
CS 677: Parallel Programming for 

Many-core Processors 

Lecture 4

Instructor: Philippos Mordohai

Webpage: www.cs.stevens.edu/~mordohai

E-mail: Philippos.Mordohai@stevens.edu
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Logistics

• NEW Midterm: March 27

• Project proposal presentations: March 13

– Have to be approved by me by March 8
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Project Proposal

• Problem description
– What is the computation and why is it important?

– Abstraction of computation: equations, graphic or pseudo-
code, no more than 1 page

• Suitability for GPU acceleration
– Amdahl’s Law: describe the inherent parallelism.  Argue that it 

is close to 100% of computation.  

– Synchronization and Communication: Discuss what data 
structures may need to be protected by synchronization, or 
communication through host.

– Copy Overhead: Discuss the data footprint and anticipated 
cost of copying to/from host memory.

• Intellectual Challenges
– Generally, what makes this computation worthy of a project?

– Point to any difficulties you anticipate at present in achieving 
high speedup
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Amdahl’s Law

• “The speedup of a program using multiple 
processors in parallel computing is limited by 
the time needed for the sequential fraction of 
the program.”

• Example
– 95% of original execution time can be sped up by 

100x on GPU

– Speed up for entire application:
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Overview

• More Performance Considerations

– Memory Coalescing

– Occupancy

– Kernel Launch Overhead

– Instruction Performance

• Summary of Performance Considerations

– Lectures 3 and 4

• Timers
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Memory Coalescing (Part 2)

slides by

Jared Hoberock and David Tarjan

(Stanford CS 193G)
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Consider the stride of your accesses

__global__ void foo(int* input,

float3* input2)

{

int i = blockDim.x * blockIdx.x

+ threadIdx.x;

// Stride 1

int a = input[i];

// Stride 2, half the bandwidth is wasted

int b = input[2*i];

// Stride 3, 2/3 of the bandwidth wasted

float c = input2[i].x;

}
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Example: Array of Structures (AoS)

struct record

{

int key;

int value;

int flag;

};

record  *d_records;

cudaMalloc((void**)&d_records, 
...);
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Example: Structure of Arrays (SoA)
struct SoA

{

int * keys;

int * values;

int * flags;

};

SoA d_SoA_data;

cudaMalloc((void**)&d_SoA_data.keys, ...);

cudaMalloc((void**)&d_SoA_data.values, ...);

cudaMalloc((void**)&d_SoA_data.flags, ...);
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Example: SoA vs. AoS
__global__ void bar(record 

*AoS_data, SoA SoA_data)

{

int i = blockDim.x * blockIdx.x

+ threadIdx.x;

// AoS wastes bandwidth

int key = AoS_data[i].key;

// SoA efficient use of bandwidth

int key_better = SoA_data.keys[i];

}
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Memory Coalescing

• Structure of arrays is often better than 
array of structures 

– Very clear win on regular, stride 1 access 
patterns

– Unpredictable or irregular access patterns 
are case-by-case
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Occupancy

slides (mostly) by

Jared Hoberock and David Tarjan

(Stanford CS 193G)

and Joseph T. Kider Jr. (UPenn)
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Reminder: Thread Scheduling

• SM implements zero-overhead warp scheduling
– At any time, only one of the warps is executed by SM 

– Warps whose next instruction has its inputs ready for 
consumption are eligible for execution

– Eligible Warps are selected for execution on a 
prioritized scheduling policy

– All threads in a warp execute the same instruction 
when selected
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Thread Scheduling

• What happens if all warps are stalled?

– No instruction issued  performance lost

• Most common reason for stalling?

– Waiting on global memory

• If your code reads global memory every couple 

of instructions

– You should try to maximize occupancy
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Occupancy

• Thread instructions are executed 
sequentially, so executing other warps is the 
only way to hide latencies and keep cores 
busy

• Occupancy = number of warps running 
concurrently on a multiprocessor divided by 
maximum number of warps that can run 
concurrently

• Limited by resource usage:

– Registers

– Shared memory
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Resource Limits (1)

• Pool of registers and shared memory per SM
• Each thread block grabs registers & shared memory

• If one or the other is fully utilized -> no more thread 

blocks
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Resource Limits (2)

• Can only have N thread blocks per SM
• If they’re too small, can’t fill up the SM

• Need 128 threads / block (GT200), 192 threads/ 

block (GF100)

• Higher occupancy has diminishing returns for 

hiding latency
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Grid/Block Size Heuristics

• # of blocks > # of multiprocessors
– So all multiprocessors have at least one block to 

execute

• # of blocks / # of multiprocessors > 2
– Multiple blocks can run concurrently on a 

multiprocessor

– Blocks not waiting at a __syncthreads() keep 
hardware busy

– Subject to resource availability – registers, shared 
memory

• # of blocks > 100 to scale to future devices
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Register Dependency

• Read-after-write register dependency

– Instruction’s result can be read approximately 

24 cycles later

• To completely hide latency:

– Run at least 192 threads (6 warps) per 

multiprocessor

• At least 25% occupancy for compute capability 1.0 

and 1.1

• Threads do not have to belong to the same block
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Register Pressure

• Hide latency by using more threads per 

SM

• Limiting factors:

– Number of registers per thread

• 8k/16k/… per SM, partitioned among concurrent 

threads

– Amount of shared memory

• 16kB/… per SM, partitioned among concurrent 

blocks

20



How do you know what you’re using?

• Use  nvcc –Xptxas –v to get register and shared 
memory usage

nvcc -Xptxas -v acos.cu

ptxas info : Compiling entry function 'acos_main'

ptxas info : Used 4 registers, 60+56 bytes lmem, 44+40 bytes 
smem, 20 bytes cmem[1], 12 bytes cmem[14]

– The first number represents the total size of all the variables 
declared in that memory segment and the second number 
represents the amount of system allocated data. 

– Constant memory numbers include which memory banks have 
been used

• Plug those numbers into CUDA Occupancy Calculator
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How to influence how many registers 

you use

• Pass option –maxrregcount=X to nvcc

• This isn’t magic, won’t get occupancy for 

free

• Use this very carefully when you are right 

on the edge
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Optimizing Threads per Block

• Choose threads per block as multiple of 

warp size

– Avoid wasting computation on under-

populated warps

• Run as many warps as possible per SM

– Hide latency

• SMs can run up to N blocks at a time
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Occupancy != Performance

• Increasing occupancy does not 

necessarily increase performance

• BUT…

• Low-occupancy SMs cannot adequately 

hide latency
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Parameterize your Application

• Parameterization helps adaptation to different 
GPUs

• GPUs vary in many ways

– # of SMs

– Memory bandwidth

– Shared memory size

– Register file size

– Max threads per block

 Avoid local minima

– Try widely varying configurations
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Kernel Launch Overhead

slides by

Jared Hoberock and David Tarjan

(Stanford CS 193G)
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Kernel Launch Overhead

• Kernel launches aren’t free
– A null kernel launch will take non-trivial time

– Actual time changes with HW generations 
and driver software…

• Independent kernel launches are cheaper 
than dependent kernel launches
– Dependent launch: Some readback to the 

CPU

• Launching lots of small grids comes with 
substantial performance loss 
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Kernel Launch Overheads

• If you are reading back data to the CPU 

for control decisions, consider doing it on 

the GPU 

• Even though the GPU is slow at serial 

tasks, it can do surprising amounts of 

work before you used up kernel launch 

overhead
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Instruction Performance

slides by

Joseph T. Kider Jr. (Upenn)
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Instruction Performance

• Instruction cycles (per warp) is the sum of

– Operand read cycles

– Instruction execution cycles

– Result update cycles

• Therefore instruction throughput depends on

– Nominal instruction throughput

– Memory latency

– Memory bandwidth

• Cycle refers to the multiprocessor clock rate
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Maximizing Instruction Throughput

• Maximize use of high-bandwidth memory

– Maximize use of shared memory

– Minimize accesses to global memory
– Maximize coalescing of global memory accesses

• Optimize performance by overlapping 

memory accesses with computation

– High arithmetic intensity programs

– Many concurrent threads
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Arithmetic Instruction Throughput

• int and float add, shift, min, max and float mul, 
mad: 4 cycles per warp
– int mulitply is by default 32-bit

• requires multiple cycles/warp

– use __mul24() and __umul24() intrinsics for 4-cycle 
24-bit int multiplication

• Integer division and modulo operations are costly 
– The compiler will convert literal power-of-2 divides to 

shifts
• But it may miss

– Be explicit in cases where the compiler cannot tell 
that the divisor is a power of 2
• Trick: foo % n == foo & (n-1) if n is a power of 2
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Loop Transformations

Mary Hall

CS6963 University of Utah
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Reordering Transformations

• Analyze reuse in computation

• Apply loop reordering transformations to 
improve locality based on reuse

• With any loop reordering transformation, 
always ask

– Safety? (doesn’t reverse dependences)

– Profitablity? (improves locality)

CS6963



Loop Permutation:

A Reordering Transformation

for (j=0; j<6; j++)

for (i= 0; i<3; i++)

A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)

for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j];

i

j

new traversal order!i

j

Permute the order of the loops to modify the traversal order

Which one is better for row-major storage?

CS6963 39



Safety of Permutation

• Ok to permute?

for (i= 0; i<3; i++)

for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)

for (j=1; j<6; j++)

A[i+1][j-1]=A[i][j]+B[j];

CS6963

• Intuition: Cannot permute two loops i and j in a loop nest if 

doing so reverses the direction of any dependence.
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Tiling (Blocking):

Another Loop Reordering 

Transformation
• Blocking reorders loop iterations to bring 

iterations that reuse data closer in time

J

I

J

I

CS6963 41



Tiling Example

for (j=1; j<M; j++)

for (i=1; i<N; i++)

D[i] = D[i] + B[j][i];

for (j=1; j<M; j++)

for (ii=1; ii<N; ii+=s)

for (i=ii; i<min(ii+s,N); i++)

D[i] = D[i] +B[j][i];

Strip

mine

for (ii=1; ii<N; ii+=s)

for (j=1; j<M; j++)

for (i=ii; i<min(ii+s,N); i++)

D[i] = D[i] +B[j][i];

Permute

CS6963 42



Legality of Tiling

• Tiling = strip-mine and permutation

–Strip-mine does not reorder iterations

–Permutation must be legal

OR

– strip size less than dependence 

distance

CS6963 43



A Few Words On Tiling

• Tiling can be used hierarchically to compute partial 

results on a block of data wherever there are 

capacity limitations

– Between grids if total data exceeds global memory 

capacity

– Across thread blocks if shared data exceeds shared 

memory capacity (also to partition computation across 

blocks and threads)

– Within threads if data in constant cache exceeds cache 

capacity  or data in registers exceeds register capacity or 

(as in example) data in shared memory for block still 

exceeds shared memory capacity

CS6963 44



Summary of Performance 

Considerations
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Summary of Performance 

Considerations
• Thread Execution and Divergence

• Communication Through Memory

• Instruction Level Parallelism and Thread Level 
Parallelism

• Memory Coalescing

• Shared Memory Bank Conflicts

• Parallel Reduction

• Prefetching

• Loop Unrolling and Transformations

• Occupancy 

• Kernel Launch Overhead

• Instruction Performance
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Thread Execution and Divergence

• Instructions are issued per 32 threads 
(warp)

• Divergent branches:

– Threads within a single warp take different 
paths
• if-else, ...

– Different execution paths within a warp are 
serialized

• Different warps can execute different code 
with no impact on performance
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An Example

// is this barrier divergent?

for(int offset = blockDim.x / 2;

offset > 0;

offset >>= 1)

{

...

__syncthreads();

}
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A Second Example
// what about this one?

__global__ void do_i_halt(int *input)

{

int i = ...

if(input[i])

{

...

__syncthreads();

}

}

// a divergent barrier

// hangs the machine
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• Carefully partition data according to access 
patterns

• Read-only  __constant__ memory (fast)

• R/W & shared within block  __shared__ 
memory (fast)

• R/W within each thread  registers (fast)

• Indexed R/W within each thread  local 
memory (slow)

• R/W inputs/results  cudaMalloc‘ed global 
memory (slow)
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Communication Through Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE 408, University of Illinois, Urbana-Champaign



Instruction Level Parallelism and 

Thread Level Parallelism

• Dynamic partitioning gives more flexibility to 

compilers/programmers

– One can run a smaller number of threads that 

require many registers each or a large number of 

threads that require few registers each 

• This allows for finer grain threading than traditional 

CPU threading models

– The compiler can tradeoff between instruction-

level parallelism and thread level parallelism
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Memory Coalescing

• When accessing global memory, peak 

performance utilization occurs when all 

threads in a half warp access continuous 

memory locations

Md Nd
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ID
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Thread 1
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Example: SoA vs. AoS
__global__ void bar(record 

*AoS_data, SoA SoA_data)

{

int i = blockDim.x * blockIdx.x

+ threadIdx.x;

// AoS wastes bandwidth

int key = AoS_data[i].key;

// SoA efficient use of bandwidth

int key_better = 

SoA_data.keys[i];

}
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Shared Memory Bank Conflicts

• Shared memory is as fast as registers if there 

are no bank conflicts

• Bank conflicts are less of an issue in newer 

versions of CUDA
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Thread 0

Parallel Reduction:
No Divergence until <= 16 sub-sums 
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Prefetching
• One could double buffer the computation, getting 

better instruction mix within each thread

– This is classic software pipelining in ILP compilers

Loop {

Load current tile to shared memory

syncthreads()

Compute current tile

syncthreads()

}

Load next tile from global memory

Loop {

Deposit current tile to shared memory

syncthreads()

Load next tile from global memory

Compute current tile

syncthreads()

}
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Instruction Mix Considerations: 

Loop Unrolling
for (int k = 0; k < BLOCK_SIZE; ++k)

Pvalue += Ms[ty][k] * Ns[k][tx];

There are very few mul/add between branches and 

address calculation 

Loop unrolling can help. (Beware that any local arrays 

used after unrolling will be dumped into Local Memory)

Pvalue += Ms[ty][k] * Ns[k][tx] + …

Ms[ty][k+15] * Ns[k+15][tx];
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Occupancy

• Thread instructions are executed 
sequentially, so executing other warps is the 
only way to hide latencies and keep memory 
busy

• Occupancy = number of warps running 
concurrently on a multiprocessor divided by 
maximum number of warps that can run 
concurrently

• Limited by resource usage:

– Registers

– Shared memory
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Optimizing Threads per Block

• Choose threads per block as multiple of 

warp size

– Avoid wasting computation on under-

populated warps

• Run as many warps as possible per SM

– Hide latency

• SMs can run up to N blocks at a time
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Kernel Launch Overhead

• Kernel launches aren’t free
– A null kernel launch will take non-trivial time

– Actual time changes with HW generations 
and driver software…

• Independent kernel launches are cheaper 
than dependent kernel launches
– Dependent launch: Some readback to the 

cpu

• Launching lots of small grids comes with 
substantial performance loss 
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Compute Capabilities

• Reminder: do not take various constants, 

such as size of shared memory etc., for 

granted since they continuously change

• Check CUDA programming guide for the 

features of the compute capability of your 

GPU
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Timers

• Any timer can be used

– Check resolution

• Important: many CUDA API functions are 

asynchronous 

– They return control back to the calling CPU 

thread prior to completing their work

– All kernel launches are asynchronous 

– So are all memory copy functions with the 
Async suffix on the name
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Synchronization

• Synchronize the CPU thread with the GPU 
by calling cudaThreadSynchronize()

immediately before starting and stopping 

the CPU timer

• cudaThreadSynchronize()blocks the 

calling CPU thread until all CUDA calls 

previously issued by the thread are 

completed 
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Synchronization

• cudaEventSynchronize() blocks until 

a given event in a particular stream has 

been recorded by the GPU

– Safe only in the default (0) stream

– Fine for our purposes
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CUDA Timer
cudaEvent_t start, stop; 

float time; 

cudaEventCreate(&start); 

cudaEventCreate(&stop); 

cudaEventRecord( start, 0 ); 

kernel<<<grid,threads>>> ( d_odata, d_idata, 
size_x, size_y, NUM_REPS); 

cudaEventRecord( stop, 0 );

cudaEventSynchronize( stop ); // after cudaEventRecord

cudaEventElapsedTime( &time, start, stop ); 

cudaEventDestroy( start ); 

cudaEventDestroy( stop ); 
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Output

• time is in milliseconds 

• Its resolution of approximately half a 

microsecond

• The timings are measured on the GPU 

clock 

– Operating system–independent
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