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Overview

• Parallel Patterns: Convolution

– Constant memory

– Cache

• Parallel Patterns: Reduction Trees

• Parallel Patterns: Parallel Prefix Sum (Scan)
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Convolution Applications

• A popular array operation that is used in 
various forms in signal processing, digital 
recording, image processing, video 
processing, and computer vision 

• Convolution is often performed as a filter that 
transforms signals and pixels into more 
desirable values
– Some filters smooth out the signal values so that 

one can see the big-picture trend 

– Others like Gaussian filters can be used to 
sharpen boundaries and edges of objects in 
images
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Convolution Computation

• Array operation where each output is a 

weighted sum of a collection of 

neighboring input elements

• Weights are defined in a mask array a.k.a. 

convolution kernel
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1D Convolution Example

• Commonly used for audio processing

– Mask size is usually an odd number of elements for 

symmetry (5 in this example)

• Calculation of P[2]
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1D Convolution Example

• Calculation of P[3]
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1D Convolution – Boundary Condition
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• Calculation of output elements near the boundaries 

(beginning and end) of the input array need to deal 

with “ghost” elements

– Different policies (0, replicates of boundary values, etc.)

3 4 5 4 3 0 4 10 12 12

M

N P
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Filled in

M[0] M[3]M[1]M[2] M[4]

P[0] P[3]P[1] P[2] P[5]P[4] P[6]

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016



Simple 1D Covolution Kernel 

• This kernel forces all elements outside the valid data 

index range to 0
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__global__ void convolution_1D_basic_kernel(float *N, float *M, 

float *P, int Mask_Width, int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

float Pvalue = 0;

int N_start_point = i - (Mask_Width/2);

for (int j = 0; j < Mask_Width; j++) {

if (N_start_point + j >= 0 && N_start_point + j < Width) {

Pvalue += N[N_start_point + j]*M[j];

}

}

P[i] = Pvalue;

}
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2D Convolution – Inside Cells
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2D Convolution – Boundary Condition
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2D Convolution – Ghost Cells
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Access Pattern for M

• M is referred to as mask (a.k.a. kernel, filter, etc.)

– Elements of M are called mask (kernel, filter) 
coefficients

• Calculation of all output P elements need M

• M is not changed during kernel

• Bonus - M elements are accessed in the same 
order when calculating all P  elements

• M is a good candidate for Constant Memory
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Review of CUDA Memories
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• Each thread can:
– Read/write per-thread 

registers (~1 cycle)

– Read/write per-block 

shared memory (~5 

cycles)

– Read/write per-grid 

global memory (~500 

cycles)

– Read/only per-grid

constant memory (~5 

cycles with caching)

Grid

Global Memory

Block (0, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory
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Memory Hierarchies

• If we had to go to global memory to access 

data all the time, the execution speed of 

GPUs would be limited by the global 

memory bandwidth

• One solution: Caches
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Cache

• A cache is an “array” of cache lines
– A cache line can usually hold data from several 

consecutive memory addresses

• When data is requested from the global 
memory, an entire cache line that includes 
the data being accessed is loaded into the 
cache, in an attempt to reduce global memory 
requests
– The data in the cache is a “copy” of the original 

data in global memory
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Cache

Some definitions:

– Spatial locality:  when the data elements 

stored in consecutive memory locations are 

access consecutively

– Temporal locality: when the same data 

element is access multiple times in short 

period of time

• Both spatial locality and temporal locality 

improve the performance of caches
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More on Constant Caching

• Each SM has its own L1 
cache
– Low latency, high bandwidth 

access by all threads

• However, there is no 
way for threads in 
one SM to update the 
L1 cache in other 
SMs
– No L1 cache 

coherence

Grid

Global Memory

Block (0, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

This is not a problem if a variable is NOT modified by a kernel.
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Cache Coherence Protocol

• A mechanism for caches to propagate updates by 

their local processor to other caches (processors)

Processor

L1 Cache

Main Memory

regs

The chip

Processor

L1 Cache

regs

Processor

L1 Cache

regs
…

© David Kirk/NVIDIA and Wen-mei Hwu, Barcelona, Spain,July 18-22 2011
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CPU and GPU have different 

caching philosophy
• CPU L1 caches are usually coherent

– L1 is also replicated for each core

– Even data that will be changed can be cached in 
L1

– Updates to local cache copy invalidate (or less 
commonly update) copies in other caches

– Expensive in terms of hardware and disruption of 
services (cleaning bathrooms at airports..)

• GPU L1 caches are usually incoherent
– Avoid caching data that will be modified
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GPU Cache Coherence

• Current CUDA implementation:

– Provides coherence by disabling L1 cache 
after writes

– There is room for improvement

• Custom implementations

– Temporal coherence: invalidates cache using 
synchronized counters without message 
passing

– Stall writes to cache blocks until they have 
been invalidated in other caches
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Scratchpad vs. Cache

• Scratchpad (shared memory in CUDA) is 
another type of temporary storage used to 
relieve main memory contention.

– In terms of distance from the processor, 
scratchpad is similar to L1 cache

• Unlike cache, scratchpad does not 
necessarily hold a copy of data that is also 
in main memory

– Scratchpad requires explicit data transfer 
instructions, whereas cache doesn’t
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Constant Cache in GPUs

• Modification to cached data needs to be 
(eventually) reflected back to the original data 
in global memory
– Requires logic to track the modified status, etc.

• Constant cache is a special cache for 
constant data that will not be modified during 
kernel execution
– Data declared in the constant memory will not be 

modified during kernel execution.

– Constant cache can be accessed with higher 
throughput than L1 cache for some common 
patterns
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How to Use Constant Memory

• Host code allocates, initializes variables the same 
way as any other variables that need to be copied 
to the device

• Use cudaMemcpyToSymbol(dest,src,size) 
to copy the variable into the device memory
– Declare __const__ float M[MASK_WIDTH]first

• This copy function tells the device that the variable 
will not be modified by the kernel and can be safely 
cached
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Header File for M

#define MASK_WIDTH 5

// Matrix Structure declaration

typedef struct {

unsigned int width;

unsigned int height;

unsigned int pitch; // unused

float* elements;

} Matrix;
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AllocateMatrix

// Allocate a device matrix of dimensions height*width

// If init == 0, initialize to all zeroes.  

// If init == 1, perform random initialization.

//  If init == 2, initialize matrix parameters, but 
//        do not allocate memory 

Matrix AllocateMatrix(int height, int width, int init)

{

Matrix M;

M.width = M.pitch = width;

M.height = height;

int size = M.width * M.height;

M.elements = NULL;
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AllocateMatrix

// don't allocate memory on option 2

if(init == 2) return M;

int size = height * width;

M.elements = (float*) malloc(size*sizeof(float));

for(unsigned int i = 0; i < M.height * M.width; i++)

{

M.elements[i] = (init == 0) ? (0.0f) : 

(rand() / (float)RAND_MAX);

if(rand() % 2) M.elements[i] = - M.elements[i]

}

return M;

}
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Host Code

// global variable, outside any kernel/function

__constant__ float Mc[MASK_WIDTH][MASK_WIDTH];

…

// allocate N, P, initialize N elements, copy N to Nd

Matrix  M;

M  = AllocateMatrix(MASK_WIDTH, MASK_WIDTH, 1);

// initialize M elements

….

cudaMemcpyToSymbol(Mc, M.elements, 

MASK_WIDTH*MASK_WIDTH*sizeof(float));

ConvolutionKernel<<<dimGrid, dimBlock>>>(Nd, Pd);
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Tiled 1D Convolution

• Elements of the input vector are used in 

multiple computations

• Opportunity to use shared memory

• Shared memory tile must be larger than 

mask
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Tiled 1D Convolution Basic Idea
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ghost

ghost

N

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

1 2 3 4 5

8 9 10 11 12 13

0

76

Tile 0

Tile 2
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Loading Left Halo
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int n = Mask_Width/2;

int halo_index_left = (blockIdx.x - 1)*blockDim.x + threadIdx.x;

if (threadIdx.x >= blockDim.x - n) {

N_ds[threadIdx.x - (blockDim.x - n)] =

(halo_index_left < 0) ? 0 : N[halo_index_left];

}

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

i =6halo_index_left = 2

n = 2

2 3 4 5 6 7 8 9

N

N_ds
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Loading Internal Elements
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N_ds[n + threadIdx.x] = N[blockIdx.x*blockDim.x + threadIdx.x];

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

i =6halo = 2

n = 2

2 3 4 5 6 7 8 9

N

N_ds
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Loading Right Halo
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int halo_index_right = (blockIdx.x + 1)*blockDim.x + threadIdx.x;

if (threadIdx.x < n) {

N_ds[n + blockDim.x + threadIdx.x] =

(halo_index_right >= Width) ? 0 : N[halo_index_right];

}

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

i =6 halo_index_right = 10

n = 2

2 3 4 5 6 7 8 9

N

N_ds
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__global__ void convolution_1D_tiled_kernel(float *N, float *P, int Mask_Width,

int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

__shared__ float  N_ds[TILE_SIZE + MAX_MASK_WIDTH - 1];

int n = Mask_Width/2;

int halo_index_left = (blockIdx.x - 1)*blockDim.x + threadIdx.x;

if (threadIdx.x >= blockDim.x - n) {

N_ds[threadIdx.x - (blockDim.x - n)] =

(halo_index_left < 0) ? 0 : N[halo_index_left];

}

N_ds[n + threadIdx.x] = N[blockIdx.x*blockDim.x + threadIdx.x];

int halo_index_right = (blockIdx.x + 1)*blockDim.x + threadIdx.x;

if (threadIdx.x < n) {

N_ds[n + blockDim.x + threadIdx.x] =

(halo_index_right >= Width) ? 0 : N[halo_index_right];

}

__syncthreads();

float Pvalue = 0;

for(int j = 0; j < Mask_Width; j++) {

Pvalue += N_ds[threadIdx.x + j]*M[j];

}

P[i] = Pvalue;

}



Shared Memory Data Reuse
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• Element 2 is used by thread 4 (1X)

• Element 3 is used by threads 4, 5 (2X)

• Element 4 is used by threads 4, 5, 6 (3X)

• Element 5 is used by threads 4, 5, 6, 7 (4X)

• Element 6 is used by threads 4, 5, 6, 7 (4X)

• Element 7 is used by threads 5, 6, 7 (3X)

• Element 8 is used by threads 6, 7 (2X)

• Element 9 is used by thread 7 (1X)

2 3 4 5 6 7 8 9

N_ds
Mask_Width is 5 
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Ghost Cells
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N
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__global__ void convolution_1D_tiled_cache_kernel(float *N, float *P, 

int Mask_Width, int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

__shared__ float  N_ds[TILE_SIZE];

N_ds[threadIdx.x] = N[i];

__syncthreads();

int This_tile_start_point = blockIdx.x * blockDim.x;

int Next_tile_start_point = (blockIdx.x + 1) * blockDim.x;

int N_start_point = i - (Mask_Width/2);

float Pvalue = 0;

for (int j = 0; j < Mask_Width; j ++) {

int N_index = N_start_point + j;

if (N_index >= 0  && N_index < Width) {

if ((N_index >= This_tile_start_point)

&& (N_index < Next_tile_start_point)) {

Pvalue += N_ds[threadIdx.x+j-(Mask_Width/2)]*M[j];

} else {

Pvalue += N[N_index] * M[j];

}

}

}

P[i] = Pvalue;

}
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Analysis – Small 1D Example

• TILE_SIZE = 8, Mask_Width=5

• Output and input tiles for block 1

• For Mask_Width = 5, each block loads 
8+5-1 = 12 elements (12 memory loads)
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6 7 8 9 10 11 16 17

N_ds

Mask_Width is 5 

12 13 14 15

8 9 10 11 12 13 14 15

P
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Each output P element uses 

5 N elements (in N_ds)
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6 7 8 9 10 11 16 17

N_ds

Mask_Width is 5 

• P[8] uses N[6], N[7], N[8], N[9], N[10]

• P[9] uses N[7], N[8], N[9], N[10], N[11]

• P[10] uses N[8], N[9], N[10], N[11], N[12]

• …

• P[14] uses N[12], N[13], N[14], N[15],N[16]

• P[15] uses N[13], N[14], N[15], N[16], N[17]

12 13 14 15

8 9 10 11 12 13 14 15

P

A Total of 8 * 5 N elements are used for the output tile.
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A simple way to calculate tiling 

benefit 

• (8+5-1)=12 elements loaded

• 8*5 global memory accesses replaced by 

shared memory accesses

• This gives a bandwidth reduction of 

40/12=3.3
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In General, in 1D

• TILE_SIZE + Mask_Width -1 elements loaded

• TILE_SIZE * Mask_Width global memory 

accesses replaced by shared memory access

• This gives a reduction of bandwidth by  

(TILE_SIZE *Mask_Width)/(TILE_SIZE+Mask_Width-1)
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Another Way to Look at Reuse

• N[6] is used by P[8] (1X)

• N[7] is used by P[8], P[9] (2X)

• N[8] is used by P[8], P[9], P[10] (3X)

• N[9] is used by P[8], P[9], P[10], P[11] (4X)

• N[10] is used by P[8], P[9], P[10], P[11], P[12] (5X)

• … (5X)

• N[14] is uses by P[12], P[13], P[14], P[15] (4X)

• N[15] is used by P[13], P[14], P[15] (3X)
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N_ds

Mask_Width is 5 

6 7 8 9 10 11 16 1712 13 14 15

8 9 10 11 12 13 14 15

P
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Another Way to Look at Reuse

• Each time an N_ds element is used, it replaces an 
access to the global memory N element

• The total number of global memory accesses  (to the 
(8+5-1)=12 N elements) replaced by shared memory 
accesses is

1 + 2 + 3 + 4 + 5 * (8-5+1) + 4 + 3 + 2 + 1

= 10 + 20 + 10

= 40

So the reduction is

40/12 = 3.3
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Ghost Elements

• For a boundary tile, we load 

TILE_SIZE + (Mask_Width-1)/2 elements
– 10 in our example of Tile_Width =8 and 

Mask_Width=5

• Computing boundary elements do not access 
global memory for ghost cells
– Total accesses is 3 + 4+ 6*5 = 37 accesses

The reduction is 37/10 = 3.7
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In General for 1D Internal Tiles

• The total number of global memory accesses  to the 
(TILE_SIZE+Mask_Width-1)  N elements replaced by shared 
memory accesses is

1 + 2 + … + Mask_Width-1+ Mask_Width * (TILE_SIZE -
Mask_Width+1) + Mask_Width-1+… + 2 + 1

= ((Mask_Width-1) *Mask_Width)/2+ Mask_Width*(TILE_SIZE-
Mask_Width+1) + ((Mask_Width-1) *Mask_Width)/2

= (Mask_Width-1) *Mask_Width+ Mask_Width*(TILE_SIZE-
Mask_Width+1)

= Mask_Width*(TILE_SIZE)
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Bandwidth Reduction in 1D

• The reduction is
Mask_Width * (TILE_SIZE)/(TILE_SIZE+Mask_Width-1)
TileWidth

45

Tile_Width 16 32 64 128 256

Reduction

Mask_Width = 5

4.0 4.4 4.7 4.9 4.9

Reduction

Mask_Width = 9

6.0 7.2 8.0 8.5 8.7
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Tiling P

• Use a thread block to calculate a tile of P

– Each output tile is of TILE_SIZE for both x and y

– row_o = blockIdx.y*TILE_SIZE + ty;

– col_o = blockIdx.x*TILE_SIZE + tx;
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Tiling N
• Each N element is used in calculating up 

to KERNEL_SIZE * KERNEL_SIZE P 

elements (all elements in the tile)
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Input tiles need to be larger than 

output tiles

48

3 4 5 6 7

2 3 4 5 6

1 2 3 4 5

2 3 5 6 7

0 1 1 3 1

3 4 5 6 7

2 3 4 5 6

1 2 3 4 5

2 3 5 6 7

0 1 1 3 1

Output Tile

Input Tile

We will use a strategy 

where the input tile will 

be loaded into the 

shared memory.

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016



Dealing with Mismatch

• Use a thread block that matches input tile

– Each thread loads one element of the input 

tile

– Some threads do not participate in calculating 

output

• There will be if statements and control divergence
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Shifting from output coordinates to 

input coordinates
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Shifting from output coordinates to 

input coordinates

int tx = threadIdx.x;

int ty = threadIdx.y;

int row_o = blockIdx.y * TILE_SIZE + ty;

int col_o = blockIdx.x * TILE_SIZE + tx;

int row_i = row_o - 2;

int col_i = col_o - 2;
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Threads that loads halos outside N 

should return 0.0 
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Taking Care of Boundaries

float output = 0.0f;

if((row_i >= 0) && (row_i < N.height) && 

(col_i >= 0)  && (col_i < N.width) ) {

Ns[ty][tx] = N.elements[row_i*N.width

+ col_i];

}

else{

Ns[ty][tx] = 0.0f;

}
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Some threads do not participate in 

calculating output
if(ty < TILE_SIZE && tx < TILE_SIZE){

for(i = 0; i < 5; i++) {

for(j = 0; j < 5; j++) {

output += Mc[i][j] * Ns[i+ty][j+tx];

}

}
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Some threads do not write output

if(row_o < P.height && col_o < P.width)

P.elements[row_o * P.width + col_o] = 

output;

}
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Setting Block Size

#define BLOCK_SIZE (TILE_SIZE + 4)

dim3 dimBlock(BLOCK_SIZE,BLOCK_SIZE);

In general, block size should be tile size + (kernel 
size -1)

dim3 dimGrid(N.width/TILE_SIZE, 

N.height/TILE_SIZE, 1)
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More on Sizes

• BLOCK_SIZE is limited by the maximal 
number of threads in a thread block

• Input tile sizes could be could be 
N*TILE_SIZE + (KERNEL_SIZE-1)
– By having each thread calculate N input points 

(thread coarsening)

– N is limited is limited by the shared memory size

• KERNEL_SIZE is decided by application 
needs
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8x8 Output Tile

• KERNEL_SIZE = 5

• 12X12=144 N elements need to be loaded 
into shared memory

• The calculation of each P element needs 
to access 25 N elements

• 8X8X25 = 1600 global memory accesses 
are converted into shared memory 
accesses

• A reduction of 1600/144 = 11X
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In General in 2D

• (TILE_SIZE+ KERNEL_SIZE -1)2 N elements 
need to be loaded into shared memory

• The calculation of each P element needs to 
access KERNEL_SIZE 2 N elements

• TILE_SIZE2 * KERNEL_SIZE2 global memory 
accesses are converted into shared memory 
accesses

• The reduction is

TILE_SIZE2 * KERNEL_SIZE 2 /
(TILE_SIZE+ KERNEL_SIZE -1)2
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Bandwidth Reduction in 2D

• The reduction is

TILE_SIZE2 * KERNEL_SIZE 2 /

(TILE_SIZE+ KERNEL_SIZE -1)2
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TILE_SIZE 8 16 32 64

Reduction

KERNEL_SIZE = 5

11.1 16 19.7 22.1

Reduction

KERNEL_SIZE = 9

20.3 36 51.8 64
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Reduction Trees 
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Partition and Summarize

• A commonly used strategy for processing large 
input data sets
– There is no required order of processing elements in 

a data set  (associative and commutative)

– Partition the data set into smaller chunks

– Have each thread to process a chunk

– Use a reduction tree to summarize the results from 
each chunk into the final answer

• We will focus on the reduction tree step for now

• Google and Hadoop MapReduce frameworks 
are examples of this pattern
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Reduction enables other techniques

• Reduction is also needed to clean up after 
some commonly used parallelizing 
transformations

• Privatization

– Multiple threads write into an output location

– Replicate the output location so that each thread 
has a private output location

– Use a reduction tree to combine the values of 
private locations into the original output location
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What is a reduction computation

• Summarize a set of input values into one 
value using a “reduction operation”

– Max

– Min

– Sum

– Product

– Often with user defined reduction operation 
function as long as the operation
• Is associative and commutative

• Has a well-defined identity value (e.g., 0 for sum)
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A sequential reduction algorithm 

performs N operations - O(N)

• Initialize the result as an identity value for the 
reduction operation

– Smallest possible value for max reduction

– Largest possible value for min reduction

– 0 for sum reduction

– 1 for product reduction

• Scan through the input and perform the 
reduction operation between the result value 
and the current input value
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A parallel reduction tree algorithm 

performs N-1 Operations in log(N) steps
3 1 7 0 4 1 6 3

3 7 4 6

max maxmaxmax

maxmax

7 6

max

7
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A tournament is a reduction tree 

with “max” operation 
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A Quick Analysis

• For N input values, the reduction tree performs

– (1/2)N + (1/4)N + (1/8)N + … (1/N) = (1- (1/N))N = N-1 
operations

– In Log (N) steps – 1,000,000 input values take 20 steps
• Assuming that we have enough execution resources

– Average Parallelism (N-1)/Log(N))
• For N = 1,000,000, average parallelism is 50,000

• However, peak resource requirement is 500,000!

• This is a work-efficient parallel algorithm

– The amount of work done is comparable to sequential

– Many parallel algorithms are not work efficient
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A Sum Reduction Example

• Parallel implementation:
– Recursively halve # of threads, add two values per thread 

in each step

– Takes log(n) steps for n elements, requires n/2 threads

• Assume an in-place reduction using shared memory
– The original vector is in device global memory

– The shared memory is used to hold a partial sum vector

– Each step brings the partial sum vector closer to the sum

– The final sum will be in element 0

– Reduces global memory traffic due to partial sum values
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Vector Reduction with Branch Divergence
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0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Partial Sum elements 

steps

Thread 0 Thread 4Thread 1 Thread 2 Thread 3 Thread 5

Data
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Some Observations

• In each iteration, two control flow paths will be sequentially 
traversed for each warp
– Threads that perform addition and threads that do not

– Threads that do not perform addition still consume execution 
resources

• No more than half of threads will be executing after the 
first step
– All odd index threads are disabled after first step

– After the 5th step, entire warps in each block will fail the if test, poor 
resource utilization but no divergence.

• This can go on for a while, up to 5 more steps (1024/32=16= 25), 
where each active warp only has one productive thread until all warps 
in a block retire 
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Thread Index Usage Matters

• In some algorithms, one can shift the index 

usage to improve the divergence behavior

– Commutative and associative operators

• Reduction satisfies this criterion
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A Better Strategy

• Always compact the partial sums into the 

first locations in the partialSum[] array

• Keep the active threads consecutive

73© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016



Thread 0

An Example of 16 threads

0 1 2 3 … 13 1514 181716 19

0+16 15+31

Thread 1 Thread 2 Thread 14 Thread 15
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A Better Reduction Kernel

for (unsigned int stride = blockDim.x/2; 

stride >= 1;  stride >>= 1) 

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}
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A Quick Analysis

• For a 1024 thread block

– No divergence in the first 5 steps

– 1024, 512, 256, 128, 64, 32 consecutive 

threads are active in each step

– The final 5 steps will still have divergence 
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Parallel Algorithm Overhead
__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;

unsigned int start = 2*blockIdx.x*blockDim.x;

partialSum[t] = input[start + t];

partialSum[blockDim+t] = input[start+ blockDim.x+t];

for (unsigned int stride = blockDim.x/2; 

stride >= 1;  stride >>= 1) 

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}
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Parallel Algorithm Overhead
__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;

unsigned int start = 2*blockIdx.x*blockDim.x;

partialSum[t] = input[start + t];

partialSum[blockDim+t] = input[start+ blockDim.x+t];

for (unsigned int stride = blockDim.x/2; 

stride >= 1;  stride >>= 1) 

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}
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Parallel Execution Overhead

• Although the number of “operations” is N, 
each operation involves much more 
complex address calculation and 
intermediate result manipulation

• If the parallel code is executed on a single-
thread hardware, it would be significantly 
slower than the code based on the original 
sequential algorithm
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Parallel Prefix Sum (Scan)
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Objectives

• Prefix Sum (Scan) algorithms

– Frequently used for parallel work assignment 
and resource allocation

– A key primitive in many parallel algorithms to 
convert serial computation into parallel 
computation

– Based on reduction tree and reverse reduction 
tree

• To learn the concept of double buffering
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(Inclusive) Prefix-Sum (Scan) 

Definition

Definition: The all-prefix-sums operation takes a binary 

associative operator ⊕, and an array of n elements

[x0, x1, …, xn-1],

and returns the array

[x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕ … ⊕ xn-1)].

Example: If ⊕ is addition, then the all-prefix-sums operation 

on the array [3  1  7   0   4    1   6   3],

would return [3  4 11 11 15 16 22 25].
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A Inclusive Scan Application 

Example
• Assume that we have a 100-inch bread to feed 10 

people

• We know how much each person wants in inches
– [3  5   2   7   28 4  3 0  8  1]

• How do we cut the bread quickly? 

• How much will be left

• Method 1: cut the sections sequentially: 3 inches 
first, 5 inches second, 2 inches third, etc. 

• Method 2: calculate Prefix scan
– [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)
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Typical Applications of Scan

• Assigning camp slots

• Assigning farmer market space

• Allocating memory to parallel threads

• Allocating memory buffer to communication channels

• Useful for many parallel algorithms:
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• radix sort

• quicksort

• String comparison

• Lexical analysis

• Stream compaction

• Polynomial evaluation

• Solving recurrences

• Tree operations

• Histograms

• Etc.
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A Inclusive Sequential Prefix-Sum

Given a sequence [x0, x1, x2, ... ]

Calculate output [y0, y1, y2, ... ]

Such that y0 = x0

y1 = x0 + x1

y2 = x0 + x1+ x2

…

Using a recursive definition 

yi = yi − 1 + xi
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A Work Efficient C Implementation

y[0] = x[0];

for (i = 1; i < Max_i; i++) 

y[i] = y [i-1] + x[i];

Computationally efficient:

N additions needed for N elements - O(N)

86© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016



A Naïve Inclusive Parallel Scan

• Assign one thread to calculate each y element

• Have every thread to add up all x elements 

needed for the y element

y0 = x0

y1 = x0 + x1

y2 = x0 + x1+ x2

“Parallel programming is easy as long as you do 

not care about performance.”
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Parallel Inclusive Scan using 

Reduction Trees

• Calculate each output element as the 

reduction of all previous elements

– Some reduction partial sums will be shared 

among the calculation of output elements

– Based on hardware added design by Peter 

Kogge and Harold Stone at IBM in the 1970s –

Kogge-Stone Trees
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A Slightly Better Parallel Inclusive 

Scan Algorithm
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1. Load input from 

global memory into 

shared memory 

array T

Each thread loads one value from the input

(global memory) array  into shared memory array T.

T 3 1 7 0 4 1 6 3
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A Kogge-Stone Parallel Scan Algorithm
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1. (previous slide)

2. Iterate log(n) 

times, stride from 1 to 

ceil(n/2.0). Threads 

stride to n-1 active: 

add pairs of elements 

that are stride

elements apart. 

• Active threads: stride to n-1 (n-stride threads)

• Thread j adds elements j and j-stride from T and writes result into 

shared memory buffer T

• Each iteration requires two syncthreads

• syncthreads(); // make sure that input is in place

• float temp = T[j] + T[k - stride];
Iteration #1

Stride = 1

T 3 4 8 7 4 5 7 9

Stride = 1

T 3 1 7 0 4 1 6 3

Thread 5
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A Kogge-Stone Parallel Scan Algorithm

• Active threads: stride to n-1 (n-stride threads)

• Thread j adds elements j and j-stride from T and writes result into 

shared memory buffer T

• Each iteration requires two syncthreads

• syncthreads(); // make sure that input is in place

• float temp = T[j] + T[j - stride];

• syncthreads(); // make sure that previous output has been 

consumed

• T[j] = temp;

Iteration #1

Stride = 1

T 3 4 8 7 4 5 7 9

Stride = 1

T 3 1 7 0 4 1 6 3
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A Kogge-Stone Parallel Scan Algorithm

T 3 4 8 7 4 5 7 9

T 3 4 11 11 12 12 11 14

Stride = 1

Stride = 2

1. …

2. Iterate log(n) 

times, stride from 1 to 

ceil(n/2.0). Threads 

stride to n-1 active: 

add pairs of elements 

that are stride

elements apart. 

Iteration #2

Stride = 2

T 3 1 7 0 4 1 6 3
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A Kogge-Stone Parallel Scan Algorithm

T 3 4 11 11 15 16 22 25

1. Load input from 

global memory to 

shared memory. 

2. Iterate log(n) 

times, stride from 1 to 

ceil(n/2.0). Threads 

stride to n-1 active: 

add pairs of elements 

that are stride

elements apart. 

3. Write output from 

shared memory to 

device memory

Iteration #3

Stride = 4

T 3 4 8 7 4 5 7 9

T 3 4 11 11 12 12 11 14

Stride = 1

Stride = 2

T 3 1 7 0 4 1 6 3

Stride = 4
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Double Buffering

• Use two copies of data T0 and T1

• Start by using T0 as input and T1 as output

• Switch input/output roles after each iteration
– Iteration 0: T0 as input and T1 as output

– Iteration 1: T1 as input and T0 and output

– Iteration 2: T0 as input and T1 as output

• This is typically implemented with two pointers, 
source and destination that swap their contents 
from one iteration to the next

• This eliminates the need for the second 
syncthreads

94© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016



A Double-Buffered 

Kogge-Stone Parallel Scan Algorithm
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1. (previous slide)

2. Iterate log(n) 

times, stride from 1 to 

ceil(n/2.0). Threads 

stride to n-1 active: 

add pairs of elements 

that are stride

elements apart. 

• Active threads: stride to n-1 (n-stride threads)

• Thread j adds elements j and j-stride from T and writes result into 

shared memory buffer T

• Each iteration requires only one syncthreads

• syncthreads(); // make sure that input is in place

• float destination[j] = source[j] + source[j - stride];

• temp = destination; destination = source; source = temp;
Iteration #1

Stride = 1

T1 3 4 8 7 4 5 7 9

Stride = 1

T0 3 1 7 0 4 1 6 3

Thread 5
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Work Efficiency Analysis

• A Kogge-Stone scan kernel executes log(n) parallel iterations

– The steps do (n-1), (n-2), (n-4),..(n- n/2) add operations each

– Total # of add operations: n * log(n)  - (n-1)  O(n*log(n)) work

• This scan algorithm is not very work efficient

– Sequential scan algorithm does n adds

– A factor of log(n) hurts: 20x for 1,000,000 elements!

– Typically used within each block, where n ≤ 1,024

• A parallel algorithm can be slow when execution resources 

are saturated due to low work efficiency

To be continued…
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