
CS 677: Parallel Programming for

Many-core Processors

Lecture 4

Instructor: Philippos Mordohai

Webpage: www.cs.stevens.edu/~mordohai

E-mail: Philippos.Mordohai@stevens.edu

1

mailto:Philippos.Mordohai@stevens.edu

Logistics

• NEW Midterm: March 27

• Project proposal presentations: March 13

– Have to be approved by me by March 8

2

Project Proposal

• Problem description
– What is the computation and why is it important?

– Abstraction of computation: equations, graphic or pseudo-
code, no more than 1 page

• Suitability for GPU acceleration
– Amdahl’s Law: describe the inherent parallelism. Argue that it

is close to 100% of computation.

– Synchronization and Communication: Discuss what data
structures may need to be protected by synchronization, or
communication through host.

– Copy Overhead: Discuss the data footprint and anticipated
cost of copying to/from host memory.

• Intellectual Challenges
– Generally, what makes this computation worthy of a project?

– Point to any difficulties you anticipate at present in achieving
high speedup

3

Amdahl’s Law

• “The speedup of a program using multiple
processors in parallel computing is limited by
the time needed for the sequential fraction of
the program.”

• Example
– 95% of original execution time can be sped up by

100x on GPU

– Speed up for entire application:

4

x17
%95.5

1

%95.0%5

1

)
100

%95
%5(

1







Overview

• More Performance Considerations

– Memory Coalescing

– Occupancy

– Kernel Launch Overhead

– Instruction Performance

• Summary of Performance Considerations

– Lectures 3 and 4

• Timers

5

Memory Coalescing (Part 2)

slides by

Jared Hoberock and David Tarjan

(Stanford CS 193G)

6

Consider the stride of your accesses

__global__ void foo(int* input,

float3* input2)

{

int i = blockDim.x * blockIdx.x

+ threadIdx.x;

// Stride 1

int a = input[i];

// Stride 2, half the bandwidth is wasted

int b = input[2*i];

// Stride 3, 2/3 of the bandwidth wasted

float c = input2[i].x;

}

7

Example: Array of Structures (AoS)

struct record

{

int key;

int value;

int flag;

};

record *d_records;

cudaMalloc((void**)&d_records,
...);

8

Example: Structure of Arrays (SoA)
struct SoA

{

int * keys;

int * values;

int * flags;

};

SoA d_SoA_data;

cudaMalloc((void**)&d_SoA_data.keys, ...);

cudaMalloc((void**)&d_SoA_data.values, ...);

cudaMalloc((void**)&d_SoA_data.flags, ...);

9

Example: SoA vs. AoS
__global__ void bar(record

*AoS_data, SoA SoA_data)

{

int i = blockDim.x * blockIdx.x

+ threadIdx.x;

// AoS wastes bandwidth

int key = AoS_data[i].key;

// SoA efficient use of bandwidth

int key_better = SoA_data.keys[i];

}

10

Memory Coalescing

• Structure of arrays is often better than
array of structures

– Very clear win on regular, stride 1 access
patterns

– Unpredictable or irregular access patterns
are case-by-case

11

Occupancy

slides (mostly) by

Jared Hoberock and David Tarjan

(Stanford CS 193G)

and Joseph T. Kider Jr. (UPenn)

12

13

Reminder: Thread Scheduling

• SM implements zero-overhead warp scheduling
– At any time, only one of the warps is executed by SM

– Warps whose next instruction has its inputs ready for
consumption are eligible for execution

– Eligible Warps are selected for execution on a
prioritized scheduling policy

– All threads in a warp execute the same instruction
when selected

TB1

W1

TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

Thread Scheduling

• What happens if all warps are stalled?

– No instruction issued  performance lost

• Most common reason for stalling?

– Waiting on global memory

• If your code reads global memory every couple

of instructions

– You should try to maximize occupancy

14

Occupancy

• Thread instructions are executed
sequentially, so executing other warps is the
only way to hide latencies and keep cores
busy

• Occupancy = number of warps running
concurrently on a multiprocessor divided by
maximum number of warps that can run
concurrently

• Limited by resource usage:

– Registers

– Shared memory

15

Resource Limits (1)

• Pool of registers and shared memory per SM
• Each thread block grabs registers & shared memory

• If one or the other is fully utilized -> no more thread

blocks

TB 0

Registers Shared Memory

TB 1

TB 2

TB 0

TB 1

TB 2

TB 0

Registers

TB 1

TB 0

TB 1

Shared Memory

16

Resource Limits (2)

• Can only have N thread blocks per SM
• If they’re too small, can’t fill up the SM

• Need 128 threads / block (GT200), 192 threads/

block (GF100)

• Higher occupancy has diminishing returns for

hiding latency

17

Grid/Block Size Heuristics

• # of blocks > # of multiprocessors
– So all multiprocessors have at least one block to

execute

• # of blocks / # of multiprocessors > 2
– Multiple blocks can run concurrently on a

multiprocessor

– Blocks not waiting at a __syncthreads() keep
hardware busy

– Subject to resource availability – registers, shared
memory

• # of blocks > 100 to scale to future devices

18

Register Dependency

• Read-after-write register dependency

– Instruction’s result can be read approximately

24 cycles later

• To completely hide latency:

– Run at least 192 threads (6 warps) per

multiprocessor

• At least 25% occupancy for compute capability 1.0

and 1.1

• Threads do not have to belong to the same block

19

Register Pressure

• Hide latency by using more threads per

SM

• Limiting factors:

– Number of registers per thread

• 8k/16k/… per SM, partitioned among concurrent

threads

– Amount of shared memory

• 16kB/… per SM, partitioned among concurrent

blocks

20

How do you know what you’re using?

• Use nvcc –Xptxas –v to get register and shared
memory usage

nvcc -Xptxas -v acos.cu

ptxas info : Compiling entry function 'acos_main'

ptxas info : Used 4 registers, 60+56 bytes lmem, 44+40 bytes
smem, 20 bytes cmem[1], 12 bytes cmem[14]

– The first number represents the total size of all the variables
declared in that memory segment and the second number
represents the amount of system allocated data.

– Constant memory numbers include which memory banks have
been used

• Plug those numbers into CUDA Occupancy Calculator

21

How to influence how many registers

you use

• Pass option –maxrregcount=X to nvcc

• This isn’t magic, won’t get occupancy for

free

• Use this very carefully when you are right

on the edge

26

Optimizing Threads per Block

• Choose threads per block as multiple of

warp size

– Avoid wasting computation on under-

populated warps

• Run as many warps as possible per SM

– Hide latency

• SMs can run up to N blocks at a time

27

Occupancy != Performance

• Increasing occupancy does not

necessarily increase performance

• BUT…

• Low-occupancy SMs cannot adequately

hide latency

28

Parameterize your Application

• Parameterization helps adaptation to different
GPUs

• GPUs vary in many ways

– # of SMs

– Memory bandwidth

– Shared memory size

– Register file size

– Max threads per block

 Avoid local minima

– Try widely varying configurations

29

Kernel Launch Overhead

slides by

Jared Hoberock and David Tarjan

(Stanford CS 193G)

30

Kernel Launch Overhead

• Kernel launches aren’t free
– A null kernel launch will take non-trivial time

– Actual time changes with HW generations
and driver software…

• Independent kernel launches are cheaper
than dependent kernel launches
– Dependent launch: Some readback to the

CPU

• Launching lots of small grids comes with
substantial performance loss

31

Kernel Launch Overheads

• If you are reading back data to the CPU

for control decisions, consider doing it on

the GPU

• Even though the GPU is slow at serial

tasks, it can do surprising amounts of

work before you used up kernel launch

overhead

32

Instruction Performance

slides by

Joseph T. Kider Jr. (Upenn)

33

Instruction Performance

• Instruction cycles (per warp) is the sum of

– Operand read cycles

– Instruction execution cycles

– Result update cycles

• Therefore instruction throughput depends on

– Nominal instruction throughput

– Memory latency

– Memory bandwidth

• Cycle refers to the multiprocessor clock rate

34

Maximizing Instruction Throughput

• Maximize use of high-bandwidth memory

– Maximize use of shared memory

– Minimize accesses to global memory
– Maximize coalescing of global memory accesses

• Optimize performance by overlapping

memory accesses with computation

– High arithmetic intensity programs

– Many concurrent threads

35

Arithmetic Instruction Throughput

• int and float add, shift, min, max and float mul,
mad: 4 cycles per warp
– int mulitply is by default 32-bit

• requires multiple cycles/warp

– use __mul24() and __umul24() intrinsics for 4-cycle
24-bit int multiplication

• Integer division and modulo operations are costly
– The compiler will convert literal power-of-2 divides to

shifts
• But it may miss

– Be explicit in cases where the compiler cannot tell
that the divisor is a power of 2
• Trick: foo % n == foo & (n-1) if n is a power of 2

36

Loop Transformations

Mary Hall

CS6963 University of Utah

37

38

Reordering Transformations

• Analyze reuse in computation

• Apply loop reordering transformations to
improve locality based on reuse

• With any loop reordering transformation,
always ask

– Safety? (doesn’t reverse dependences)

– Profitablity? (improves locality)

CS6963

Loop Permutation:

A Reordering Transformation

for (j=0; j<6; j++)

for (i= 0; i<3; i++)

A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)

for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j];

i

j

new traversal order!i

j

Permute the order of the loops to modify the traversal order

Which one is better for row-major storage?

CS6963 39

Safety of Permutation

• Ok to permute?

for (i= 0; i<3; i++)

for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)

for (j=1; j<6; j++)

A[i+1][j-1]=A[i][j]+B[j];

CS6963

• Intuition: Cannot permute two loops i and j in a loop nest if

doing so reverses the direction of any dependence.

40

Tiling (Blocking):

Another Loop Reordering

Transformation
• Blocking reorders loop iterations to bring

iterations that reuse data closer in time

J

I

J

I

CS6963 41

Tiling Example

for (j=1; j<M; j++)

for (i=1; i<N; i++)

D[i] = D[i] + B[j][i];

for (j=1; j<M; j++)

for (ii=1; ii<N; ii+=s)

for (i=ii; i<min(ii+s,N); i++)

D[i] = D[i] +B[j][i];

Strip

mine

for (ii=1; ii<N; ii+=s)

for (j=1; j<M; j++)

for (i=ii; i<min(ii+s,N); i++)

D[i] = D[i] +B[j][i];

Permute

CS6963 42

Legality of Tiling

• Tiling = strip-mine and permutation

–Strip-mine does not reorder iterations

–Permutation must be legal

OR

– strip size less than dependence

distance

CS6963 43

A Few Words On Tiling

• Tiling can be used hierarchically to compute partial

results on a block of data wherever there are

capacity limitations

– Between grids if total data exceeds global memory

capacity

– Across thread blocks if shared data exceeds shared

memory capacity (also to partition computation across

blocks and threads)

– Within threads if data in constant cache exceeds cache

capacity or data in registers exceeds register capacity or

(as in example) data in shared memory for block still

exceeds shared memory capacity

CS6963 44

Summary of Performance

Considerations

45

Summary of Performance

Considerations
• Thread Execution and Divergence

• Communication Through Memory

• Instruction Level Parallelism and Thread Level
Parallelism

• Memory Coalescing

• Shared Memory Bank Conflicts

• Parallel Reduction

• Prefetching

• Loop Unrolling and Transformations

• Occupancy

• Kernel Launch Overhead

• Instruction Performance

46

Thread Execution and Divergence

• Instructions are issued per 32 threads
(warp)

• Divergent branches:

– Threads within a single warp take different
paths
• if-else, ...

– Different execution paths within a warp are
serialized

• Different warps can execute different code
with no impact on performance

47

An Example

// is this barrier divergent?

for(int offset = blockDim.x / 2;

offset > 0;

offset >>= 1)

{

...

__syncthreads();

}

48

A Second Example
// what about this one?

__global__ void do_i_halt(int *input)

{

int i = ...

if(input[i])

{

...

__syncthreads();

}

}

// a divergent barrier

// hangs the machine

49

• Carefully partition data according to access
patterns

• Read-only  __constant__ memory (fast)

• R/W & shared within block  __shared__
memory (fast)

• R/W within each thread  registers (fast)

• Indexed R/W within each thread  local
memory (slow)

• R/W inputs/results  cudaMalloc‘ed global
memory (slow)

50

Communication Through Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 408, University of Illinois, Urbana-Champaign

Instruction Level Parallelism and

Thread Level Parallelism

• Dynamic partitioning gives more flexibility to

compilers/programmers

– One can run a smaller number of threads that

require many registers each or a large number of

threads that require few registers each

• This allows for finer grain threading than traditional

CPU threading models

– The compiler can tradeoff between instruction-

level parallelism and thread level parallelism

51

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 408, University of Illinois, Urbana-Champaign

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 408, University of Illinois, Urbana-Champaign 52

Memory Coalescing

• When accessing global memory, peak

performance utilization occurs when all

threads in a half warp access continuous

memory locations

Md Nd

W
ID

T
H

WIDTH

Thread 1

Thread 2

Not coalesced coalesced

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 408, University of Illinois, Urbana-Champaign 53

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access

direction in

Kernel code

…

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 408, University of Illinois, Urbana-Champaign 54

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access

direction in

Kernel code

…

Example: SoA vs. AoS
__global__ void bar(record

*AoS_data, SoA SoA_data)

{

int i = blockDim.x * blockIdx.x

+ threadIdx.x;

// AoS wastes bandwidth

int key = AoS_data[i].key;

// SoA efficient use of bandwidth

int key_better =

SoA_data.keys[i];

}

55

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 408, University of Illinois, Urbana-Champaign 56

Shared Memory Bank Conflicts

• Shared memory is as fast as registers if there

are no bank conflicts

• Bank conflicts are less of an issue in newer

versions of CUDA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 408, University of Illinois, Urbana-Champaign

Thread 0

Parallel Reduction:
No Divergence until <= 16 sub-sums

0 1 2 3 … 13 1514 181716 19

0+16 15+31
1

3

4

Thread 1 Thread 2 Thread 14 Thread 15

57

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 408, University of Illinois, Urbana-Champaign

Prefetching
• One could double buffer the computation, getting

better instruction mix within each thread

– This is classic software pipelining in ILP compilers

Loop {

Load current tile to shared memory

syncthreads()

Compute current tile

syncthreads()

}

Load next tile from global memory

Loop {

Deposit current tile to shared memory

syncthreads()

Load next tile from global memory

Compute current tile

syncthreads()

}

58

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 408, University of Illinois, Urbana-Champaign

Instruction Mix Considerations:

Loop Unrolling
for (int k = 0; k < BLOCK_SIZE; ++k)

Pvalue += Ms[ty][k] * Ns[k][tx];

There are very few mul/add between branches and

address calculation

Loop unrolling can help. (Beware that any local arrays

used after unrolling will be dumped into Local Memory)

Pvalue += Ms[ty][k] * Ns[k][tx] + …

Ms[ty][k+15] * Ns[k+15][tx];

59

Occupancy

• Thread instructions are executed
sequentially, so executing other warps is the
only way to hide latencies and keep memory
busy

• Occupancy = number of warps running
concurrently on a multiprocessor divided by
maximum number of warps that can run
concurrently

• Limited by resource usage:

– Registers

– Shared memory

60

Optimizing Threads per Block

• Choose threads per block as multiple of

warp size

– Avoid wasting computation on under-

populated warps

• Run as many warps as possible per SM

– Hide latency

• SMs can run up to N blocks at a time

61

Kernel Launch Overhead

• Kernel launches aren’t free
– A null kernel launch will take non-trivial time

– Actual time changes with HW generations
and driver software…

• Independent kernel launches are cheaper
than dependent kernel launches
– Dependent launch: Some readback to the

cpu

• Launching lots of small grids comes with
substantial performance loss

62

Compute Capabilities

• Reminder: do not take various constants,

such as size of shared memory etc., for

granted since they continuously change

• Check CUDA programming guide for the

features of the compute capability of your

GPU

63

Timers

• Any timer can be used

– Check resolution

• Important: many CUDA API functions are

asynchronous

– They return control back to the calling CPU

thread prior to completing their work

– All kernel launches are asynchronous

– So are all memory copy functions with the
Async suffix on the name

64

Synchronization

• Synchronize the CPU thread with the GPU
by calling cudaThreadSynchronize()

immediately before starting and stopping

the CPU timer

• cudaThreadSynchronize()blocks the

calling CPU thread until all CUDA calls

previously issued by the thread are

completed

65

Synchronization

• cudaEventSynchronize() blocks until

a given event in a particular stream has

been recorded by the GPU

– Safe only in the default (0) stream

– Fine for our purposes

66

CUDA Timer
cudaEvent_t start, stop;

float time;

cudaEventCreate(&start);

cudaEventCreate(&stop);

cudaEventRecord(start, 0);

kernel<<<grid,threads>>> (d_odata, d_idata,
size_x, size_y, NUM_REPS);

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop); // after cudaEventRecord

cudaEventElapsedTime(&time, start, stop);

cudaEventDestroy(start);

cudaEventDestroy(stop);

67

Output

• time is in milliseconds

• Its resolution of approximately half a

microsecond

• The timings are measured on the GPU

clock

– Operating system–independent

68

