
CS 677: Parallel Programming for

Many-core Processors

Lecture 6

Instructor: Philippos Mordohai

Webpage: www.cs.stevens.edu/~mordohai

E-mail: Philippos.Mordohai@stevens.edu

1

mailto:Philippos.Mordohai@stevens.edu

Overview

• Parallel Patterns: Convolution

– Constant memory

– Cache

• Parallel Patterns: Reduction Trees

• Parallel Patterns: Parallel Prefix Sum (Scan)

2© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Convolution Applications

• A popular array operation that is used in
various forms in signal processing, digital
recording, image processing, video
processing, and computer vision

• Convolution is often performed as a filter that
transforms signals and pixels into more
desirable values
– Some filters smooth out the signal values so that

one can see the big-picture trend

– Others like Gaussian filters can be used to
sharpen boundaries and edges of objects in
images

3© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Convolution Computation

• Array operation where each output is a

weighted sum of a collection of

neighboring input elements

• Weights are defined in a mask array a.k.a.

convolution kernel

4© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

1D Convolution Example

• Commonly used for audio processing

– Mask size is usually an odd number of elements for

symmetry (5 in this example)

• Calculation of P[2]

5

3 4 5 4 3 3 8 15 16 15

N[0] P

3 8 57 16 151 2 3 4 5 6 7 3 3

N[3]N[1] N[2] N[5]N[4] N[6]

M[0] M[3]M[1]M[2] M[4]

P[0] P[3]P[1] P[2] P[5]P[4] P[6]N

M

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

1D Convolution Example

• Calculation of P[3]

6

3 4 5 4 3 6 12 20 20 18

N[0] P

3 8 57 76 151 2 3 4 5 6 7 3 3

N[3]N[1] N[2] N[5]N[4] N[6]

M[0] M[3]M[1]M[2] M[4]

P[0] P[3]P[1] P[2] P[5]P[4] P[6]N

M

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

1D Convolution – Boundary Condition

7

• Calculation of output elements near the boundaries

(beginning and end) of the input array need to deal

with “ghost” elements

– Different policies (0, replicates of boundary values, etc.)

3 4 5 4 3 0 4 10 12 12

M

N P

3 38 57 16 151 2 3 4 5 6 7 3 30

N[0] N[3]N[1] N[2] N[5]N[4] N[6]

Filled in

M[0] M[3]M[1]M[2] M[4]

P[0] P[3]P[1] P[2] P[5]P[4] P[6]

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Simple 1D Covolution Kernel

• This kernel forces all elements outside the valid data

index range to 0

8

__global__ void convolution_1D_basic_kernel(float *N, float *M,

float *P, int Mask_Width, int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

float Pvalue = 0;

int N_start_point = i - (Mask_Width/2);

for (int j = 0; j < Mask_Width; j++) {

if (N_start_point + j >= 0 && N_start_point + j < Width) {

Pvalue += N[N_start_point + j]*M[j];

}

}

P[i] = Pvalue;

}

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

2D Convolution – Inside Cells

9

1 2 3 2 1

2 3 4 3 2

3 4 5 4 3

2 3 4 3 2

1 2 3 2 1

1 4 9 8 5

4 9 16 15 12

9 16 25 24 21

8 15 24 21 16

5 12 21 16 5

M

N P

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1 2 3 4 5

2 3 4 5 6

3 4 321 6 7

4 5 6 7 8

5 6 7 8 5

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

2D Convolution – Boundary Condition

10

1 2 3 2 1

2 3 4 3 2

3 4 5 4 3

2 3 4 3 2

1 2 3 2 1

0 0 0 0 0

0 0 4 6 6

0 0 10 12 12

0 0 12 12 10

0 0 12 10 6

M

N
P

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1 2 3 4 5

112 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 5

4

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

2D Convolution – Ghost Cells

11© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

0 0 0 0 0

0 3 4 5 6

0 2 3 4 5

0 3 5 6 7

0 1 1 3 1

1 2 3 2 1

2 3 4 3 2

3 4 5 4 3

2 3 4 3 2

1 2 3 2 1

0 0 0 0 0

0 9 16 15 12

0 8 15 16 15

0 9 20 18 14

0 2 3 6 1

179

0 ghost cells

M

N P

Access Pattern for M

• M is referred to as mask (a.k.a. kernel, filter, etc.)

– Elements of M are called mask (kernel, filter)
coefficients

• Calculation of all output P elements need M

• M is not changed during kernel

• Bonus - M elements are accessed in the same
order when calculating all P elements

• M is a good candidate for Constant Memory

12
© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Review of CUDA Memories

13

• Each thread can:
– Read/write per-thread

registers (~1 cycle)

– Read/write per-block

shared memory (~5

cycles)

– Read/write per-grid

global memory (~500

cycles)

– Read/only per-grid

constant memory (~5

cycles with caching)

Grid

Global Memory

Block (0, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Memory Hierarchies

• If we had to go to global memory to access

data all the time, the execution speed of

GPUs would be limited by the global

memory bandwidth

• One solution: Caches

14© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Cache

• A cache is an “array” of cache lines
– A cache line can usually hold data from several

consecutive memory addresses

• When data is requested from the global
memory, an entire cache line that includes
the data being accessed is loaded into the
cache, in an attempt to reduce global memory
requests
– The data in the cache is a “copy” of the original

data in global memory

15© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Cache

Some definitions:

– Spatial locality: when the data elements

stored in consecutive memory locations are

access consecutively

– Temporal locality: when the same data

element is access multiple times in short

period of time

• Both spatial locality and temporal locality

improve the performance of caches

16© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

More on Constant Caching

• Each SM has its own L1
cache
– Low latency, high bandwidth

access by all threads

• However, there is no
way for threads in
one SM to update the
L1 cache in other
SMs
– No L1 cache

coherence

Grid

Global Memory

Block (0, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

This is not a problem if a variable is NOT modified by a kernel.

17
© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Cache Coherence Protocol

• A mechanism for caches to propagate updates by

their local processor to other caches (processors)

Processor

L1 Cache

Main Memory

regs

The chip

Processor

L1 Cache

regs

Processor

L1 Cache

regs
…

© David Kirk/NVIDIA and Wen-mei Hwu, Barcelona, Spain,July 18-22 2011

18

CPU and GPU have different

caching philosophy
• CPU L1 caches are usually coherent

– L1 is also replicated for each core

– Even data that will be changed can be cached in
L1

– Updates to local cache copy invalidate (or less
commonly update) copies in other caches

– Expensive in terms of hardware and disruption of
services (cleaning bathrooms at airports..)

• GPU L1 caches are usually incoherent
– Avoid caching data that will be modified

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2011 19

GPU Cache Coherence

• Current CUDA implementation:

– Provides coherence by disabling L1 cache
after writes

– There is room for improvement

• Custom implementations

– Temporal coherence: invalidates cache using
synchronized counters without message
passing

– Stall writes to cache blocks until they have
been invalidated in other caches

20

Scratchpad vs. Cache

• Scratchpad (shared memory in CUDA) is
another type of temporary storage used to
relieve main memory contention.

– In terms of distance from the processor,
scratchpad is similar to L1 cache

• Unlike cache, scratchpad does not
necessarily hold a copy of data that is also
in main memory

– Scratchpad requires explicit data transfer
instructions, whereas cache doesn’t

21© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Constant Cache in GPUs

• Modification to cached data needs to be
(eventually) reflected back to the original data
in global memory
– Requires logic to track the modified status, etc.

• Constant cache is a special cache for
constant data that will not be modified during
kernel execution
– Data declared in the constant memory will not be

modified during kernel execution.

– Constant cache can be accessed with higher
throughput than L1 cache for some common
patterns

22© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

How to Use Constant Memory

• Host code allocates, initializes variables the same
way as any other variables that need to be copied
to the device

• Use cudaMemcpyToSymbol(dest,src,size)
to copy the variable into the device memory
– Declare __const__ float M[MASK_WIDTH]first

• This copy function tells the device that the variable
will not be modified by the kernel and can be safely
cached

23
© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Header File for M

#define MASK_WIDTH 5

// Matrix Structure declaration

typedef struct {

unsigned int width;

unsigned int height;

unsigned int pitch; // unused

float* elements;

} Matrix;

24© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

AllocateMatrix

// Allocate a device matrix of dimensions height*width

// If init == 0, initialize to all zeroes.

// If init == 1, perform random initialization.

// If init == 2, initialize matrix parameters, but
// do not allocate memory

Matrix AllocateMatrix(int height, int width, int init)

{

Matrix M;

M.width = M.pitch = width;

M.height = height;

int size = M.width * M.height;

M.elements = NULL;

25© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

AllocateMatrix

// don't allocate memory on option 2

if(init == 2) return M;

int size = height * width;

M.elements = (float*) malloc(size*sizeof(float));

for(unsigned int i = 0; i < M.height * M.width; i++)

{

M.elements[i] = (init == 0) ? (0.0f) :

(rand() / (float)RAND_MAX);

if(rand() % 2) M.elements[i] = - M.elements[i]

}

return M;

}

26© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Host Code

// global variable, outside any kernel/function

__constant__ float Mc[MASK_WIDTH][MASK_WIDTH];

…

// allocate N, P, initialize N elements, copy N to Nd

Matrix M;

M = AllocateMatrix(MASK_WIDTH, MASK_WIDTH, 1);

// initialize M elements

….

cudaMemcpyToSymbol(Mc, M.elements,

MASK_WIDTH*MASK_WIDTH*sizeof(float));

ConvolutionKernel<<<dimGrid, dimBlock>>>(Nd, Pd);

27© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Tiled 1D Convolution

• Elements of the input vector are used in

multiple computations

• Opportunity to use shared memory

• Shared memory tile must be larger than

mask

28© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Tiled 1D Convolution Basic Idea

29

ghost

ghost

N

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

1 2 3 4 5

8 9 10 11 12 13

0

76

Tile 0

Tile 2

2 3 4 5 6 7 8 9Tile 1

10 11 12 13 14 15Tile 3

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

P

halo

N

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Loading Left Halo

30

int n = Mask_Width/2;

int halo_index_left = (blockIdx.x - 1)*blockDim.x + threadIdx.x;

if (threadIdx.x >= blockDim.x - n) {

N_ds[threadIdx.x - (blockDim.x - n)] =

(halo_index_left < 0) ? 0 : N[halo_index_left];

}

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

i =6halo_index_left = 2

n = 2

2 3 4 5 6 7 8 9

N

N_ds

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Loading Internal Elements

31

N_ds[n + threadIdx.x] = N[blockIdx.x*blockDim.x + threadIdx.x];

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

i =6halo = 2

n = 2

2 3 4 5 6 7 8 9

N

N_ds

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Loading Right Halo

32

int halo_index_right = (blockIdx.x + 1)*blockDim.x + threadIdx.x;

if (threadIdx.x < n) {

N_ds[n + blockDim.x + threadIdx.x] =

(halo_index_right >= Width) ? 0 : N[halo_index_right];

}

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

i =6 halo_index_right = 10

n = 2

2 3 4 5 6 7 8 9

N

N_ds

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

33

__global__ void convolution_1D_tiled_kernel(float *N, float *P, int Mask_Width,

int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

__shared__ float N_ds[TILE_SIZE + MAX_MASK_WIDTH - 1];

int n = Mask_Width/2;

int halo_index_left = (blockIdx.x - 1)*blockDim.x + threadIdx.x;

if (threadIdx.x >= blockDim.x - n) {

N_ds[threadIdx.x - (blockDim.x - n)] =

(halo_index_left < 0) ? 0 : N[halo_index_left];

}

N_ds[n + threadIdx.x] = N[blockIdx.x*blockDim.x + threadIdx.x];

int halo_index_right = (blockIdx.x + 1)*blockDim.x + threadIdx.x;

if (threadIdx.x < n) {

N_ds[n + blockDim.x + threadIdx.x] =

(halo_index_right >= Width) ? 0 : N[halo_index_right];

}

__syncthreads();

float Pvalue = 0;

for(int j = 0; j < Mask_Width; j++) {

Pvalue += N_ds[threadIdx.x + j]*M[j];

}

P[i] = Pvalue;

}

Shared Memory Data Reuse

34

• Element 2 is used by thread 4 (1X)

• Element 3 is used by threads 4, 5 (2X)

• Element 4 is used by threads 4, 5, 6 (3X)

• Element 5 is used by threads 4, 5, 6, 7 (4X)

• Element 6 is used by threads 4, 5, 6, 7 (4X)

• Element 7 is used by threads 5, 6, 7 (3X)

• Element 8 is used by threads 6, 7 (2X)

• Element 9 is used by thread 7 (1X)

2 3 4 5 6 7 8 9

N_ds
Mask_Width is 5

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Ghost Cells

35

N

0 N[0] N[3]N[1] N[2] N[5]N[4] N[6]0 00

P[0]

P[1]

P[2]

P[3]

P[4]

P[5]

P[6]

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

36

__global__ void convolution_1D_tiled_cache_kernel(float *N, float *P,

int Mask_Width, int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;

__shared__ float N_ds[TILE_SIZE];

N_ds[threadIdx.x] = N[i];

__syncthreads();

int This_tile_start_point = blockIdx.x * blockDim.x;

int Next_tile_start_point = (blockIdx.x + 1) * blockDim.x;

int N_start_point = i - (Mask_Width/2);

float Pvalue = 0;

for (int j = 0; j < Mask_Width; j ++) {

int N_index = N_start_point + j;

if (N_index >= 0 && N_index < Width) {

if ((N_index >= This_tile_start_point)

&& (N_index < Next_tile_start_point)) {

Pvalue += N_ds[threadIdx.x+j-(Mask_Width/2)]*M[j];

} else {

Pvalue += N[N_index] * M[j];

}

}

}

P[i] = Pvalue;

}

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Analysis – Small 1D Example

• TILE_SIZE = 8, Mask_Width=5

• Output and input tiles for block 1

• For Mask_Width = 5, each block loads
8+5-1 = 12 elements (12 memory loads)

37

6 7 8 9 10 11 16 17

N_ds

Mask_Width is 5

12 13 14 15

8 9 10 11 12 13 14 15

P

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Each output P element uses

5 N elements (in N_ds)

38

6 7 8 9 10 11 16 17

N_ds

Mask_Width is 5

• P[8] uses N[6], N[7], N[8], N[9], N[10]

• P[9] uses N[7], N[8], N[9], N[10], N[11]

• P[10] uses N[8], N[9], N[10], N[11], N[12]

• …

• P[14] uses N[12], N[13], N[14], N[15],N[16]

• P[15] uses N[13], N[14], N[15], N[16], N[17]

12 13 14 15

8 9 10 11 12 13 14 15

P

A Total of 8 * 5 N elements are used for the output tile.

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A simple way to calculate tiling

benefit

• (8+5-1)=12 elements loaded

• 8*5 global memory accesses replaced by

shared memory accesses

• This gives a bandwidth reduction of

40/12=3.3

39© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

In General, in 1D

• TILE_SIZE + Mask_Width -1 elements loaded

• TILE_SIZE * Mask_Width global memory

accesses replaced by shared memory access

• This gives a reduction of bandwidth by

(TILE_SIZE *Mask_Width)/(TILE_SIZE+Mask_Width-1)

40© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Another Way to Look at Reuse

• N[6] is used by P[8] (1X)

• N[7] is used by P[8], P[9] (2X)

• N[8] is used by P[8], P[9], P[10] (3X)

• N[9] is used by P[8], P[9], P[10], P[11] (4X)

• N[10] is used by P[8], P[9], P[10], P[11], P[12] (5X)

• … (5X)

• N[14] is uses by P[12], P[13], P[14], P[15] (4X)

• N[15] is used by P[13], P[14], P[15] (3X)

41

N_ds

Mask_Width is 5

6 7 8 9 10 11 16 1712 13 14 15

8 9 10 11 12 13 14 15

P

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Another Way to Look at Reuse

• Each time an N_ds element is used, it replaces an
access to the global memory N element

• The total number of global memory accesses (to the
(8+5-1)=12 N elements) replaced by shared memory
accesses is

1 + 2 + 3 + 4 + 5 * (8-5+1) + 4 + 3 + 2 + 1

= 10 + 20 + 10

= 40

So the reduction is

40/12 = 3.3

42© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Ghost Elements

• For a boundary tile, we load

TILE_SIZE + (Mask_Width-1)/2 elements
– 10 in our example of Tile_Width =8 and

Mask_Width=5

• Computing boundary elements do not access
global memory for ghost cells
– Total accesses is 3 + 4+ 6*5 = 37 accesses

The reduction is 37/10 = 3.7

43© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

In General for 1D Internal Tiles

• The total number of global memory accesses to the
(TILE_SIZE+Mask_Width-1) N elements replaced by shared
memory accesses is

1 + 2 + … + Mask_Width-1+ Mask_Width * (TILE_SIZE -
Mask_Width+1) + Mask_Width-1+… + 2 + 1

= ((Mask_Width-1) *Mask_Width)/2+ Mask_Width*(TILE_SIZE-
Mask_Width+1) + ((Mask_Width-1) *Mask_Width)/2

= (Mask_Width-1) *Mask_Width+ Mask_Width*(TILE_SIZE-
Mask_Width+1)

= Mask_Width*(TILE_SIZE)

44© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Bandwidth Reduction in 1D

• The reduction is
Mask_Width * (TILE_SIZE)/(TILE_SIZE+Mask_Width-1)
TileWidth

45

Tile_Width 16 32 64 128 256

Reduction

Mask_Width = 5

4.0 4.4 4.7 4.9 4.9

Reduction

Mask_Width = 9

6.0 7.2 8.0 8.5 8.7

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Tiling P

• Use a thread block to calculate a tile of P

– Each output tile is of TILE_SIZE for both x and y

– row_o = blockIdx.y*TILE_SIZE + ty;

– col_o = blockIdx.x*TILE_SIZE + tx;

46© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Tiling N
• Each N element is used in calculating up

to KERNEL_SIZE * KERNEL_SIZE P

elements (all elements in the tile)

47

3 4 5 6 7

2 3 4 5 6

1 2 3 4 5

2 3 5 6 7

0 1 1 3 1

3 4 5 6 7

2 3 4 5 6

1 2 3 4 5

2 3 5 6 7

0 1 1 3 1

3 4 5 6 7

2 3 4 5 6

1 2 3 4 5

2 3 5 6 7

0 1 1 3 1

3 4 5 6 7

2 3 4 5 6

1 2 3 4 5

2 3 5 6 7

0 1 1 3 1

3 4 5 6 7

2 3 4 5 6

1 2 3 4 5

2 3 5 6 7

0 1 1 3 1

3 4 5 6 7

2 3 4 5 6

1 2 3 4 5

2 3 5 6 7

0 1 1 3 1© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Input tiles need to be larger than

output tiles

48

3 4 5 6 7

2 3 4 5 6

1 2 3 4 5

2 3 5 6 7

0 1 1 3 1

3 4 5 6 7

2 3 4 5 6

1 2 3 4 5

2 3 5 6 7

0 1 1 3 1

Output Tile

Input Tile

We will use a strategy

where the input tile will

be loaded into the

shared memory.

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Dealing with Mismatch

• Use a thread block that matches input tile

– Each thread loads one element of the input

tile

– Some threads do not participate in calculating

output

• There will be if statements and control divergence

49© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Shifting from output coordinates to

input coordinates

50© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Shifting from output coordinates to

input coordinates

int tx = threadIdx.x;

int ty = threadIdx.y;

int row_o = blockIdx.y * TILE_SIZE + ty;

int col_o = blockIdx.x * TILE_SIZE + tx;

int row_i = row_o - 2;

int col_i = col_o - 2;

51© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Threads that loads halos outside N

should return 0.0

52© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Taking Care of Boundaries

float output = 0.0f;

if((row_i >= 0) && (row_i < N.height) &&

(col_i >= 0) && (col_i < N.width)) {

Ns[ty][tx] = N.elements[row_i*N.width

+ col_i];

}

else{

Ns[ty][tx] = 0.0f;

}

53© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Some threads do not participate in

calculating output
if(ty < TILE_SIZE && tx < TILE_SIZE){

for(i = 0; i < 5; i++) {

for(j = 0; j < 5; j++) {

output += Mc[i][j] * Ns[i+ty][j+tx];

}

}

54© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Some threads do not write output

if(row_o < P.height && col_o < P.width)

P.elements[row_o * P.width + col_o] =

output;

}

55© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Setting Block Size

#define BLOCK_SIZE (TILE_SIZE + 4)

dim3 dimBlock(BLOCK_SIZE,BLOCK_SIZE);

In general, block size should be tile size + (kernel
size -1)

dim3 dimGrid(N.width/TILE_SIZE,

N.height/TILE_SIZE, 1)

56© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

More on Sizes

• BLOCK_SIZE is limited by the maximal
number of threads in a thread block

• Input tile sizes could be could be
N*TILE_SIZE + (KERNEL_SIZE-1)
– By having each thread calculate N input points

(thread coarsening)

– N is limited is limited by the shared memory size

• KERNEL_SIZE is decided by application
needs

57© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

8x8 Output Tile

• KERNEL_SIZE = 5

• 12X12=144 N elements need to be loaded
into shared memory

• The calculation of each P element needs
to access 25 N elements

• 8X8X25 = 1600 global memory accesses
are converted into shared memory
accesses

• A reduction of 1600/144 = 11X

58© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

In General in 2D

• (TILE_SIZE+ KERNEL_SIZE -1)2 N elements
need to be loaded into shared memory

• The calculation of each P element needs to
access KERNEL_SIZE 2 N elements

• TILE_SIZE2 * KERNEL_SIZE2 global memory
accesses are converted into shared memory
accesses

• The reduction is

TILE_SIZE2 * KERNEL_SIZE 2 /
(TILE_SIZE+ KERNEL_SIZE -1)2

59© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Bandwidth Reduction in 2D

• The reduction is

TILE_SIZE2 * KERNEL_SIZE 2 /

(TILE_SIZE+ KERNEL_SIZE -1)2

60

TILE_SIZE 8 16 32 64

Reduction

KERNEL_SIZE = 5

11.1 16 19.7 22.1

Reduction

KERNEL_SIZE = 9

20.3 36 51.8 64

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Reduction Trees

61© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Partition and Summarize

• A commonly used strategy for processing large
input data sets
– There is no required order of processing elements in

a data set (associative and commutative)

– Partition the data set into smaller chunks

– Have each thread to process a chunk

– Use a reduction tree to summarize the results from
each chunk into the final answer

• We will focus on the reduction tree step for now

• Google and Hadoop MapReduce frameworks
are examples of this pattern

62© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Reduction enables other techniques

• Reduction is also needed to clean up after
some commonly used parallelizing
transformations

• Privatization

– Multiple threads write into an output location

– Replicate the output location so that each thread
has a private output location

– Use a reduction tree to combine the values of
private locations into the original output location

63© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

What is a reduction computation

• Summarize a set of input values into one
value using a “reduction operation”

– Max

– Min

– Sum

– Product

– Often with user defined reduction operation
function as long as the operation
• Is associative and commutative

• Has a well-defined identity value (e.g., 0 for sum)

64© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A sequential reduction algorithm

performs N operations - O(N)

• Initialize the result as an identity value for the
reduction operation

– Smallest possible value for max reduction

– Largest possible value for min reduction

– 0 for sum reduction

– 1 for product reduction

• Scan through the input and perform the
reduction operation between the result value
and the current input value

65© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A parallel reduction tree algorithm

performs N-1 Operations in log(N) steps
3 1 7 0 4 1 6 3

3 7 4 6

max maxmaxmax

maxmax

7 6

max

7
66© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A tournament is a reduction tree

with “max” operation

67© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Quick Analysis

• For N input values, the reduction tree performs

– (1/2)N + (1/4)N + (1/8)N + … (1/N) = (1- (1/N))N = N-1
operations

– In Log (N) steps – 1,000,000 input values take 20 steps
• Assuming that we have enough execution resources

– Average Parallelism (N-1)/Log(N))
• For N = 1,000,000, average parallelism is 50,000

• However, peak resource requirement is 500,000!

• This is a work-efficient parallel algorithm

– The amount of work done is comparable to sequential

– Many parallel algorithms are not work efficient

68© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Sum Reduction Example

• Parallel implementation:
– Recursively halve # of threads, add two values per thread

in each step

– Takes log(n) steps for n elements, requires n/2 threads

• Assume an in-place reduction using shared memory
– The original vector is in device global memory

– The shared memory is used to hold a partial sum vector

– Each step brings the partial sum vector closer to the sum

– The final sum will be in element 0

– Reduces global memory traffic due to partial sum values

69© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Vector Reduction with Branch Divergence

70

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Partial Sum elements

steps

Thread 0 Thread 4Thread 1 Thread 2 Thread 3 Thread 5

Data

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Some Observations

• In each iteration, two control flow paths will be sequentially
traversed for each warp
– Threads that perform addition and threads that do not

– Threads that do not perform addition still consume execution
resources

• No more than half of threads will be executing after the
first step
– All odd index threads are disabled after first step

– After the 5th step, entire warps in each block will fail the if test, poor
resource utilization but no divergence.

• This can go on for a while, up to 5 more steps (1024/32=16= 25),
where each active warp only has one productive thread until all warps
in a block retire

71© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Thread Index Usage Matters

• In some algorithms, one can shift the index

usage to improve the divergence behavior

– Commutative and associative operators

• Reduction satisfies this criterion

72© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Better Strategy

• Always compact the partial sums into the

first locations in the partialSum[] array

• Keep the active threads consecutive

73© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Thread 0

An Example of 16 threads

0 1 2 3 … 13 1514 181716 19

0+16 15+31

Thread 1 Thread 2 Thread 14 Thread 15

74© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Better Reduction Kernel

for (unsigned int stride = blockDim.x/2;

stride >= 1; stride >>= 1)

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}

75© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Quick Analysis

• For a 1024 thread block

– No divergence in the first 5 steps

– 1024, 512, 256, 128, 64, 32 consecutive

threads are active in each step

– The final 5 steps will still have divergence

76© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Parallel Algorithm Overhead
__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;

unsigned int start = 2*blockIdx.x*blockDim.x;

partialSum[t] = input[start + t];

partialSum[blockDim+t] = input[start+ blockDim.x+t];

for (unsigned int stride = blockDim.x/2;

stride >= 1; stride >>= 1)

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}

77© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Parallel Algorithm Overhead
__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;

unsigned int start = 2*blockIdx.x*blockDim.x;

partialSum[t] = input[start + t];

partialSum[blockDim+t] = input[start+ blockDim.x+t];

for (unsigned int stride = blockDim.x/2;

stride >= 1; stride >>= 1)

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}

78© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Parallel Execution Overhead

• Although the number of “operations” is N,
each operation involves much more
complex address calculation and
intermediate result manipulation

• If the parallel code is executed on a single-
thread hardware, it would be significantly
slower than the code based on the original
sequential algorithm

79© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Parallel Prefix Sum (Scan)

80© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Objectives

• Prefix Sum (Scan) algorithms

– Frequently used for parallel work assignment
and resource allocation

– A key primitive in many parallel algorithms to
convert serial computation into parallel
computation

– Based on reduction tree and reverse reduction
tree

• To learn the concept of double buffering

81© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

(Inclusive) Prefix-Sum (Scan)

Definition

Definition: The all-prefix-sums operation takes a binary

associative operator ⊕, and an array of n elements

[x0, x1, …, xn-1],

and returns the array

[x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕ … ⊕ xn-1)].

Example: If ⊕ is addition, then the all-prefix-sums operation

on the array [3 1 7 0 4 1 6 3],

would return [3 4 11 11 15 16 22 25].

82© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Inclusive Scan Application

Example
• Assume that we have a 100-inch bread to feed 10

people

• We know how much each person wants in inches
– [3 5 2 7 28 4 3 0 8 1]

• How do we cut the bread quickly?

• How much will be left

• Method 1: cut the sections sequentially: 3 inches
first, 5 inches second, 2 inches third, etc.

• Method 2: calculate Prefix scan
– [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)

83© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Typical Applications of Scan

• Assigning camp slots

• Assigning farmer market space

• Allocating memory to parallel threads

• Allocating memory buffer to communication channels

• Useful for many parallel algorithms:

84

• radix sort

• quicksort

• String comparison

• Lexical analysis

• Stream compaction

• Polynomial evaluation

• Solving recurrences

• Tree operations

• Histograms

• Etc.

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Inclusive Sequential Prefix-Sum

Given a sequence [x0, x1, x2, ...]

Calculate output [y0, y1, y2, ...]

Such that y0 = x0

y1 = x0 + x1

y2 = x0 + x1+ x2

…

Using a recursive definition

yi = yi − 1 + xi

85© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Work Efficient C Implementation

y[0] = x[0];

for (i = 1; i < Max_i; i++)

y[i] = y [i-1] + x[i];

Computationally efficient:

N additions needed for N elements - O(N)

86© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Naïve Inclusive Parallel Scan

• Assign one thread to calculate each y element

• Have every thread to add up all x elements

needed for the y element

y0 = x0

y1 = x0 + x1

y2 = x0 + x1+ x2

“Parallel programming is easy as long as you do

not care about performance.”

87© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Parallel Inclusive Scan using

Reduction Trees

• Calculate each output element as the

reduction of all previous elements

– Some reduction partial sums will be shared

among the calculation of output elements

– Based on hardware added design by Peter

Kogge and Harold Stone at IBM in the 1970s –

Kogge-Stone Trees

88© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Slightly Better Parallel Inclusive

Scan Algorithm

89

1. Load input from

global memory into

shared memory

array T

Each thread loads one value from the input

(global memory) array into shared memory array T.

T 3 1 7 0 4 1 6 3

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Kogge-Stone Parallel Scan Algorithm

90

1. (previous slide)

2. Iterate log(n)

times, stride from 1 to

ceil(n/2.0). Threads

stride to n-1 active:

add pairs of elements

that are stride

elements apart.

• Active threads: stride to n-1 (n-stride threads)

• Thread j adds elements j and j-stride from T and writes result into

shared memory buffer T

• Each iteration requires two syncthreads

• syncthreads(); // make sure that input is in place

• float temp = T[j] + T[k - stride];
Iteration #1

Stride = 1

T 3 4 8 7 4 5 7 9

Stride = 1

T 3 1 7 0 4 1 6 3

Thread 5

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

91

A Kogge-Stone Parallel Scan Algorithm

• Active threads: stride to n-1 (n-stride threads)

• Thread j adds elements j and j-stride from T and writes result into

shared memory buffer T

• Each iteration requires two syncthreads

• syncthreads(); // make sure that input is in place

• float temp = T[j] + T[j - stride];

• syncthreads(); // make sure that previous output has been

consumed

• T[j] = temp;

Iteration #1

Stride = 1

T 3 4 8 7 4 5 7 9

Stride = 1

T 3 1 7 0 4 1 6 3

92

A Kogge-Stone Parallel Scan Algorithm

T 3 4 8 7 4 5 7 9

T 3 4 11 11 12 12 11 14

Stride = 1

Stride = 2

1. …

2. Iterate log(n)

times, stride from 1 to

ceil(n/2.0). Threads

stride to n-1 active:

add pairs of elements

that are stride

elements apart.

Iteration #2

Stride = 2

T 3 1 7 0 4 1 6 3

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

93

A Kogge-Stone Parallel Scan Algorithm

T 3 4 11 11 15 16 22 25

1. Load input from

global memory to

shared memory.

2. Iterate log(n)

times, stride from 1 to

ceil(n/2.0). Threads

stride to n-1 active:

add pairs of elements

that are stride

elements apart.

3. Write output from

shared memory to

device memory

Iteration #3

Stride = 4

T 3 4 8 7 4 5 7 9

T 3 4 11 11 12 12 11 14

Stride = 1

Stride = 2

T 3 1 7 0 4 1 6 3

Stride = 4

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Double Buffering

• Use two copies of data T0 and T1

• Start by using T0 as input and T1 as output

• Switch input/output roles after each iteration
– Iteration 0: T0 as input and T1 as output

– Iteration 1: T1 as input and T0 and output

– Iteration 2: T0 as input and T1 as output

• This is typically implemented with two pointers,
source and destination that swap their contents
from one iteration to the next

• This eliminates the need for the second
syncthreads

94© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

A Double-Buffered

Kogge-Stone Parallel Scan Algorithm

95

1. (previous slide)

2. Iterate log(n)

times, stride from 1 to

ceil(n/2.0). Threads

stride to n-1 active:

add pairs of elements

that are stride

elements apart.

• Active threads: stride to n-1 (n-stride threads)

• Thread j adds elements j and j-stride from T and writes result into

shared memory buffer T

• Each iteration requires only one syncthreads

• syncthreads(); // make sure that input is in place

• float destination[j] = source[j] + source[j - stride];

• temp = destination; destination = source; source = temp;
Iteration #1

Stride = 1

T1 3 4 8 7 4 5 7 9

Stride = 1

T0 3 1 7 0 4 1 6 3

Thread 5

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

Work Efficiency Analysis

• A Kogge-Stone scan kernel executes log(n) parallel iterations

– The steps do (n-1), (n-2), (n-4),..(n- n/2) add operations each

– Total # of add operations: n * log(n) - (n-1) O(n*log(n)) work

• This scan algorithm is not very work efficient

– Sequential scan algorithm does n adds

– A factor of log(n) hurts: 20x for 1,000,000 elements!

– Typically used within each block, where n ≤ 1,024

• A parallel algorithm can be slow when execution resources

are saturated due to low work efficiency

To be continued…
96© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al University of Illinois, 2007-2016

