CS 677: Parallel Programming for Many-core Processors Lecture 7

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Logistics

- Midterm: March 27 (after spring break)
- Closed book
- All notes from weeks 2 to 7, except for:
- MRI case study
- prefix sum
- No version-specific details and parameters
- Device parameters will be provided if necessary

Overview

- Homework 4
- Parallel Patterns: Parallel Prefix Sum (Scan)
- Part II
- Case Study - Electrostatic Potential Calculation - A class project at UIUC also resulting in publications - Chapter 12 in K\&H
- Input Binning
- From NVIDIA and University of Houston

Homework Assignment 4

- Apply Sobel filter on (grayscale) images

$$
G_{x}=\left[\begin{array}{lll}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right]
$$

$$
G_{y}=\left[\begin{array}{ccc}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{array}\right]
$$

Homework Assignment 4: CPU Version

```
for (i = 1; i < ImageNRows - 1; i++)
    for (j \(=1 ; ~ j<I m a g e N C o l s ~-1 ; ~ j++)\)
    \{
        sum1 \(=u[i-1][j+1]-u[i-1][j-1]\)
        +2 * u[i][j+1] - 2 * u[i][j-1]
        \(+u[i+1][j+1]-u[i+1][j-1] ;\)
        sum2 \(=u[i-1][j-1]+2 * u[i-1][j]\)
        \(+u[i-1][j+1]-u[i+1][j-1]\)
        - 2 * u[i+1][j] - u[i+1][j+1];
    magnitude \(=\) sum1*sum1 + sum2*sum2;
    if (magnitude > THRESHOLD)
        e[i][j] \(=255\);
        else
\[
e[i][j]=0 ;
\]

\section*{Homework Assignment 4}

- Compute magnitude of filter response \(\mathrm{G}_{\mathrm{x}}{ }^{2}+\mathrm{G}_{\mathrm{y}}{ }^{2}\) and output:
- 0 if magnitude below threshold
- 255 if magnitude above threshold
- 0 pixel is within 1 pixel of image border

\section*{Example Output}


\section*{Open Questions}
- Memory bandwidth
- 1D vs. 2D block structure
- Fetching of pixels at block boundaries
- I prefer solutions without padding, but you can pad for a \(10 \%\) penalty
- Solutions using global memory only will receive little credit

\section*{The PPM Image Format}
- PPM is a very simple format
- Each image file consists of a header followed by all the pixel data
- Header

Use Gimp or IrfanView to manipulate images and convert between formats

\section*{Reading the Header}
```

fp = fopen(filename, "rb");
int num = fread(chars, sizeof(char), 1000, fp);
if (chars[0] != 'P' || chars[1] != '6')
{
fprintf(stderr, "ERRQR file '%s' does not
start with \"P6\" I am expecting a binary
PPM file\n", filename\;
return NULL;
}

Reading the Header (cont)

```
unsigned int width, height, maxvalue;
char *ptr = chars+3; // P 6 newline
if (*ptr == '#') // comment line!
{
    ptr = 1 + strstr(ptr, "\n");
}
num = sscanf(ptr, "%d\n%d\n%d",
                        &width, &height, &maxvalue);
fprintf(stderr, "read %d things width %d height %d
    maxval %d\n", num, width, height, maxvalue);
*xsize = width;
*ysize = height;
*maxval = maxvalue;
```


Reading the Data

```
// allocate buffer to read the rest of the file into
int bufsize = 3 * width * height * sizeof(unsigned char);
if ((*maxval) > 255) bufsize *= 2;
unsigned char *buf = (unsigned char *)malloc( bufsize );
long numread = fread(buf, sizeof(char), bufsize, fp);
int pixels = (*xsize) * (*ysize);
for (int i=0; i<pixels; i++)
    pic[i] = (int) buf[3*i]; // red channel
return pic; // success
```


A Kogge-Stone Parallel Scan Algorithm

Improving Efficiency

- A common parallel algorithm pattern:

Balanced Trees

- Build a balanced binary tree on the input data and sweep it to and from the root
- Tree is not an actual data structure, but a concept to determine what each thread does at each step
- For scan:
- Traverse down from leaves to root building partial sums at internal nodes in the tree
- Root holds sum of all leaves
- Traverse back up the tree building the scan from the partial sums

Brent-Kung Parallel Scan - Reduction Step

Inclusive Post Scan Step

Inclusive Post Scan Step

Putting it Together

Reduction Step Kernel Code

```
__global__ void Brent_Kung_scan_kernel(float *X, float *Y,
    int InputSize) {
    __shared__ float XY[SECTION_SIZE];
    int i = 2*blockIdx.x*blockDim.x + threadIdx.x;
    if (i < InputSize) XY[threadIdx.x] = X[i];
    if (i+blockDim.x < InputSize) XY[threadIdx.x+blockDim.x] = X[i+blockDim.x];
    for (unsigned int stride = 1; stride <= blockDim.x; stride *= 2) {
        __syncthreads();
        int index = (threadIdx.x+1) * 2* stride -1;
        if (index < SECTION_SIZE) {
        XY[index] += XY[index - stride];
        }
    }
```

$$
\begin{aligned}
& / / \text { threadIdx. } x+1=1,2,3,4 \ldots \\
& / / \text { stride }=1, \text { index }=
\end{aligned}
$$

Putting it Together

Kernel Function

```
__global__ void Brent_Kung_scan_kernel(float *X, float *Y,
    int InputSize) {
        shared__ float XY[SECTION_SIZE];
    int i = 2*blockIdx.x*blockDim.x + threadIdx.x;
    if (i < InputSize) XY[threadIdx.x] = X[i];
    if (i+blockDim.x < InputSize) XY[threadIdx.x+blockDim.x] = X[i+blockDim.x];
    for (unsigned int stride = 1; stride <= blockDim.x; stride *= 2) {
        __syncthreads();
        int index = (threadIdx.x+1) * 2* stride -1;
        if (index < SECTION_SIZE) {
            XY[index] += XY[index - stride];
        }
    }
    for (int stride = SECTION_SIZE/4; stride > 0; stride /= 2) {
        __syncthreads();
        int index = (threadIdx.x+1)*stride*2 - 1;
        if(index + stride < SECTION_SIZE) {
            XY[index + stride] += XY[index];
        }
    }
        syncthreads();
    if (i < InputSize) Y[i] = XY[threadIdx.x];
    if (i+blockDim.x < InputSize) Y[i+blockDim.x] = XY[threadIdx.x+blockDim.x];
}
```


Work Analysis

- The parallel Inclusive Scan executes $2 \log (\mathrm{n})$ parallel iterations
- $\log (n)$ in reduction and $\log (n)$ in post scan
- The iterations do $n / 2, n / 4, . .1,1, \ldots ., n / 4 . n / 2$ adds
- Total adds: $2(\mathrm{n}-1) \rightarrow \mathrm{O}(\mathrm{n})$ work
- The total number of adds is no more than twice of that done in the efficient sequential algorithm
- The benefit of parallelism can easily overcome the $2 x$ work when there is sufficient hardware

A Couple of Details

- Brent-Kung uses half the number of threads compared to Kogge-Stone
- Each thread should load two elements into the shared memory
- Brent-Kung takes twice the number of steps compared to Kogge-Stone
- Kogge-Stone is more popular for parallel scan with blocks in GPUs

Flow of a Complete Scan - Hierarchical Approach

Using Global Memory Contents in CUDA

- Data in registers and shared memory of one thread block are not visible to other blocks
- To make data visible, the data has to be written into global memory
- However, any data written to the global memory are not visible until a memory fence. This is typically done by terminating the kernel execution
- Launch another kernel to continue the execution. The global memory writes done by the terminated kernels are visible to all blocks.

Flow of a Complete Scan - Hierarchical Approach

Working on Arbitrary-Length Input

- Build on the scan kernel that handles up to 2*blockDim.x elements
- For Kogge-Stone, have each section of blockDim.x elements assigned to a block
- Have each block write the sum of its section into a Sum array indexed by blockldx.x
- Run parallel scan on the Sum array
- May need to break down Sum into multiple sections if it is too big for a block
- Add the scanned Sum array values to the elements of corresponding sections

Electrostatic Potential Calculation

Electrostatic potential map is used in building stable structures for molecular dynamics simulation

Core Computation

-The contribution of atom[i] to the electrostatic potential at lattice point j is atom[i].charge $/ \mathrm{r}_{\mathrm{ij}}$ -The total potential at lattice point j is the sum of contributions from all atoms in the system

Sequential CPU Code

```
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,
    int numatoms) {
    int i,j,n;
    int atomarrdim = numatoms * 4;
    for (j=0; j<grid.y; j++) {
    Computes a single slice (const z)
    float y = gridspacing * (float) j;
    for (i=0; i<grid.x; i++) {
        float x = gridspacing * (float) i;
        float energy = 0.0f;
        for (n=0;n<atomarrdim; n+=4) { // calculate potential contribution of each atom
            float dx = x - atoms[n ];
            float dy = y - atoms[n+1];
            float dz= z- atoms[n+2];
                energy += atoms[n+3]/ sqrtf(dx*dx + dy*dy + dz*dz);
            }
            energygrid[grid.x*grid.y*k + grid.x*j + i] = energy;
        }
}
}
```


GPU Implementation

- Option 1: each thread calculates the contribution of one atom to all grid points - "Scatter"
- Option 2: each thread calculates the accumulated contributions of all atoms to one grid point
- "Gather"
- Pros/cons?

Loop Transformation

- Need perfectly nested loops
- as in MRI example
- Move calculation of y into inner loop
- Pros/cons?

```
for (j=0; j<grid.y; j++) {
    float y = gridspacing * (float) j;
    for (i=0; i<grid.x; i++) {
        float }\textrm{x}=\mathrm{ gridspacing * (float) i;
        float energy = 0.0f;
        for (n=0; n<atomarrdim; n+=4) {
        float dx = x - atoms[n ];
        float dy = y - atoms[n+1];
        float dz = z - atoms[n+2];
        energy += atoms[n+3]/ sqrtf(dx*dx + dy*dy + dz*dz);
        }
        energygrid[grid.x*grid.y*k + grid.x*j + i] = energy;
    }
}
```


DCS Kernel Design Overview

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

DCS Kernel Version 1

float curenergy $=$ energygrid[outaddr];
float coorx $=$ gridspacing * xindex;
float coory $=$ gridspacing * yindex;
int atomid;
float energyval $=0.0 f$;
for (atomid=0; atomid<numatoms; atomid ++) \{
float $\mathrm{dx}=$ coorx - atominfo[atomid]. x ;
float dy = coory - atominfo[atomid].y;
energyval $+=$ atominfo[atomid].w *

$$
\operatorname{rsqrtf}(\mathrm{dx} * \mathrm{dx}+\mathrm{dy} * \mathrm{dy}+\operatorname{atominfo}[\text { atomid].z); }
$$

energygrid[outaddr] = curenergy + energyval;

Start global memory reads early. Kernel hides some of its own latency.

DCS Kernel Version 1

float curenergy $=$ energygrid[outaddr];
float coorx $=$ gridspacing * xindex;
float coory $=$ gridspacing * yindex;
int atomid;
float energyval $=0.0 f$;
for (atomid=0; atomid<numatoms; atomid ++) \{
float $\mathrm{dx}=$ coorx - atominfo[atomid]. x ;
float dy = coory - atominfo[atomid].y; energyval $+=$ atominfo[atomid].w *

$$
\operatorname{rsqrtf}(\mathrm{dx} * \mathrm{dx}+\mathrm{dy} * \mathrm{dy}+\operatorname{atominfo}[\text { atomid }] . \mathrm{z}) ;
$$

\}
energygrid[outaddr] = curenergy + energyval;

Only dependency on global memory read is at the end of the kernel...

Information Reuse

DCS kernel Version 2

\ldots..for (atomid $=0$; atomid<numatoms; atomid ++) \{
float dy = coory - atominfo[atomid]. y ;
float dysqpdzsq $=(d y *$ dy $)$ *atominfo[atomid].z;
float $\mathrm{x}=$ atominfo[atomid]. x ;
float dx = coorx1 -x ;
float dx2 $=$ coorx2 -x ;
float $\mathrm{dx} 3=$ coorx $3-\mathrm{x}$;
float dx4 = coorx4 - x;

Compared to non-unrolled kernel: memory loads are decreased by $4 x$, and FLOPS per evaluation are reduced, but register use is increased...
float charge $=$ atominfo[atomid].w;
energyvalx $1+=$ charge * $\operatorname{rsqrtf}(\mathrm{dx} 1 * \mathrm{dx} 1+$ dysqpdzsq);
energyvalx $2+=$ charge * $\operatorname{rsqrtf}(\mathrm{dx} 2 * \mathrm{dx} 2+$ dysqpdzsq);
energyvalx $3+=$ charge * $\operatorname{rsqrtf}(\mathrm{dx} 3 * \mathrm{dx} 3+$ dysqpdzsq);
energyvalx $4+=$ charge * $\operatorname{rsqrtf}(\mathrm{dx} 4 * \mathrm{dx} 4+$ dysqpdzsq);

Memory Coalescing

- Two issues:
- Each thread calculates potentials of four adjacent grid points
- If grid width is not multiple of tile width, boundary management becomes complicated

Memory Layout for Coalescing

DCS Kernel Version 3

```
...float coory = gridspacing * yindex;
    float coorx = gridspacing * xindex;
    float gridspacing_coalesce = gridspacing * BLOCKSIZEX
    int atomid;
    for (atomid=0; atomid<numatoms; atomid++) {
    float dy = coory - atominfo[atomid].y;
    float dyz2 = (dy * dy) + atominfo[atomid].z;
    float dx1 = coorx - atominfo[atomid].x;
[...]
    float dx8 = dx7 + gridspacing_coalesce;
    energyvalx1 += atominfo[atomid].w * rsqrtf(dx1*dx1 + dyz2);
[...]
    energyvalx8 += atominfo[atomid].w * rsqrtf(dx8*dx8 + dyz2);
        }
        energygrid[outaddr
[...]
    energygrid[outaddr+7*BLOCKSIZEX] += energyvalx7;
```


Performance Comparison

CPU vs. CPU-GPU Comparison

Accelerating molecular modeling applications with graphics processors. J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.
J. Comp. Chem., 28:2618-2640, 2007.

UIUC ECE 598HK

Computational Thinking for Many-core Computing

Input Binning

Objective

- To understand how data scalability problems in gather parallel execution motivate input binning
- To learn basic input binning techniques
- To understand common tradeoffs in input binning

Scatter to Gather Transformation

However

- Input tends to be much less regular than output
- It may be difficult for each thread to efficiently locate all inputs relevant to its output
- Or, to efficiently exclude all inputs irrelevant to its output
- In a naïve arrangement, all threads may have to process all inputs to decide if each input is relevant to its output
- This makes execution time scale poorly with data set size
- Important problem when processing large data sets

DCS Algorithm for Electrostatic Potentials Revisited

- At each grid point, sum the electrostatic potential from all atoms
- All threads read all inputs
- Highly data-parallel
- But has quadratic complexity
- Number of grid points \times number of atoms
- Both proportional to volume
- Poor data scalability

Algorithm for Electrostatic Potentials With a Cutoff

- Number of atoms within cutoff distance is roughly constant (uniform atom density)
- 200 to 700 atoms within $8 \AA \AA-12 \AA$ cutoff sphere for typical biomolecular structures

Implementation Challenge

- For each tile of grid points, we need to identify the set of atoms that need to be examined
- One could naively examine all atoms and only use the ones whose distance is within the given range
- But this examination still takes time, and brings the time complexity right back to
- number of atoms \times number of grid points
- Each thread needs to avoid examining the atoms outside the range of its grid point(s)

Binning

- A process that groups data to form a chunk called bin
- Helps problem solving due to data coarsening
- Uniform bin arrays, Variable bins, KD Trees, ...

Binning for Cut-Off Potential

- Divide the simulation volume with nonoverlapping uniform cubes
- Every atom in the simulation volume falls into a cube based on its spatial location
- Bins represent location property of atoms
- After binning, each cube has a unique index in the simulation space for easy parallel access

(a) Simulation volume

(b) Simulation
volume
with eight bins

Spatial Sorting Using Binning

- Presort atoms into bins by location in space
- Each bin holds several atoms
- Cutoff potential only uses bins within r_{c}
- Yields a linear complexity cutoff potential algorithm

Bin Size Considerations

- Capacity of atom bins needs to be balanced
- Too large - many dummy atoms in bins
- Too small - some atoms will not fit into bins
- Target bin capacity to cover more than 95% or atoms
- CPU places all atoms that do not fit into bins into an overflow bin
- Use a CPU sequential algorithm to calculate their contributions to the energy grid lattice points.
- CPU and GPU can do potential calculations in parallel

Bin Design

- Uniform sized/capacity bins allow array implementation
- And the relative offset list approach
- Bin capacity should be big enough to contain all the atoms that fall into a bin
- Cut-off will screen away atoms that weren't processed
- Performance penalty if too many are screened away

+	+ +	$+\oplus \uparrow+7$		$+ \pm$	$+4$	+
+ +			+ + +	+ +	+ + + +	+ +
+ +	$\begin{aligned} & + \\ & +\quad+ \\ & +\quad+ \end{aligned}$	$\begin{array}{llll} + & + & + & + \\ + & + & + & + \\ + & + \end{array}$		$\begin{array}{ll} t^{\prime} & + \\ t^{\prime} & + \end{array}$		+ +
+	Bins cutoff	beyond the stance are				+ +
+	nev	scanned	+ +	$+$		+

Going from DCS Kernel to Large Bin Cut-off Kernel

- Adaptation of techniques from the direct Coulomb summation kernel for a cutoff kernel
- Atoms are stored in constant memory as with DCS kernel
- CPU loops over potential map regions that are $(24 \AA)^{3}$ in volume (cube containing cutoff sphere)
- Large bins of atoms are appended to the constant memory atom buffer until it is full, then GPU kernel is launched
- Host loops over map regions reloading constant memory and launching GPU kernels until completion

Large Bin Design Concept

- Map regions are $(24 \AA \AA)^{3}$ in volume
- Regions are sized large enough to provide the GPU enough work in a single kernel launch
- (48 lattice points) $)^{3}$ for lattice with $0.5 \AA$ spacing
- Small bins don't provide the GPU enough work to utilize all SMs, to amortize constant memory update time, or kernel launch overhead

Large-bin Cutoff Kernel Evaluation

- $6 \times$ speedup relative to fast CPU version
- Work-inefficient
- Coarse spatial hashing into $(24 \AA)^{3}$ bins
- Only 6.5% of the atoms a thread tests are within the cutoff distance
- Better adaptation of the algorithm to the GPU will gain another $2.5 \times$

Improving Work Efficiency

- Thread block examines atom bins up to the cutoff distance
- Use a sphere of bins
- All threads in a block scan the same bins and atoms
- No hardware penalty for multiple simultaneous reads of the same address
- Simplifies fetching of data
- The sphere has to be big enough to cover all grid point at corners
- There will be a small level of divergence
- Not all grid points processed by a thread block relate to all atoms in a bin the
 same way
- (A within cut-off distance of N but outside cut-off of M)

The Neighborhood is a volume

- Calculating and specifying all bin indexes of the sphere can be quite complex
- Rough
approximations reduce efficiency

Neighborhood Offset List (Pre-calculated)

- A list of relative offsets enumerating the bins that are located within the cutoff distance for a given location in the simulation volume
- Detection of surrounding atoms becomes realistic for output grid points
- By visiting bins in the neighborhood offset list and iterating over the atoms they contain

Performance

- $\mathrm{O}\left(\mathrm{MN}\right.$ ') where M and N^{\prime} are the number of output grid points and atoms in the neighborhood offset list, respectively
- In general, N^{\prime} is small compared to the number of all atoms
- Works well if the distribution of atoms is uniform

Details on Small Bin Design

- For $0.5 \AA$ lattice spacing, a $(4 \AA)^{3}$ cube of the potential map is computed by each thread block
- $8 \times 8 \times 8$ potential map points
- 128 threads per block (4 points/thread)
- 34\% of examined atoms are within cutoff distance

More Design Considerations for the Cutoff Kernel

- High memory throughput to atom data essential
- Group threads together for locality
- Fetch bins of data into shared memory
- Structure atom data to allow fetching
- After taking care of memory demand, optimize to reduce instruction count
- Loop and instruction-level optimization

Tiling Atom Data

- Shared memory used to reduce Global Memory bandwidth consumption
- Threads in a thread block collectively load one bin at a time into shared memory
- Once loaded, threads scan atoms in shared memory
- Reuse: Loaded bins used 128 times

Execution cycle of a thread block

Threads individually compute potentials using bin in shared mem	Collectively load next bin	O $\frac{0}{0}$ 0 0 0	Data returned from global memory	8	Write bin to shared memory
Time \longrightarrow		Another thread block runs while this one waits			

Handling Overfull Bins

- In typical use, 2.6\% of atoms exceed bin capacity
- Spatial sorting puts these into a list of extra atoms
- Extra atoms processed by the CPU
- Computed with CPU-optimized algorithm
- Takes about 66\% as long as GPU computation
- Overlapping GPU and CPU computation yields additional speedup
- CPU performs final integration of grid data

CPU Grid Data Integration

- Effect of overflow atoms are added to the CPU master energygrid array
- Slice of grid point values calculated by GPU are added into the master energygrid array while removing the padded elements

GPU Thread Coarsening

- Each thread computes potentials at four potential map points
- Reuse x and z components of distance calculation
- Check x and z components against cutoff distance (cylinder test)
- Exit inner loop early upon encountering the first empty slot in a bin

GPU Thread Inner Loop

Exit when an empty atom bin entry is encountered

```
for (i = 0; i < BIN_DEPTH; i++) {
    aq = AtomBinCache[i].w;
    if (aq == 0) break;
    dx = AtomBinCache[i].x - x;
    dz = AtomBinCache[i].z - z;
    dxdz2 = dx*dx + dz*dz;
    Cylinder test if (dxdz2 > cutoff2) continue;
```

```
    dy = AtomBinCache[i].y - y;
```

 dy = AtomBinCache[i].y - y;
 r2 = dy*dy + dxdz2;
 r2 = dy*dy + dxdz2;
 if (r2 < cutoff2)
 if (r2 < cutoff2)
 poten0 += aq * rsqrtf(r2);
 poten0 += aq * rsqrtf(r2);
 // Simplified example
 // Simplified example
 dy = dy - 2 * grid_spacing;
 dy = dy - 2 * grid_spacing;
 /* Repeat three more times */
 /* Repeat three more times */
 }

```
}
```

Cutoff test and potential value
calculation

Cutoff Summation Runtime

Summary

- Large bins allow re-use of all-input kernels with little code change
- But work efficiency can be very low
- Use of small-sized bins require more sophisticated kernel code to traverse list of small bins
- Much higher work efficiency
- Small bins also serve as tiles for locality
- CPU processes overflow atoms from fixed capacity bins

