
CS 677: Parallel Programming for 

Many-core Processors 

Lecture 7

Instructor: Philippos Mordohai

Webpage: www.cs.stevens.edu/~mordohai

E-mail: Philippos.Mordohai@stevens.edu
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Logistics

• Midterm: March 27 (after spring break)

– Closed book

– All notes from weeks 2 to 7, except for:

• MRI case study

• prefix sum

– No version-specific details and parameters

– Device parameters will be provided if 

necessary
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Overview

• Homework 4

• Parallel Patterns: Parallel Prefix Sum (Scan)

– Part II

• Case Study – Electrostatic Potential Calculation

– A class project at UIUC also resulting in publications

– Chapter 12 in K&H

• Input Binning 

– From NVIDIA and University of Houston
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Homework Assignment 4

• Apply Sobel filter on (grayscale) images 
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Homework Assignment 4: CPU Version

for (i = 1; i < ImageNRows ‐ 1; i++)

for (j = 1; j < ImageNCols ‐1; j++)
{

sum1 = u[i‐1][j+1] ‐ u[i‐1][j‐1]
+ 2 * u[i][j+1] ‐ 2 * u[i][j‐1]
+ u[i+1][j+1] ‐ u[i+1][j‐1];

sum2 = u[i‐1][j‐1] + 2 * u[i‐1][j] 
+ u[i‐1][j+1] - u[i+1][j‐1] 
‐ 2 * u[i+1][j] ‐ u[i+1][j+1];

magnitude = sum1*sum1 + sum2*sum2;

if (magnitude > THRESHOLD)

e[i][j] = 255;

else

e[i][j] = 0;

}

5Mary Hall

CS6963 University of Utah



Homework Assignment 4

• Compute magnitude of filter response Gx
2+ Gy

2 and output:
– 0 if magnitude below threshold

– 255 if magnitude above threshold

– 0 pixel is within 1 pixel of image border
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Example Output
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Open Questions

• Memory bandwidth

• 1D vs. 2D block structure

– Fetching of pixels at block boundaries

• I prefer solutions without padding, but you 

can pad for a 10% penalty

• Solutions using global memory only will 

receive little credit
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The PPM Image Format

• PPM is a very simple format

• Each image file consists of a header 

followed by all the pixel data

• Header
P6

# comment 1

# comment 2

.

#comment n

rows columns maxvalue

pixels

P3 means ASCII file

P6 means binary (most 

practical)

See filereading code 

in homework zip file
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Reading the Header

fp = fopen(filename, "rb");

…

int num = fread(chars, sizeof(char), 1000, fp);  

if (chars[0] != 'P' || chars[1] != '6')     

{      

fprintf(stderr, “ERROR  file '%s' does not 

start with \"P6\"  I am expecting a binary 

PPM file\n", filename);      

return NULL;    

}

check for “P6” 

in first line
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Reading the Header (cont)

unsigned int width, height, maxvalue;  

char *ptr = chars+3; // P 6 newline  

if (*ptr == '#') // comment line!     

{      

ptr = 1 + strstr(ptr, "\n");    

}  

num = sscanf(ptr, "%d\n%d\n%d",  

&width, &height, &maxvalue);  

fprintf(stderr, "read %d things   width %d  height %d  

maxval %d\n", num, width, height, maxvalue);    

*xsize = width;  

*ysize = height;  

*maxval = maxvalue;

skip over comments by

looking for # in first 

column
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Reading the Data

// allocate buffer to read the rest of the file into  

int bufsize =  3 * width * height * sizeof(unsigned char);  

if ((*maxval) > 255) bufsize *= 2;  

unsigned char *buf = (unsigned char *)malloc( bufsize );

…

long numread = fread(buf, sizeof(char), bufsize, fp);

…

int pixels = (*xsize) * (*ysize);  

for (int i=0; i<pixels; i++) 

pic[i] = (int) buf[3*i];  // red channel   

return pic; // success
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A Kogge-Stone Parallel Scan Algorithm

T 3 4 11 11 15 16 22 25

T 3 4 8 7 4 5 7 9

T 3 4 11 11 12 12 11 14

Stride = 1

Stride = 2

T 3 1 7 0 4 1 6 3

Stride = 4

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016



Improving Efficiency

• A common parallel algorithm pattern:

Balanced Trees
– Build a balanced binary tree on the input data and sweep it to 

and from the root

– Tree is not an actual data structure, but a concept to determine 
what each thread does at each step

• For scan:
– Traverse down from leaves to root building partial sums at 

internal nodes in the tree

• Root holds sum of all leaves

– Traverse back up the tree building the scan from the partial 
sums
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Brent-Kung Parallel Scan - Reduction Step
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Inclusive Post Scan Step
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+

x0 x4 x6x2∑x0..x1 ∑x4..x5
∑x0..x3 ∑x0..x7

∑x0..x5

Move (add) a critical value  to a 

central location where it is needed
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Inclusive Post Scan Step
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+

x0 x4 x6x2∑x0..x1 ∑x4..x5
∑x0..x3 ∑x0..x7

∑x0..x5

+ +

∑x0..x2 ∑x0..x4

+

∑x0..x6
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Putting it Together
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Reduction Step Kernel Code
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// threadIdx.x+1    = 1, 2, 3, 4….

// stride = 1, index = 
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Putting it Together
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Kernel Function
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Work Analysis

• The parallel Inclusive Scan executes 2 log(n) parallel 
iterations

– log(n) in reduction and log(n) in post scan

– The iterations do n/2, n/4,..1, 1, …., n/4. n/2 adds

– Total adds: 2(n-1)  O(n) work

• The total number of adds is no more than 
twice of that done in the efficient sequential 
algorithm

– The benefit of parallelism can easily overcome 
the 2x work when there is sufficient hardware
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A Couple of Details

• Brent-Kung uses half the number of 

threads compared to Kogge-Stone

– Each thread should load two elements into the 

shared memory

• Brent-Kung takes twice the number of 

steps compared to Kogge-Stone

– Kogge-Stone is more popular for parallel scan 

with blocks in GPUs
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Flow of a Complete Scan – Hierarchical Approach
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Using Global Memory Contents in 

CUDA

• Data in registers and shared memory of one 
thread block are not visible to other blocks

• To make data visible, the data has to be written 
into global memory

• However, any data written to the global memory 
are not visible until a memory fence. This is 
typically done by terminating the kernel execution

• Launch another kernel to continue the execution. 
The global memory writes done by the terminated 
kernels are visible to all blocks.
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Flow of a Complete Scan – Hierarchical Approach
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Kernel

Kernel

Kernel
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Working on Arbitrary-Length Input

• Build on the scan kernel that handles up to 
2*blockDim.x elements

• For Kogge-Stone, have each section of 
blockDim.x elements assigned to a block

• Have each block write the sum of its section 
into a Sum array indexed by blockIdx.x

• Run parallel scan on the Sum array
– May need to break down Sum into multiple 

sections if it is too big for a block

• Add the scanned Sum array values to the 
elements of corresponding sections

27© David Kirk/NVIDIA and Wen-mei W. Hwu
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© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign
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Electrostatic potential map is used in building stable structures for 

molecular dynamics simulation

Electrostatic Potential Calculation
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•The contribution of atom[i] to the electrostatic 

potential at lattice point j is atom[i].charge / rij

•The total potential at lattice point j is the sum of 

contributions from all atoms in the system

Core Computation

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Sequential CPU Code
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Computes a single slice (const z)



GPU Implementation

• Option 1: each thread calculates the 

contribution of one atom to all grid points

– “Scatter”

• Option 2: each thread calculates the 

accumulated contributions of all atoms to 

one grid point

– “Gather”

• Pros/cons?

31© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Loop Transformation

• Need perfectly 

nested loops

– as in MRI 

example

– Move 

calculation of y 

into inner loop

– Pros/cons?

32© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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DCS Kernel Design Overview

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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DCS Kernel Version 1

qsqrtf(): reciprocal square root© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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DCS Kernel Version 1

qsqrtf(): reciprocal square root

ILP vs. TLP

atominfo[].z is already squared

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Information Reuse
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DCS kernel Version 2
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Memory Coalescing

• Two issues:

– Each thread calculates potentials of four 

adjacent grid points

– If grid width is not multiple of tile width, 

boundary management becomes complicated

38© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Memory Layout for Coalescing
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DCS Kernel Version 3

ILP vs. TLP© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Performance Comparison

41
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CPU vs. CPU-GPU Comparison

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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UIUC ECE 598HK

Computational Thinking for 

Many-core Computing

Input Binning
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Objective

• To understand how data scalability 

problems in gather parallel execution 

motivate input binning

• To learn basic input binning techniques

• To understand common tradeoffs in input 

binning 
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Scatter to Gather Transformation

Thread 1 Thread 2 …
in

out

Thread 1 Thread 2

…

in

out

GPU Computing Forum



However

• Input tends to be much less regular than output

– It may be difficult for each thread to efficiently locate 
all inputs relevant to its output

– Or, to efficiently exclude all inputs irrelevant to its 
output

• In a naïve arrangement, all threads may have to 
process all inputs to decide if each input is relevant 
to its output

– This makes execution time scale poorly with data set 
size

– Important problem when processing large data sets
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DCS Algorithm for Electrostatic Potentials

Revisited

• At each grid point, sum 

the electrostatic 

potential from all atoms

– All threads read all inputs

• Highly data-parallel

• But has quadratic 

complexity
– Number of grid points 

number of atoms

– Both proportional to volume

– Poor data scalability

47
©Wen-mei W. Hwu and David Kirk/NVIDIA 2010



Algorithm for Electrostatic Potentials

With a Cutoff

• Ignore atoms beyond a 

cutoff distance, rc

– Typically 8Å–12Å

– Long-range potential may 

be computed separately

• Number of atoms within 

cutoff distance is 

roughly constant 

(uniform atom density)

– 200 to 700 atoms within 

8Å–12Å cutoff sphere for 

typical biomolecular 

structures

48
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Implementation Challenge

• For each tile of grid points, we need to 
identify the set of atoms that need to be 
examined

– One could naively examine all atoms and only 
use the ones whose distance is within the given 
range 

– But this examination still takes time, and brings 
the time complexity right back to 
• number of atoms × number of grid points

– Each thread needs to avoid examining the atoms 
outside the range of its grid point(s)
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Binning

• A process that groups data to form a 

chunk called bin

• Helps problem solving due to data 

coarsening

• Uniform bin arrays, Variable bins, KD 

Trees, …
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Binning for Cut-Off Potential

• Divide the simulation volume with non-

overlapping uniform cubes

• Every atom in the simulation volume falls into a 

cube based on its spatial location

– Bins represent location property of atoms

• After binning, each cube has a unique index in 

the simulation space for easy parallel access
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Spatial Sorting Using Binning

• Presort atoms into bins
by location in space

• Each bin holds several 

atoms

• Cutoff potential only 

uses bins within rc

– Yields a linear complexity 

cutoff potential algorithm

52
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Bin Size Considerations

• Capacity of atom bins needs to be balanced

– Too large – many dummy atoms in bins

– Too small – some atoms will not fit into bins

– Target bin capacity to cover more than 95% or atoms

• CPU  places all atoms that do not fit into bins into 
an overflow bin

– Use a CPU sequential algorithm to calculate their 
contributions to the energy grid lattice points.

– CPU and GPU can do potential calculations in parallel
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Bin Design
• Uniform sized/capacity bins allow array implementation

– And the relative offset list approach

• Bin capacity should be big enough to contain all the 

atoms that fall into a bin

– Cut-off will screen away atoms that weren’t processed

– Performance penalty if too many are screened away
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Going from DCS Kernel to Large 

Bin Cut-off Kernel

• Adaptation of techniques from the direct Coulomb 

summation kernel for a cutoff kernel

• Atoms are stored in constant memory as with DCS 

kernel

• CPU loops over potential map regions that are (24Å)3 in 

volume (cube containing cutoff sphere)

• Large bins of atoms are appended to the constant 

memory atom buffer until it is full, then GPU kernel is 

launched

• Host loops over map regions reloading constant memory 

and launching GPU kernels until completion

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana, 

Illinois, August 2-5, 2010
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Large Bin Design Concept

• Map regions are (24Å)3 in volume

• Regions are sized large enough to provide 

the GPU enough work in a single kernel 

launch

– (48 lattice points)3 for lattice with 0.5Å spacing

– Small bins don’t provide the GPU enough 

work to utilize all SMs, to amortize constant 

memory update time, or kernel launch 

overhead

56©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana, 

Illinois, August 2-5, 2010
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Large-bin Cutoff Kernel Evaluation 

• 6 speedup relative to fast CPU version

• Work-inefficient

– Coarse spatial hashing into (24Å)3 bins

– Only 6.5% of the atoms a thread tests are 

within the cutoff distance

• Better adaptation of the algorithm to the 

GPU will gain another 2.5
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Improving Work Efficiency

• Thread block examines atom bins 
up to the cutoff distance
– Use a sphere of bins

– All threads in a block scan the same 
bins and atoms
• No hardware penalty for multiple 

simultaneous reads of the same address

• Simplifies fetching of data

– The sphere has to be big enough to 
cover all grid point at corners

– There will be a small level of  
divergence
• Not all grid points processed by a thread 

block relate to all atoms in a bin the 
same way

• (A within cut-off distance of N but outside 
cut-off of M)

58
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The Neighborhood is a volume

• Calculating and 

specifying all bin 

indexes of the 

sphere can be 

quite complex

– Rough 

approximations 

reduce efficiency
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Neighborhood Offset List

(Pre-calculated)
• A list of relative offsets enumerating the bins 

that are located within the cutoff distance for a 
given location in the simulation volume

• Detection of surrounding atoms becomes 
realistic for output grid points

– By visiting bins in the neighborhood offset list and 
iterating over the atoms they contain

center (0, 0)

(1, 2)

not included

cutoff distance

(-1, -1)

a bin in the neighborhood 

list
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Performance

• O(MN’) where M and N’ are the number of 

output grid points and atoms in the 

neighborhood offset list, respectively

– In general, N’ is small compared to the 

number of all atoms

• Works well if the distribution of atoms is 

uniform

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 61



Details on Small Bin Design

• For 0.5Å lattice spacing, a 
(4Å)3 cube of the potential 
map is computed by each 
thread block
– 888 potential map points

– 128 threads per block 
(4 points/thread)

– 34% of examined atoms 
are within cutoff distance

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 62



More Design Considerations for the 

Cutoff Kernel

• High memory throughput to atom data 

essential

– Group threads together for locality

– Fetch bins of data into shared memory

– Structure atom data to allow fetching

• After taking care of memory demand, 

optimize to reduce instruction count

– Loop and instruction-level optimization
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Another thread block runs

while this one waits

Tiling Atom Data

• Shared memory used to reduce Global 
Memory bandwidth consumption
– Threads in a thread block collectively load 

one bin at a time into shared memory

– Once loaded, threads scan atoms in 
shared memory

– Reuse: Loaded bins used 128 times

Threads individually

compute potentials

using bin in shared mem

Collectively

load next

bin

Write bin to

shared

memoryS
u
s
p
e
n
d

Data returned 

from global 

memory R
e
a
d
y

Time

Execution cycle of a thread block
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Handling Overfull Bins

• In typical use, 2.6% of atoms exceed bin 
capacity

• Spatial sorting puts these into a list of extra 
atoms

• Extra atoms processed by the CPU

– Computed with CPU-optimized algorithm

– Takes about 66% as long as GPU computation

– Overlapping GPU and CPU computation yields 
additional speedup

– CPU performs final integration of grid data
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CPU Grid Data Integration

• Effect of overflow 
atoms are added 
to the CPU master 
energygrid array

• Slice of grid point 
values calculated 
by GPU are added 
into the master 
energygrid array 
while removing the 
padded elements 

0,0 0,1

1,0 1,1

…

… …

…

…
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GPU Thread Coarsening

• Each thread computes 

potentials at four potential 

map points

– Reuse x and z components 

of distance calculation

– Check x and z components 

against cutoff distance

(cylinder test)

• Exit inner loop early upon 

encountering the first 

empty slot in a bin
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GPU Thread Inner Loop
for (i = 0;  i < BIN_DEPTH;  i++) {

aq = AtomBinCache[i].w;

if (aq == 0) break;

dx = AtomBinCache[i].x - x;

dz = AtomBinCache[i].z - z;

dxdz2 = dx*dx + dz*dz;

if (dxdz2 > cutoff2) continue;

dy = AtomBinCache[i].y - y;

r2 = dy*dy + dxdz2;

if (r2 < cutoff2)

poten0 += aq * rsqrtf(r2);  

// Simplified example

dy = dy - 2 * grid_spacing;

/* Repeat three more times */

}

Exit when an empty atom bin 

entry is encountered

Cylinder test

Cutoff test

and potential value 

calculation
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Cutoff Summation Runtime

50k–1M atom structure size

GPU cutoff with 

CPU overlap:

12x-21x faster 

than CPU core

69©Wen-mei W. Hwu and David Kirk/NVIDIA 2010



Summary

• Large bins allow re-use of all-input 
kernels with little code change
– But work efficiency can be very low

• Use of small-sized bins require more 
sophisticated kernel code to traverse list 
of small bins
– Much higher work efficiency

– Small bins also serve as tiles for locality

• CPU processes overflow atoms from 
fixed capacity bins
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