780128119860/
http://booksite.elsevier.com/9780124159921/

11

Online Resources

• NVIDIA. The NVIDIA CUDA Programming
Guide.
– http://docs.nvidia.com/cuda/pdf/CUDA_C_Progra

mming_Guide.pdf

• NVIDIA. CUDA Reference Manual.

• CUDA Toolkit
– http://developer.nvidia.com/object/cuda_3_2_dow

nloads.html

– http://developer.nvidia.com/cuda-toolkit-41

– …

– https://developer.nvidia.com/cuda-downloads

11

12

Lecture Overview

• Scaling up computational power

• GPUs

• Introduction to CUDA

• CUDA programming model

12

13

Moore’s Law (paraphrased)

“The number of transistors on an integrated

circuit doubles every two years.”

– Gordon E. Moore

13

14

Moore’s Law (Visualized)

15

Serial Performance Scaling is Over

• Cannot continue to scale processor frequencies

– no 10 GHz chips

• Cannot continue to increase power consumption

– cannot melt chip

• Can continue to increase transistor density

– as per Moore’s Law

15

16

How to Use Transistors?

• Instruction-level parallelism
– out-of-order execution, speculation, …

– vanishing opportunities in power-constrained world

• Data-level parallelism
– vector units, SIMD execution, …

– increasing … SSE, AVX, Cell SPE, Clearspeed, GPU

• Thread-level parallelism
– increasing … multithreading, multicore, manycore

– Intel Core2, AMD Phenom, Sun Niagara, STI Cell, NVIDIA Fermi,
…

16

17

The “New” Moore’s Law

• Computers no longer get faster, just wider

• You must re-think your algorithms to be parallel !

• Data-parallel computing is most scalable solution

– Otherwise: refactor code for 2 cores

– You will always have more data than cores –

build the computation around the data

8 cores4 cores 16 cores…

17

18

The von Neumann Model

Memory

Control Unit

I/O

ALU

Reg

File

PC IR

Processing Unit

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2011

ECE408/CS483, University of Illinois, Urbana-Champaign
18

Processor MemoryProcessor Memory

Global Memory

Generic Multicore Chip

• Handful of processors each supporting ~1 hardware thread

• On-chip memory near processors (cache, RAM, or both)

• Shared global memory space (external DRAM)

19

• • •
Processor MemoryProcessor Memory

Global Memory

Generic Manycore Chip

• Many processors each supporting many hardware threads

• On-chip memory near processors (cache, RAM, or both)

• Shared global memory space (external DRAM)

20

21

Enter the GPU

• Massive economies of scale

• Massively parallel

21

Graphics in a Nutshell

• Make great images
– intricate shapes

– complex optical effects

– seamless motion

• Make them fast
– invent clever

techniques

– use every trick
imaginable

– build monster
hardware

Eugene d’Eon, David Luebke, Eric Enderton

In Proc. EGSR 2007 and GPU Gems 3

The Graphics Pipeline

Vertex Transform & Lighting

Triangle Setup & Rasterization

Texturing & Pixel Shading

Depth Test & Blending

Framebuffer

23

Vertex Transform & Lighting

Triangle Setup & Rasterization

Texturing & Pixel Shading

Depth Test & Blending

Framebuffer

The Graphics Pipeline

24

Vertex Transform & Lighting

Triangle Setup & Rasterization

Texturing & Pixel Shading

Depth Test & Blending

Framebuffer

The Graphics Pipeline

25

Vertex Transform & Lighting

Triangle Setup & Rasterization

Texturing & Pixel Shading

Depth Test & Blending

Framebuffer

The Graphics Pipeline

26

27

• Key abstraction of real-time

graphics

• Hardware used to look like this

• One chip/board per stage

• Fixed data flow through pipeline

Vertex

Rasterize

Pixel

Test & Blend

Framebuffer

The Graphics Pipeline

27

28

• Everything had fixed function,
with a certain number of modes

• Number of modes for each
stage grew over time

• Hard to optimize HW

• Developers always wanted more
flexibility

Vertex

Rasterize

Pixel

Test & Blend

Framebuffer

The Graphics Pipeline

28

29

• Remains a key abstraction

• Hardware used to look like this

• Vertex & pixel processing
became programmable, new
stages added

• GPU architecture increasingly
centers around shader
execution

Vertex

Rasterize

Pixel

Test & Blend

Framebuffer

The Graphics Pipeline

29

30

• Exposing an (at first limited)
instruction set for some stages

• Limited instructions & instruction
types and no control flow at first

• Expanded to full Instruction Set
Architecture

Vertex

Rasterize

Pixel

Test & Blend

Framebuffer

The Graphics Pipeline

30

31

Why GPUs scale so nicely

• Workload and Programming Model provide
lots of parallelism

• Applications provide large groups of vertices
at once
– Vertices can be processed in parallel

– Apply same transform to all vertices

• Triangles contain many pixels
– Pixels from a triangle can be processed in parallel

– Apply same shader to all pixels

• Very efficient hardware to hide serialization
bottlenecks

31

32

With Moore’s Law…

Raster

Vertex

Pixel

Blend

R
as

te
r

Vertex

Pixel 0

B
le

n
d

Pixel 1

Pixel 2

Pixel 3

Vrtx 0

V
rt

x
2

V
rt

x
1

32

33

More Efficiency

• Note that we do the same thing for lots of

pixels/vertices

ALU

Control

ALU

Control

ALU

Control

ALU

Control

ALU

Control

ALU

Control

ALU ALU ALU

Control

ALU ALU ALU

• A warp = 32 threads launched together

• Usually, execute together as well 33

34

Early GPGPU

• All this performance attracted developers

• To use GPUs, re-expressed their
algorithms as graphics computations

• Very tedious, limited usability

• Still had some very nice results

• This was the lead up to CUDA

34

GPU Evolution

• High throughput computation
– GeForce GTX 280: 933 GFLOPS

– GeForce 600 series (Kepler): 2×2811 GFLOPS

– GTX Titan Z with 5760 cores: 8000 GFLOPS

– Titan RTX, 4608 cores, 576 Turing Tensor Cores, 72 RT cores: 130 TFLOPS

• High bandwidth
– GeForce GTX 280: 140 GB/s

– GeForce 600 series (Kepler): 2×192 GB/s

– GTX Titan Z with 5760 cores: 672 GB/s

– Titan RTX: 672 GB/s, 24 GB of RAM

1995 2000 2005 2010

RIVA 128
3M xtors

GeForce® 256
23M xtors

GeForce FX
125M xtors

GeForce 8800
681M xtors

GeForce 3
60M xtors

“Fermi”

3B xtors

35

GPU Evolution

• High throughput computation
– GeForce GTX 280: 933 GFLOPS

– GeForce 600 series (Kepler): 2×2811 GFLOPS

– GTX Titan Z with 5760 cores: 8000 GFLOPS

– Titan RTX, 4608 cores, 576 Turing Tensor Cores, 72 RT cores: 130 TFLOPS

• High bandwidth
– GeForce GTX 280: 140 GB/s

– GeForce 600 series (Kepler): 2×192 GB/s

– GTX Titan Z with 5760 cores: 672 GB/s

– Titan RTX: 672 GB/s, 24 GB of RAM

1995 2000 2005 2010

RIVA 128
3M xtors

GeForce® 256
23M xtors

GeForce FX
125M xtors

GeForce 8800
681M xtors

GeForce 3
60M xtors

“Fermi”

3B xtors

36

Titan RTX: 18.6B xtors

37

Lessons from Graphics Pipeline

• Throughput is paramount
– must paint every pixel within frame time

– scalability
– video games have strict time requirements: bare

minimum: 2 Mpixels * 60 fps * 2 = 240 Mthread/s

• Create, run, & retire lots of threads very rapidly
– measured 14.8 Gthread/s on increment() kernel (2010)

• Use multithreading to hide latency
– 1 stalled thread is OK if 100 are ready to run

37

38

Why is this different from a CPU?

• Different goals produce different designs
– GPU assumes work load is highly parallel
– CPU must be good at everything, parallel or not

• CPU: minimize latency experienced by 1 thread
– big on-chip caches
– sophisticated control logic

• GPU: maximize throughput of all threads
– # threads in flight limited by resources => lots of resources

(registers, bandwidth, etc.)
– multithreading can hide latency => skip the big caches
– share control logic across many threads

38

39

Design Philosophies

GPU
Throughput Oriented Cores

Chip

Compute Unit

Cache/Local Mem

Registers

SIMD
Unit

T
h

re
a

d
in

g

CPU
Latency Oriented Cores

Chip

Core

Local Cache

Registers

SIMD Unit

C
o

n
tro

l

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012

ECE408/CS483, University of Illinois, Urbana-Champaign 39

CPUs: Latency Oriented Design

• Large caches
– Convert long latency

memory accesses to short
latency cache accesses

• Sophisticated control
– Branch prediction for

reduced branch latency

– Data forwarding for
reduced data latency

• Powerful ALU
– Reduced operation latency

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012

ECE408/CS483, University of Illinois, Urbana-Champaign

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU

40

GPUs: Throughput Oriented Design

• Small caches
– To boost memory throughput

• Simple control
– No branch prediction

– No data forwarding

• Energy efficient ALUs
– Many, long latency but heavily

pipelined for high throughput

• Require massive number of
threads to tolerate latencies

DRAM

GPU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012

ECE408/CS483, University of Illinois, Urbana-Champaign 41

42

SMs and SPs

• SM: Streaming Multiprocessor

• SP: Streaming Processor (core)

42

NVIDIA GPU Architecture

Fermi GF100

D
R

A
M

 I
/F

H
O

S
T

 I
/F

G
ig

a
 T

h
re

a
d

D
R

A
M

 I
/F

D
R

A
M

 I/F
D

R
A

M
 I/F

D
R

A
M

 I/F
D

R
A

M
 I/F

L2

43

SM Multiprocessor

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

• 32 CUDA Cores per SM (512 total)

• Direct load/store to memory

– High bandwidth (Hundreds GB/sec)

• 64KB of fast, on-chip RAM

– Software or hardware-managed

– Shared amongst CUDA cores

– Enables thread communication

45

Key Architectural Ideas

• SIMT (Single Instruction Multiple Thread)
execution
– threads run in groups of 32 called warps

– threads in a warp share instruction unit (IU)

– HW automatically handles divergence

• Hardware multithreading
– HW resource allocation & thread scheduling

– HW relies on threads to hide latency

• Threads have all resources needed to run
– any warp not waiting for something can run

– context switching is (basically) free

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

46

Enter CUDA

• Scalable parallel programming model

• Minimal extensions to familiar C/C++

environment

• Heterogeneous serial-parallel computing

46

47

CUDA: Scalable parallel

programming
• Augment C/C++ with minimalist abstractions

– let programmers focus on parallel algorithms

– not mechanics of a parallel programming language

• Provide straightforward mapping onto hardware
– good fit to GPU architecture

– maps well to multi-core CPUs too

• Scale to 100s of cores & 10,000s of parallel
threads
– GPU threads are lightweight — create / switch is free

– GPU needs 1000s of threads for full utilization

47

48

Key Parallel Abstractions in CUDA

• Hierarchy of concurrent threads

• Lightweight synchronization primitives

• Shared memory model for cooperating
threads

48

49

Hierarchy of concurrent threads

• Parallel kernels composed of many threads
– all threads execute the same sequential program

• Threads are grouped into thread blocks
– threads in the same block can cooperate

• Threads/blocks have unique IDs

Thread t

t0 t1 … tB

Block b

49

CUDA Model of Parallelism

• CUDA virtualizes the physical hardware

– a thread is a virtualized scalar processor (registers, PC, state)

– a block is a virtualized multiprocessor (threads, shared memory)

• Scheduled onto physical hardware without pre-emption

– threads/blocks launch & run to completion

– blocks should be independent

• • •
Block MemoryBlock Memory

Global Memory

50

NOT: Flat Multiprocessor

• Global synchronization isn’t cheap

• Global memory access times are expensive

Processors

Global Memory

51

NOT: Distributed Processors

• Distributed computing is a different setting

• cf. BSP (Bulk Synchronous Parallel) model, MPI

Interconnection Network

Processor MemoryProcessor Memory

• • •

52

Control Flow Divergence

BranchBranch

Path A

Path C

Branch

Path B

53

Heterogeneous Computing

Manycore GPUMulticore CPU

Multicore CPU

54

CUDA Programming Model

55

56

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

Overview

• CUDA programming model – basic concepts
and data types

• CUDA application programming interface -
basic

• Simple examples to illustrate basic concepts
and functionalities

• Performance features will be covered later

56

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

CUDA – C

• Integrated host+device app C program

– Serial or modestly parallel parts in host C code

– Highly parallel parts in device SPMD kernel C code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);

57

58

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Devices and Threads

• A compute device

– Is a coprocessor to the CPU or host

– Has its own DRAM (device memory)

– Runs many threads in parallel

– Is typically a GPU but can also be another type of parallel

processing device

• Data-parallel portions of an application are expressed as

device kernels which run on many threads

• Differences between GPU and CPU threads

– GPU threads are extremely lightweight

• Very little creation overhead

– GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few

58

Arrays of Parallel Threads

• A CUDA kernel is executed by a grid (array) of
threads
– All threads run the same code

– Each thread has an ID that it uses to compute memory
addresses and make control decisions

59
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2011

ECE408/CS483, University of Illinois, Urbana-Champaign

i = blockIdx.x * blockDim.x +
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

0 1 2 254 255

…

60

Thread Blocks: Scalable Cooperation

• Divide monolithic thread array into multiple blocks

– Threads within a block cooperate via shared memory,

atomic operations and barrier synchronization

– Threads in different blocks cannot cooperate

60
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2011

ECE408/CS483, University of Illinois, Urbana-Champaign

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block IDs and Thread IDs

•Each thread uses IDs to
decide what data to work
on
– Block ID: 1D or 2D

– Thread ID: 1D, 2D, or 3D

•Simplifies memory
addressing when
processing
multidimensional data
– Image processing

– Solving PDEs on volumes

– …

61

62

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Memory Model Overview

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

• Global memory

– Main means of
communicating R/W
Data between host and
device

– Contents visible to all
threads

– Long latency access

• We will focus on global
memory for now

– Constant and texture
memory will come later

62

63

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

CUDA API Highlights:

Easy and Lightweight

• The API is an extension to the ANSI C

programming language

Low learning curve

• The hardware is designed to enable

lightweight runtime and driver

High performance

63

64

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

Extended C
• Declspecs

– global, device, shared,
local, constant

• Keywords

– threadIdx, blockIdx

• Intrinsics

– __syncthreads

• Runtime API

– Memory, symbol,
execution management

• Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

__shared__ float region[M];

...

region[threadIdx] = image[i];

__syncthreads()

...

image[j] = result;

}

// Allocate GPU memory

void *myimage; cudaMalloc(myimage, bytes)

// 100 blocks, 10 threads per block

convolve<<<100, 10>>> (myimage);

64

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Device Memory Allocation

• cudaMalloc()

– Allocates object in the
device Global Memory

– Requires two parameters
• Address of a pointer to the

allocated object

• Size of allocated object

• cudaFree()

– Frees object from device
Global Memory
• Pointer to freed object

Grid

Global

Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

65

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Device Memory Allocation (cont.)

• Code example:

– Allocate a 64 * 64 single precision float array

– Attach the allocated storage to Md

– “d” is often used to indicate a device data
structure

int TILE_WIDTH = 64;

float* Md;

int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);

cudaFree(Md);

66

67

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Host-Device Data Transfer

• cudaMemcpy()

– memory data transfer

– Requires four parameters
• Pointer to destination

• Pointer to source

• Number of bytes copied

• Type of transfer

– Host to Host

– Host to Device

– Device to Host

– Device to Device

• Asynchronous transfer

Grid

Global

Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

67

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Host-Device Data Transfer (cont.)

• Code example:
– Transfer a 64 * 64 single precision float array

– M is in host memory and Md is in device memory

– cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost are symbolic
constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

68

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Keywords

69

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Function Declarations

hosthost__host__ float HostFunc()

hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable

from the:

Executed

on the:

• __global__ defines a kernel function

– Must return void

• __device__ and __host__ can be

used together (function compiled twice)

70

71

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Function Declarations (cont.)

• __device__ functions cannot have their

address taken

• For functions executed on the device:

– No recursion

• Recursion supported since CUDA Toolkit 3.1

– No static variable declarations inside the

function

– No variable number of arguments

71

72

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

Calling a Kernel Function – Thread Creation

• A kernel function must be called with an execution

configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared

memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes,

stream >>>(...);

• Any call to a kernel function is asynchronous,

explicit synch needed for blocking

72

73

Example: vector_addition

// compute vector sum c = a + b

// each thread performs one pair-wise addition

__global__ void vector_add(float* A, float* B, float* C)

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + B[i];

}

int main()

{

// initialization code

...

// Launch N/256 blocks of 256 threads each

vector_add<<< N/256, 256>>>(d_A, d_B, d_C);

}

Device Code

73

74

Example: vector_addition

// compute vector sum c = a + b

// each thread performs one pair-wise addition

__global__ void vector_add(float* A, float* B, float* C)

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + B[i];

}

int main()

{

// initialization code

...

// launch N/256 blocks of 256 threads each

vector_add<<< N/256, 256>>>(d_A, d_B, d_C);

}

Host Code

75

Example: Initialization code for
vector_addition

// allocate and initialize host (CPU) memory

float *h_A = …, *h_B = …;

// allocate device (GPU) memory

float *d_A, *d_B, *d_C;

cudaMalloc((void**) &d_A, N * sizeof(float));

cudaMalloc((void**) &d_B, N * sizeof(float));

cudaMalloc((void**) &d_C, N * sizeof(float));

// copy host memory to device

cudaMemcpy(d_A, h_A, N * sizeof(float),
cudaMemcpyHostToDevice));

cudaMemcpy(d_B, h_B, N * sizeof(float),
cudaMemcpyHostToDevice));

// launch N/256 blocks of 256 threads each

vector_add<<<N/256, 256>>>(d_A, d_B, d_C);

75

76

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

Running Example: Matrix Multiplication

• A simple matrix multiplication example that

illustrates the basic features of memory and

thread management in CUDA programs

– Leave shared memory usage until later

– Local, register usage

– Thread ID usage

– Memory data transfer API between host and

device

– Assume square matrix for simplicity

76

77

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

Programming Model:

Square Matrix Multiplication Example

• P = M * N of size WIDTH x WIDTH

• Without tiling:

– One thread calculates one
element of P

– M and N are loaded WIDTH times
from global memory

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

78

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

Matrix Multiplication

A Simple Host Version in C

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

// Matrix multiplication on the (CPU) host in double precision

void MatrixMulOnHost(float* M, float* N, float* P, int Width)

{

for (int i = 0; i < Width; ++i)

for (int j = 0; j < Width; ++j) {

double sum = 0;

for (int k = 0; k < Width; ++k) {

double a = M[i * width + k];

double b = N[k * width + j];

sum += a * b;

}

P[i * Width + j] = sum;

}

}

i

k

k

j

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

int size = Width * Width * sizeof(float);

float *Md, *Nd, *Pd;

…

1. // Allocate and Load M, N to device memory

cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);

cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

// Allocate P on the device

cudaMalloc(&Pd, size);

Step 1: Input Matrix Data Transfer
(Host-side Code)

80

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

Step 3: Output Matrix Data Transfer
(Host-side Code)

2. // Kernel invocation code – to be shown later

…

3. // Read P from the device

cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices

cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

}

81

82

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

Step 2: Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

// Pvalue is used to store the element of the matrix

// that is computed by the thread

float Pvalue = 0;

82

83

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign 83

Nd

Md Pd

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

Step 2: Kernel Function (cont.)

for (int k = 0; k < Width; ++k) {

float Melement = Md[threadIdx.y*Width+k];

float Nelement = Nd[k*Width+threadIdx.x];

Pvalue += Melement * Nelement;

}

Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;

}

ty

tx

ty

tx

k

k

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

// Setup the execution configuration

dim3 dimGrid(1, 1);

dim3 dimBlock(Width, Width);

// Launch the device computation threads!

MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Step 2: Kernel Invocation

(Host-side Code)

84

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign

Only One Thread Block Used
• One Block of threads computes

matrix Pd

– Each thread computes one
element of Pd

• Each thread

– Loads a row of matrix Md

– Loads a column of matrix Nd

– Performs one multiply and
addition for each pair of Md and
Nd elements

– Compute to off-chip memory
access ratio close to 1:1 (not very
high)

• Size of matrix limited by the
number of threads allowed in a
thread block

Grid 1

Block 1

3 2 5 4

2

4

2

6

48

Thread

(2, 2)

WIDTH

Md Pd

Nd

85

86

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign 86

Handling Arbitrary Sized Square Matrices

(will cover later)

• Have each 2D thread block to

compute a (TILE_WIDTH)2 sub-

matrix (tile) of the result matrix

– Each has (TILE_WIDTH)2 threads

• Generate a 2D Grid of

(WIDTH/TILE_WIDTH)2 blocks
Md

Nd

Pd

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

by

bx

You still need to put a loop

around the kernel call for cases

where WIDTH/TILE_WIDTH

is greater than max grid size

(64K)!

TILE_WIDTH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 498AL, University of Illinois, Urbana-Champaign87

Compilation

• Any source file containing CUDA language
extensions must be compiled with NVCC

• NVCC is a compiler driver

– Works by invoking all the necessary tools and
compilers like cudacc, g++, cl, ...

• NVCC outputs:

– C code (host CPU Code)

• Must then be compiled with the rest of the

application using another tool

– PTX (Parallel Thread eXecution)

• Just-in-time compilation during loading

87

88

Some Useful Information on

Tools

– If you have access to a GPU locally, download
CUDA Toolkit 10.0
https://developer.nvidia.com/cuda-downloads

– Else, instructions coming shortly…

https://developer.nvidia.com/cuda-downloads

