CS 677: Parallel Programming for Many-core Processors Lecture 12

Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu

Outline

- Parallel Sorting
- Hardware Developments
- Developments in CUDA

Introduction to OpenMP

OpenCL Sorting

Eric Bainville - June 2011

Parallel Selection Sort

```
kernel void ParallelSelection ( global const data t * in, global
data t * out)
  int i = get global id(0); // current thread
  int n = get global size(0); // input size
  data t iData = in[i];
  uint iKey = keyValue(iData);
  // Compute position of in[i] in output
  int pos = 0;
  for (int j=0; j<n; j++)</pre>
  {
    uint jKey = keyValue(in[j]); // broadcasted
    // in[j] < in[i] ?</pre>
    bool smaller = (jKey < iKey) || (jKey == iKey && j < i);
    pos += (smaller)?1:0;
  }
  out[pos] = iData;
}
```

Parallel Selection Sort

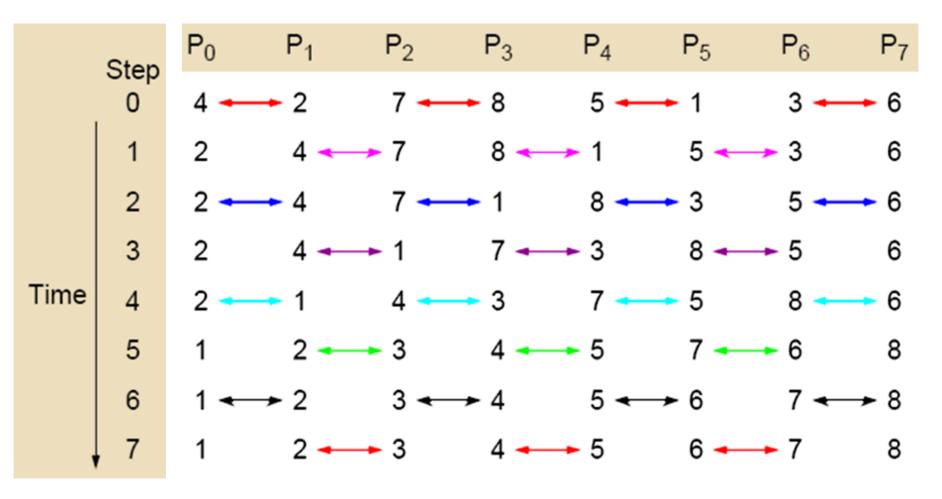
- Very ineffective
- 2N+N² accesses to global memory. Why?

- A.k.a. Parallel Rank Sort
 - Effective on multi-processor system with highbandwidth memory

Parallel Selection Sort, blocks

```
__kernel void ParallelSelection_Blocks(__global const data_t *
in, __global data_t * out, __local uint * aux)
{
    int i = get_global_id(0); // current thread
    int n = get_global_size(0); // input size
    int wg = get_local_size(0); // workgroup size
```

```
data_t iData = in[i]; // input record for current thread
uint iKey = keyValue(iData); // input key for current thread
int blockSize = BLOCK FACTOR * wg; // block size
```

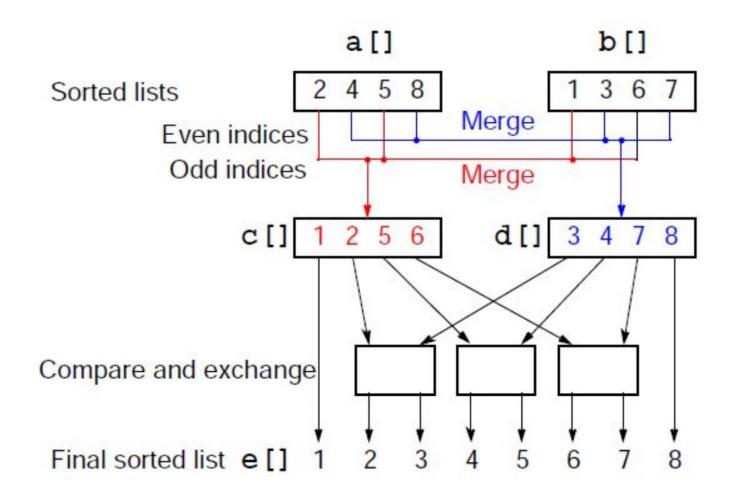

```
// Compute position of iKey in output
int pos = 0;
// Loop on blocks of size BLOCKSIZE keys (BLOCKSIZE must divide N)
for (int j=0;j<n;j+=blockSize)</pre>
{
  // Load BLOCKSIZE keys using all threads (BLOCK FACTOR values per thread)
  barrier(CLK LOCAL MEM FENCE);
  for (int index=get local id(0);index<blockSize;index+=wg)</pre>
    aux[index] = keyValue(in[j+index]);
  barrier (CLK LOCAL MEM FENCE);
  // Loop on all values in AUX
  for (int index=0; index<blockSize; index++)</pre>
  {
    uint jKey = aux[index]; // broadcasted, local memory
    // in[j] < in[i] ?</pre>
    bool smaller = (jKey < iKey) || (jKey == iKey \&\& (j+index) < i);
    pos += (smaller)?1:0;
out[pos] = iData;
```

}

Compare-and-Exchange Sorting

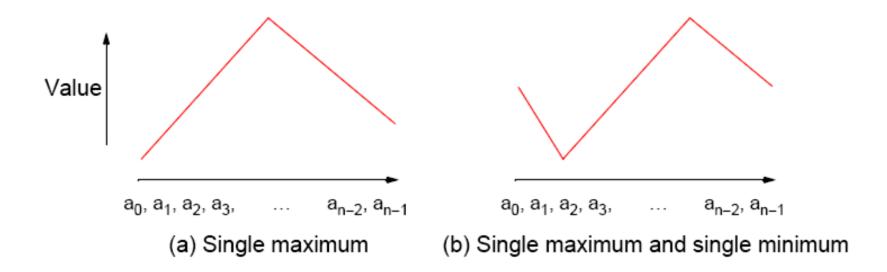
Fikret Ercal (Missouri University of Science and Technology) and Fernando Silva (University of Porto)

Odd-Even Transposition Sort

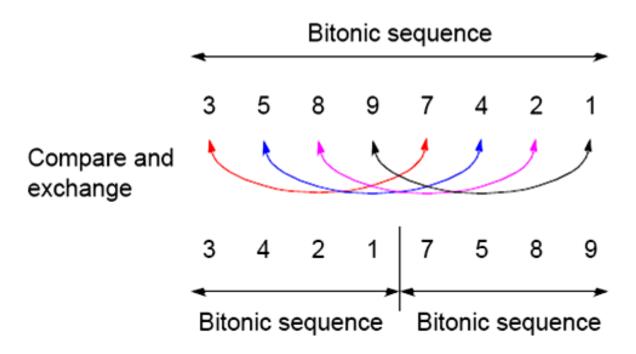

Parallel time complexity: $T_{par} = O(N)$ (for P=N)

Odd-Even Transposition Sort (N>>P)

Each PE gets N/P numbers. First, PEs sort N/P locally, then they run oddeven trans. algorithm each time doing a merge-split for 2N/P numbers.


\mathbf{P}_{0}	P ₁	\mathbf{P}_2 \mathbf{P}_3
13 7 12	8 5 4	6 1 3 9 2 10
Local sort		
7 12 13 O-E	4 5 8	1 3 6 2 9 10 1 3 6 2 9 10
4 5 7 E-O	8 12 13	123 6910
о-е 4 5 7	1 2 3	8 12 13 6 9 10
1 2 3 E-O	4 5 7	6 8 9 10 12 13
SORTED: 1 2	3 4 5 6	7 8 9 10 12 13

Merge-Split


Bitonic Mergesort

A bitonic sequence is defined as a list with no more than one LOCAL MAXIMUM and no more than one LOCAL MINIMUM. (Endpoints must be considered - wraparound)

Binary Split

- 1. Divide the bitonic list into two equal halves.
- 2. Compare-Exchange each item on the first half with the corresponding item in the second half.

Result:

Two bitonic sequences where the numbers in one sequence are all less than the numbers in the other sequence.

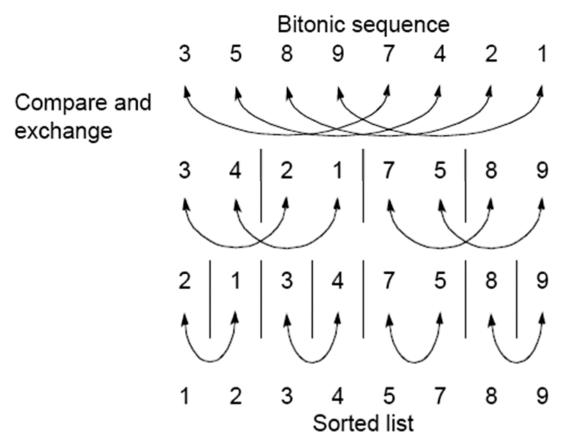
Repeated Application of Binary Split

Bitonic list:

24 20 15 9 4 2 5 8 | 10 11 12 13 22 30 32 45

Result after Binary-split:

10 11 12 9 4 2 5 8 | 24 20 15 13 22 30 32 45

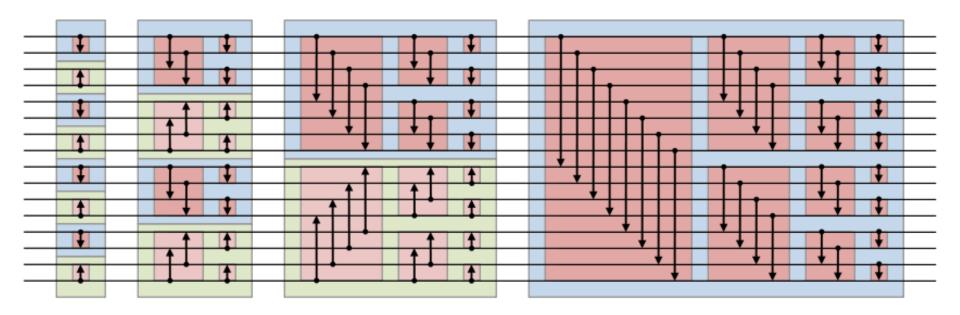

If you keep applying the BINARY-SPLIT to each half repeatedly, you will get a SORTED LIST !

10	11	12	9	. 4	2	5	8	24	20	15	13.	22	30	32	45
4	2.	5	8	10	11	. 12	9	22	20	. 15	13	24	30.	32	45
4	. 2	5	. 8	10	. 9	12	.11	15	. 13	22	20	24	. 30	32.	45
2	4	5	8	9	10	11	12	13	15	20	22	24	30	32	45

Q: How many parallel steps does it take to sort ?A: log n

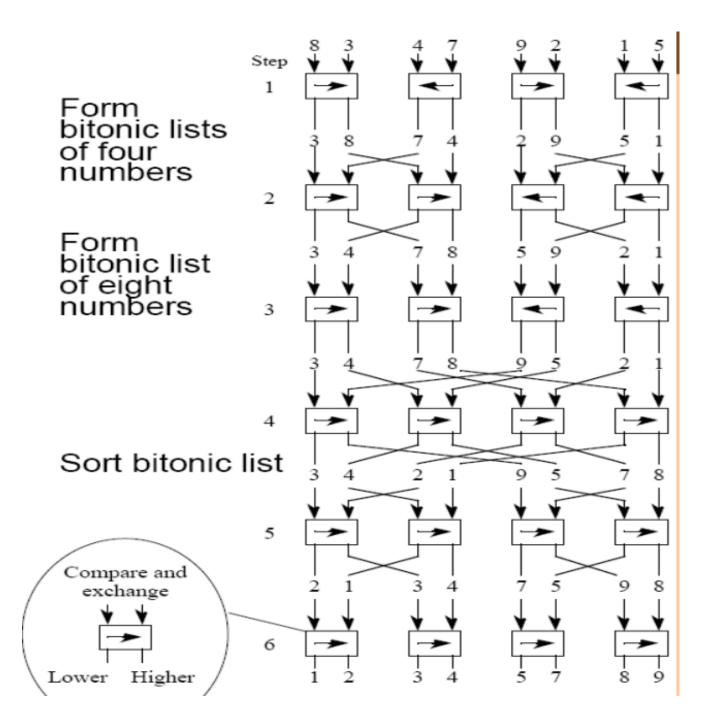
Sorting a Bitonic Sequence

- Compare-and-exchange moves smaller numbers of each pair to left and larger numbers of pair to right.
- Given a bitonic sequence, recursively performing 'binary split' will sort the list.


Sorting an Arbitrary Sequence

- To sort an unordered sequence, sequences are merged into larger bitonic sequences, starting with pairs of adjacent numbers.
- A sequence of length 2 is a bitonic sequence.
- A bitonic sequence of length 4 can be built by sorting the first two elements using a positive bitonic merge and the next two using a negative bitonic merge

Sorting an Arbitrary Sequence


- By a compare-and-exchange operation, pairs of adjacent numbers form increasing sequences and decreasing sequences. Pairs form a bitonic sequence of twice the size of each original sequences.
- By repeating this process, bitonic sequences of larger and larger lengths obtained.
- In the final step, a single bitonic sequence is sorted into a single increasing sequence.

Bitonic Mergesort

- Whenever two numbers reach the two ends of an arrow, they are compared to ensure that the arrow points toward the larger number.
- If they are out of order, they are swapped.

Source: Wikipedia

Python Example

```
def bitonic sort(up, x):
    if len(x) \leq 1:
        return x
    else:
        first = bitonic sort(True, x[:len(x) // 2])
        second = bitonic sort(False, x[len(x) // 2:])
        return bitonic merge(up, first + second)
def bitonic merge(up, x):
    # assume input x is bitonic, and sorted list is returned
    if len(x) == 1:
        return x
    else:
        bitonic compare(up, x)
        first = bitonic merge(up, x[:len(x) // 2])
        second = bitonic merge(up, x[len(x) // 2:])
        return first + second
def bitonic compare(up, x):
    dist = len(x) / 2
    for i in range(dist):
        if (x[i] > x[i + dist]) == up:
            x[i], x[i + dist] = x[i + dist], x[i] #swap
```

The Fermi Architecture Selected notes from presentation by: Michael C. Shebanow

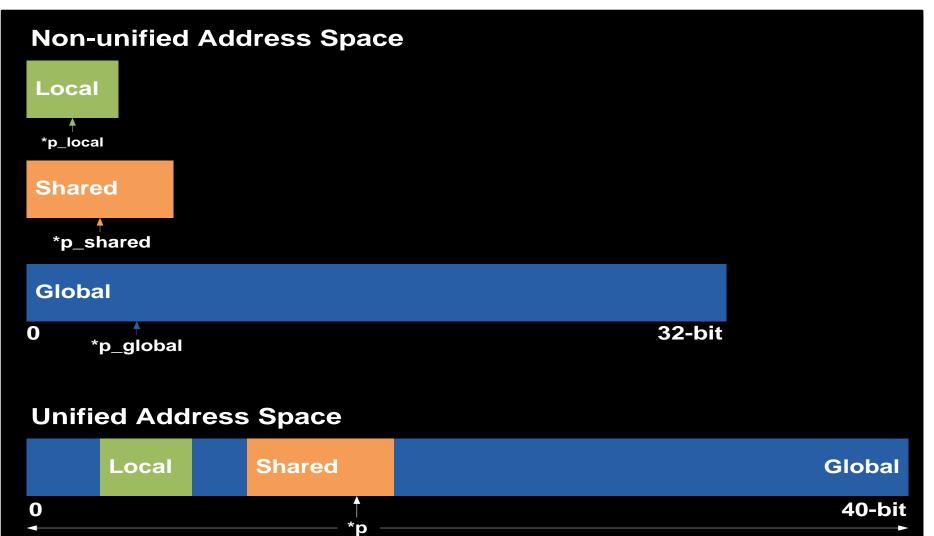
Principal Research Scientist, NV Research mshebanow@nvidia.com

(2010)

Much Better Compute

- Programmability
 - C++ Support
 - Exceptions/Debug support
- Performance
 - Dual issue SMs
 - L1 cache
 - Larger Shared Memory
 - Much better DP math
 - Much better atomic support
- Reliability: ECC

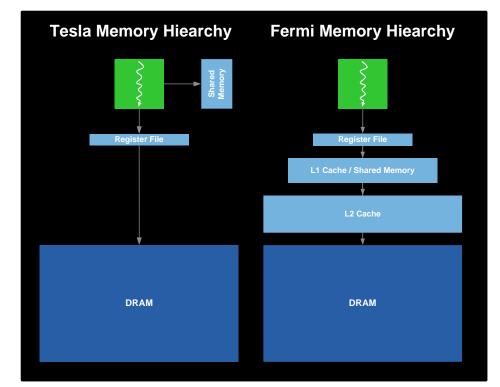
	GT200	GF100	Benefit
L1 Texture	12 KB	12 KB	Fast texture
Cache (per			filtering
quad)			
Dedicated	X	16 or 48 KB	Efficient
L1 LD/ST			physics and
Cache			ray tracing
Total	16KB	16 or 48 KB	More data reuse
Shared			among threads
Memory			
L2 Cache	256KB	768 KB	Greater texture
	(TEX read	(all clients	coverage,
	only)	read/write)	robust compute
			performance
Double	30	256	Much higher
Precision	FMAs/clock	FMAs/clock	throughputs for
Throughput			Scientific codes


Instruction Set Architecture

FP Unit

- Enables C++ : virtual functions, • new/delete, try/catch
- Unified load/store addressing ٠
- 64-bit addressing for large ٠ problems
- Optimized for CUDA C, OpenCL ۲ & Direct Compute
 - Direct Compute is Microsoft's _ general-purpose computing on GPU API
- Enables system call functionality ullet- stdio.h, etc.

Unified Load/Store Addressing

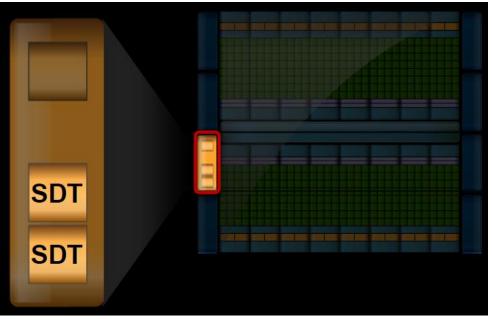

Instruction Issue and Control Flow

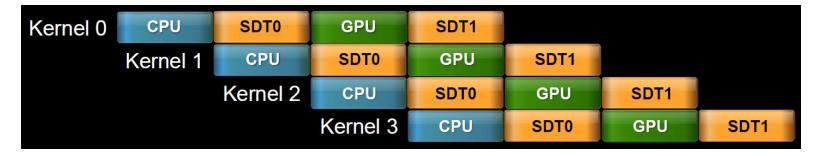
- Decouple internal execution resources
 - Deliver peak IPC on branchy / int-heavy / LD-ST heavy codes
- Dual issue pipelines select two warps to issue

Warp Scheduler	Warp Scheduler
Instruction Dispatch Unit	Instruction Dispatch Unit
Warp 8 instruction 11	Warp 9 instruction 11
Warp 2 instruction 42	Warp 3 instruction 33
Warp 14 instruction 95	Warp 15 instruction 95
Warp 8 instruction 12	Warp 9 instruction 12
Warp 14 instruction 96	Warp 3 instruction 34
Warp 2 instruction 43	Warp 15 instruction 96

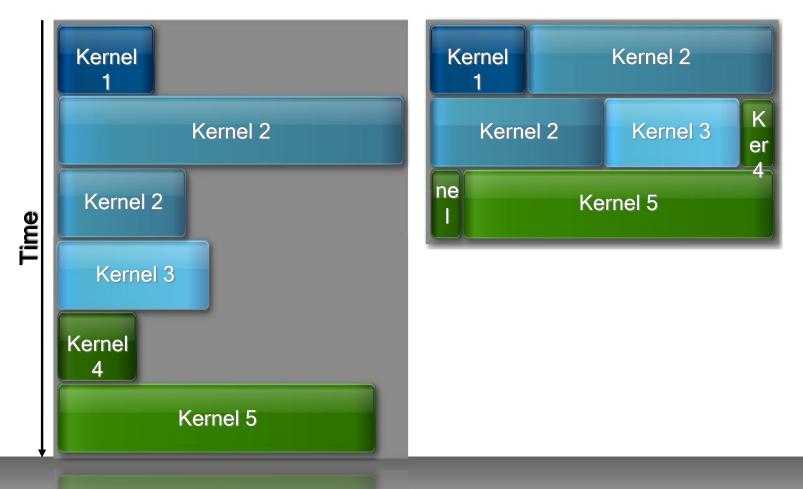
Caches

- Configurable L1 cache per SM
 - 16KB L1\$ / 48KB Shared Memory
 - 48KB L1\$ / 16KB Shared Memory
- Shared 768KB L2 cache
- Compute motivation:
 - Caching captures locality, amplifies bandwidth
 - Caching more effective than Shared Memory for irregular or unpredictable access
 - Ray tracing, sparse matrix multiplication, physics kernels ...
 - Caching helps latency sensitive cases


GigaThread Hardware Thread Scheduler


- Hierarchically manages tens of thousands of simultaneously
 - active threads
- 10x faster context switching on Fermi
- Concurrent kernel execution

GigaThread Streaming Data Transfer Engine


- Dual DMA engines
- Simultaneous CPU→GPU and GPU→CPU data transfer
- Fully overlapped with CPU/GPU processing

Fermi runs independent kernels in parallel

Concurrent Kernel Execution + Faster Context Switch

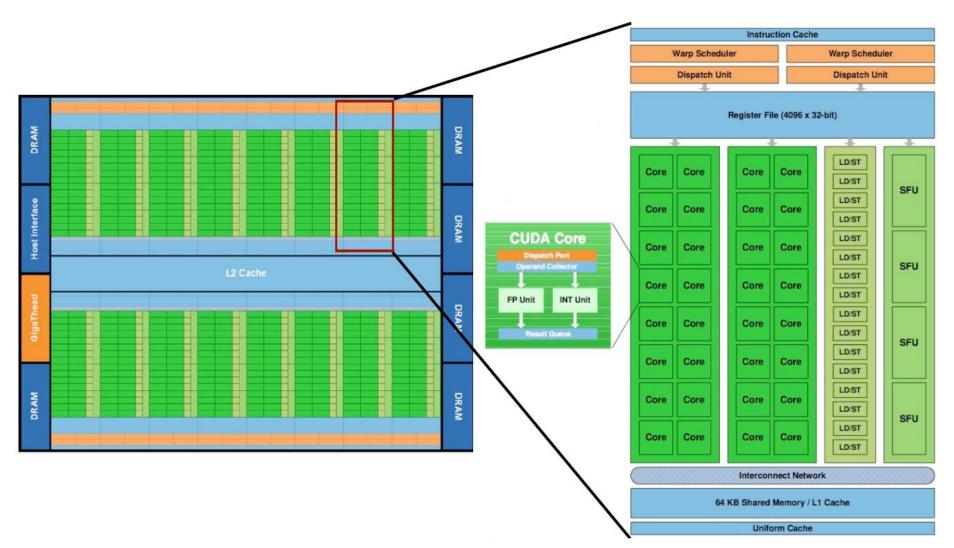
Serial Kernel Execution

Parallel Kernel Execution

Inside Kepler

Manuel Ujaldon Nvidia CUDA Fellow Computer Architecture Department University of Malaga (Spain)

Modified by P. Mordohai


Summary of Features

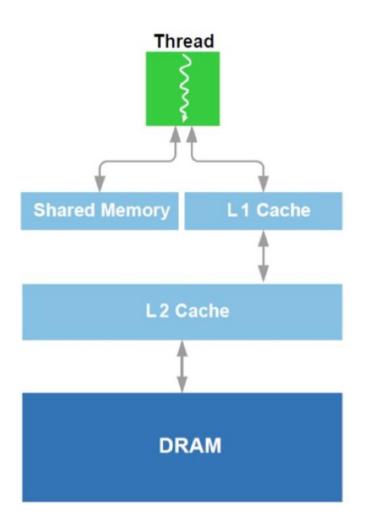
- Released in 2012
- Architecture: Between 7 and 15 multiprocessors SMX, endowed with 192 cores each.
- Arithmetic: More than 1 TeraFLOP in double precision (64 bits IEEE-754 floating-point format).
 - Specific values depend on the clock frequency for each model (usually, more on GeForces, less on Teslas).
- Major innovations in core design:
 - Dynamic parallelism
 - Thread scheduling (Hyper-Q)

How the Architecture Scales Up

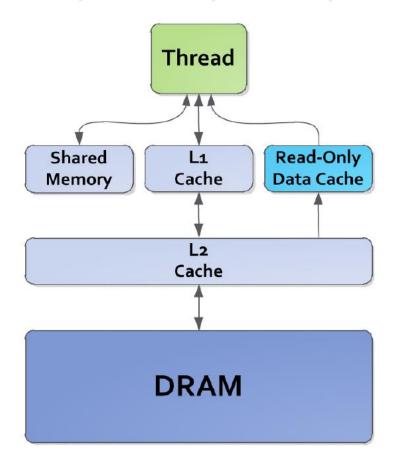
Architecture	G80	GT200	Fermi GF100	Fermi GF104	Kepler GK104	Kepler GK110
Time frame	2006-07	2008-09	2010	2011	2012	2013
CUDA Compute Capability (CCC)	1.0	1.2	2.0	2.1	3.0	3.5
N (multiprocs.)	16	30	16	7	8	15
M (cores/multip.)	8	8	32	48	192	192
Number of cores	128	240	512	336	1536	2880

Fermi

Kepler GK110



From SM to SMX in Kepler

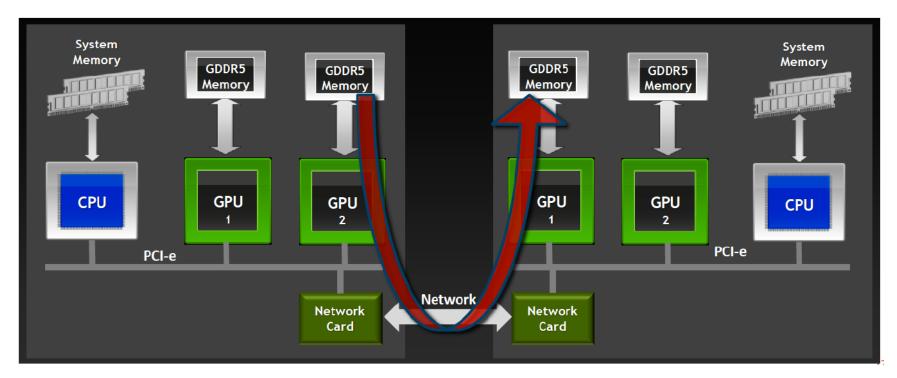

SM											
	Ir	structio	on Cach	0							
War	p Sched	uler	War	p Schedu	uler						
Dispatch Unit Dispatch Unit											
	•			+							
	Registe	er File (3	2,768 x	32-bit)							
-	+	+	+	LD/ST	-						
Core	Core	Core	Core	LD/ST	SFU						
Core	Core	Core	Core	LD/ST LD/ST	aru						
Core	Core	Core	Core	LD/ST LD/ST	SFU						
Core	Core	Core	Core	LD/ST LD/ST							
Core	Core	Core	Core	LD/ST LD/ST	SFU						
Core	Core	Core	Core	LD/ST LD/ST							
Core	Core	Core	Core	LD/ST LD/ST	SFU						
Core	Core	Core	Core	LD/ST LD/ST							
100000	XXXXIIII	erconne	ct Netwo	rk SSSS	42222						
	64 KB SI	hared Me	mory / L	1 Cache							
		Uniform	Cache								
Tex		Tex	Tex		Tex						
		Texture	Cache								

								ln:	structi	on Ca	che							
	We	ırp Sch	eduler			W	arp Sched	uler			Wa	irp Sch	eduler			W	arp Schee	luler
Disp	patch Ur	iit	Dispatch	Unit	Dia	patch U	nit	Dispatch	Unit	Dia	patch Ur	it	Dispatch	Unit	Di	spatch U	nit	Dispatch
	*		•			*	D	egister	File (SE 536	v 32.+	vi+)	•			*		•
Ŧ	Ŧ	Ŧ	÷	÷	÷	÷	•	egistei L	- ne (JU,000	+	•••	Ŧ	Ŧ	Ŧ	÷	÷	Ŧ
Core			DP Unit				DP Unit	LD/ST	SFU	Core		Corp	DP Unit					
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDYST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST
67505	2000	0000	03020523	2000	\$5250	26522	000000	- Inte	recone	ct Net	vork	90000	2000000	0000	20022	80000	0000000	00000
							64	KB Sh				che						
								48 K	B Read	-Only (ache							
	Tex		Tex	1		Tex		Tex	1		Tex		Tex			Tex		Tex
	Tex		Tex			Tex		Tex	t.		Tex		Tex			Tex		Tex

Differences in Memory Hierarchy

Kepler Memory Hierarchy

New Data Cache


- Additional 48 Kbytes to expand L1 cache size
- Avoids the texture unit
- Allows a global address to be fetched and cached, using a pipeline different from that of L1/shared
- Flexible (does not require aligned accesses)
- Eliminates texture setup
- Managed automatically by compiler ("const_ restrict" indicates eligibility). Next slide shows an example.

How to use Data Cache

- Annotate eligible kernel parameters with "const ___restrict"
- Compiler will automatically map loads to use read-only data cache path.

GPUDirect now supports RDMA [Remote Direct Memory Access]

 This allows direct transfers between GPUs and network devices, for reducing the penalty on the extraordinary bandwidth of GDDR5 video memory

Relaxing Software Constraints for Massive Parallelism

GPU generation	Fei	rmi	Кер	Kepler	
Hardware model	GF100	GF104	GK104	GK110	
CUDA Compute Capability (CCC)	2.0	2.1	3.0	3.5	
Number of threads / warp (warp size)	32	3	2 32	32	
Max. number of warps / Multiprocessor	48	4	8 64	64	
Max. number of blocks / Multiprocessor	8		8 16	16	
Max. number of threads / Block	1024	1024	4 1024	1024	
Max. number of threads / Multiprocessor	1536	153	6 2048	2048	
	4				

Crucial enhancement for Hyper-Q (see later)

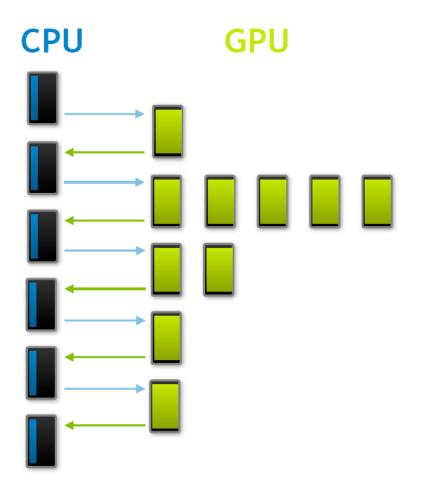
Major Hardware Enhancements

Large scale computations

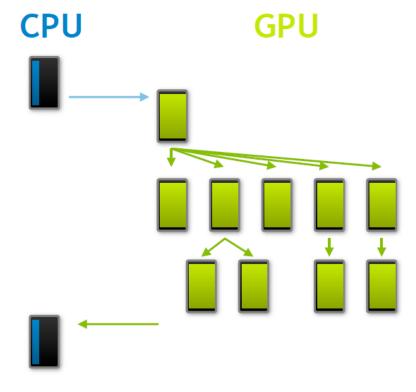
GPU generation	Fei	r mi	Kepler			
Hardware model	GF100	GF104	GK104	GK110	Limitation	Impact
Compute Capability (CCC)	2.0	2.1	3.0	3.5		
Max. grid size (on X dimension)	2^16-1	2^16-1	2^32-1	2^32-1	Software	Problem size

New architectural features

GPU generation	Fei	r mi	Ke	bler		
Hardware model	GF100	GF104	GK104	GK110	Limitation	Impact
Compute Capability (CCC)	2.0	2.1	3.0	3.5		
Dynamic Parallelism	No	No	No	Yes	Hardware	Problem structure
Hyper-Q	No	No	No	Yes	Hardware	Thread scheduling


Dynamic Parallelism

- The ability to launch new grids from the GPU:
 - Dynamically: Based on run-time data
 - Simultaneously: From multiple threads at once
 - Independently: Each thread can launch a different grid



Dynamic Parallelism

The pre-Kepler GPU is a co-processor

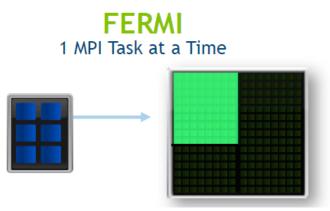
The Kepler GPU is autonomous: Dynamic parallelism

Now programs run faster and are expressed in a more natural way.

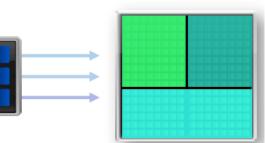
Workload Balance

- Plenty of factors, unpredictable at run time, may transform workload balancing among multiprocessors into an impossible goal
- See below the duration of 8 warps on an SM of the G80:

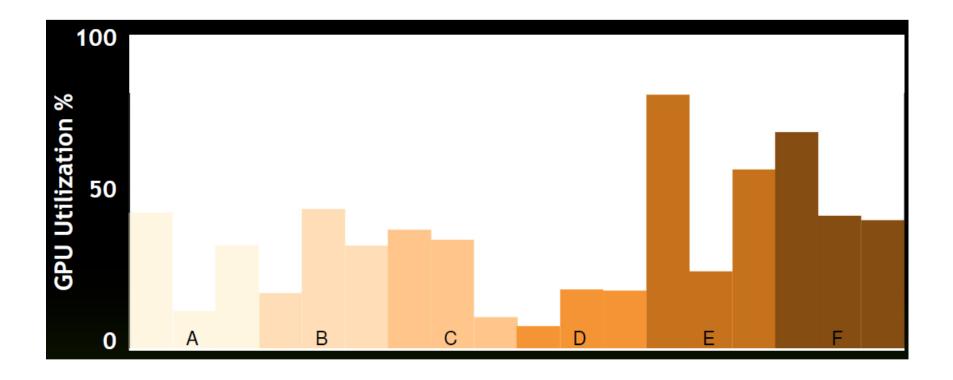
M Warp Vis - test.bin.gz	
<u>File View H</u> elp	
😰 । 🝙 । 🍳 🔍 । 🍳 🔍 iselection: RESET ZOOM Iside: Show	
0	time (cycles)
0_0 9	
0_1 0	
0_2 0	
0_3 0	
1_0 9	
1_1 0	
1_2 0	
1_3 0	
2_0 Ø	
2_1 0	
2_2 0	
2_3 0	
3_0 9	
3_1 0	
3_2 Ø	
3_3 0	

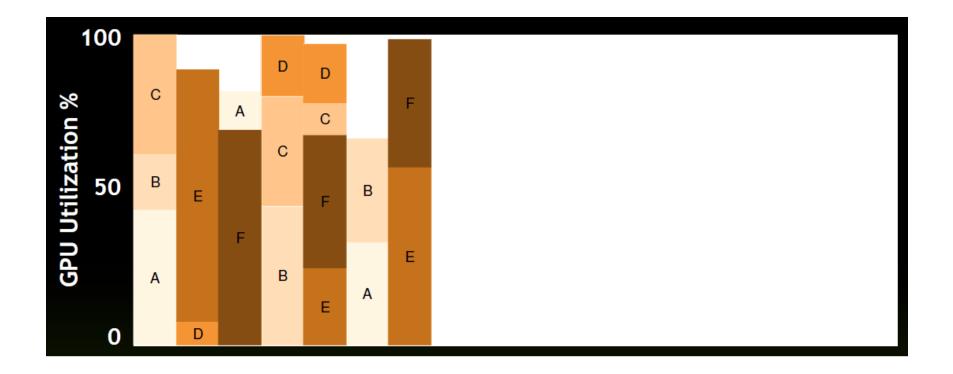

44

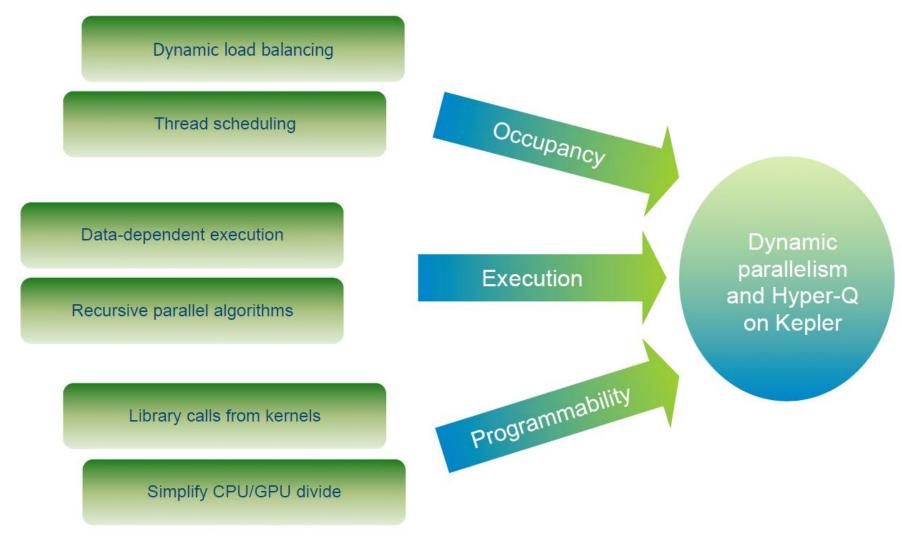
Hyper-Q


- In Fermi, several CPU processes can send thread blocks to the same GPU, but a kernel cannot start its execution until the previous one has finished
- In Kepler, we can execute simultaneously up to 32 kernels launched from different:

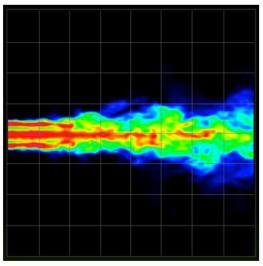
– MPI processes, CPU threads (POSIX threads) or CUDA streams


 This increments the % of temporal occupancy on the GPU

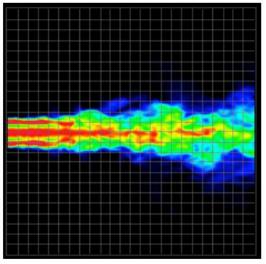

KEPLER 32 Simultaneous MPI Tasks


Without Hyper-Q

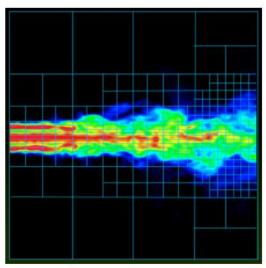
With Hyper-Q



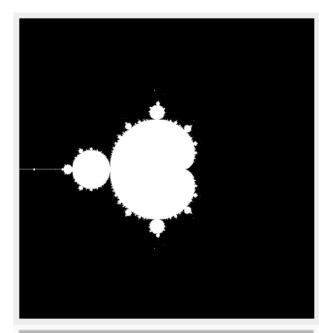
Six Ways to Improve Code on Kepler


Dynamic Work Generation

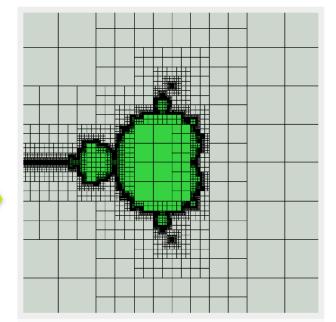
Coarse grid


Higher performance, lower accuracy

Fine grid

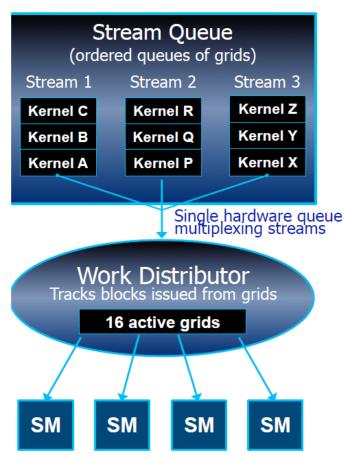

Lower performance, higher accuracy

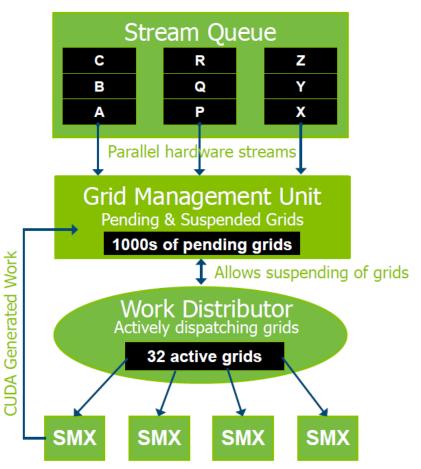
Dynamic grid



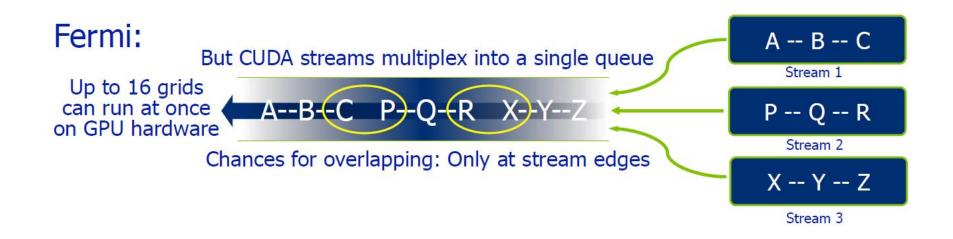
Target performance where accuracy is required

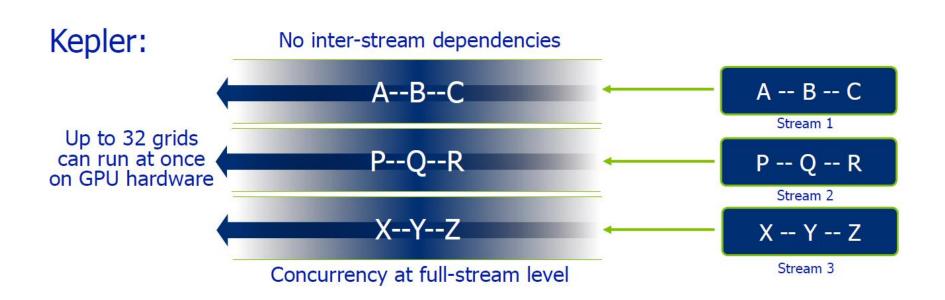
Parallelism based on Level of Detail


CUDA until 2012: • The CPU launches kernels regularly. • All pixels are treated the same. Computational power allocated to regions of interest


CUDA on Kepler: • The GPU launches a different number of kernels/blocks for each computational region.

Grid Management Unit


Fermi


Kepler GK110

Software and Hardware Queues

Software and Hardware Queues

Instruction Issue and Execution

	SM-SMX fetch & issue (front-end)	SM-SMX execution (back-end)
Fermi (GF100)	Can issue 2 warps, 1 instruction each. Total: 2 warps per cycle . Active warps: 48 on each SM, chosen from up to 8 blocks. In GTX480: 15 * 48 = 720 active warps.	 32 cores (1 warp) for "int" and "float". 16 cores for "double" (1/2 warp). 16 load/store units (1/2 warp). 4 special function units (1/8 warp). A total of up to 4 concurrent warps.
Kepler (GK110)	Can issue 4 warps, 2 instructions each. Total: 8 warps per cycle . Active warps: 64 on each SMX, chosen from up to 16 blocks. In K20: 13 * 64 = 832 active warps.	 192 cores (6 warps) for "int" and "float". 64 cores for "double" (2 warps). 32 load/store units (1 warp). 32 special function units (1 warp). A total of up to 10 concurrent warps.

Data-Dependent Parallelism

- The simplest possible parallel program:
 - Loops are parallelizable
 - Workload is known at compile-time

```
for i = 1 to N
for j = 1 to M
convolution(i,j);
```

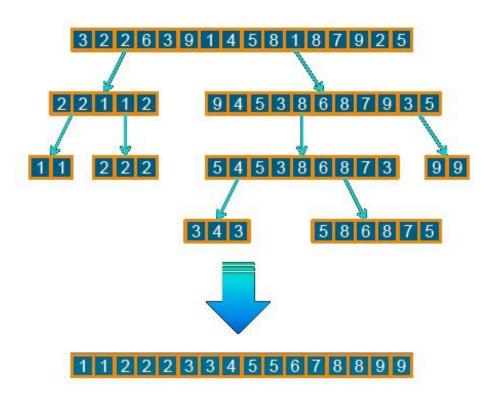
- The simplest impossible program:
 - Workload is unknown at compile-time.
 - The challenge is data partitioning

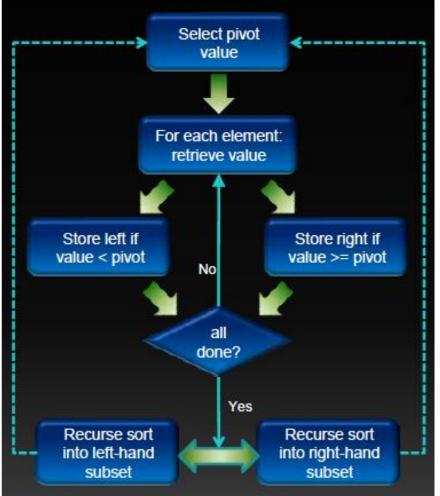
```
for i = 1 to N
for j = 1 to x[i]
    convolution(i,j);
```

Data-Dependent Parallelism

• Kepler version:

// Launch N blocks of 1 thread
// on GPU (rows start in parallel)
convolution <<< N, 1 >>> (x);


• Up to 24 nested loops supported in CUDA 5.0

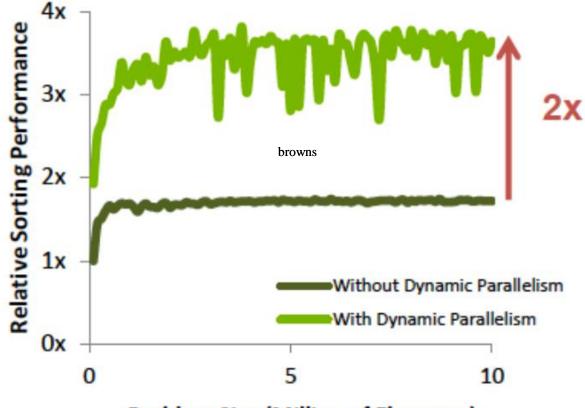

Recursive Parallel Algorithms prior to Kepler

- Early CUDA programming model did not support recursion at all
- CUDA started to support recursive functions in version 3.1, but they can easily crash if the size of the arguments is large
- A user-defined stack in global memory can be employed instead, but at the cost of a significant performance penalty
- An efficient solution is possible using dynamic parallelism

Parallel Recursion: Quicksort

 Typical divide-and-conquer algorithm hard to do on Fermi

Quicksort

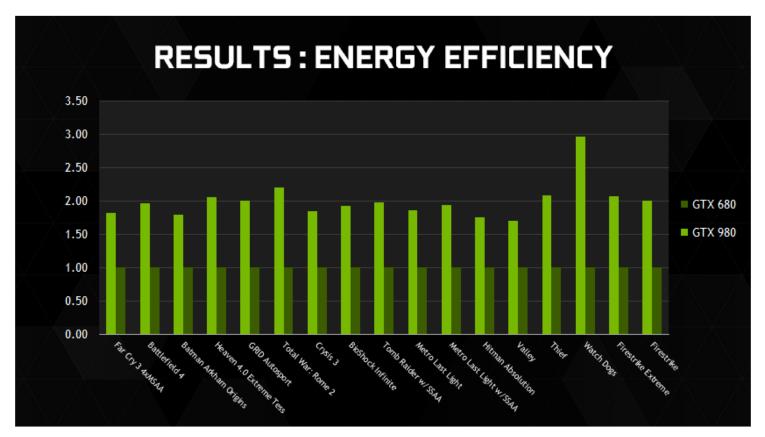

Version for Kepler

Version for Fermi

```
global void qsort(int *data, int 1, int r)
                                               global void gsort(int *data, int 1, int r)
{
                                               {
  int pivot = data[0];
                                                 int pivot = data[0];
 int *lptr = data+l, *rptr = data+r;
                                                 int *lptr = data+l, *rptr = data+r;
                                                 // Partition data around pivot value
 // Partition data around pivot value
                                                 partition(data, 1, r, lptr, rptr, pivot);
 partition(data, l, r, lptr, rptr, pivot);
                                                 // Use streams this time for the recursion
                                                 cudaStream t s1, s2;
                                                 cudaStreamCreateWithFlags(&s1, ...);
 // Launch next stage recursively
                                                 cudaStreamCreateWithFlags(&s2, ...);
  int rx = rptr-data; lx = lptr-data;
                                                 int rx = rptr-data; lx = lptr-data;
 if (1 < rx)
                                                 if (1 < rx)
    gsort<<<...>>>(data,1,rx);
                                                   qsort << ..., 0, s1 >>> (data, 1, rx);
  if (r > lx)
                                                 if (r > lx)
    qsort<<<...>>>(data,lx,r);
                                                   qsort <<<..., 0, s2 >>> (data, lx, r);
                                               }
     left- and right-hand sorts are serialized
                                                  Use separate streams to achieve concurrency
```

Quicksort Results

Quicksort



Problem Size (Million of Elements)

Maxwell (2nd generation) Released in 2014

Material by Mark Harris (NVIDIA) and others

Energy Efficiency

Performance per Watt GTX 680: Kepler GTX 980: Maxwell

New Features

GPU	GeForce GTX 680 (Kepler)	GeForce GTX 980 (Maxwell)		
SMs	8	16		
CUDA Cores	1536	2048		
Base Clock	1006 MHz	1126 MHz		
GPU Boost Clock	1058 MHz	1216 MHz		
GFLOPs	3090	46121		
Texture Units	128	128		
Texel fill-rate	128.8 Gigatexels/sec	144.1 Gigatexels/sec		
Memory Clock	6000 MHz	7000 MHz		
Memory Bandwidth	192 GB/sec	224 GB/sec		
ROPs	32	64		
L2 Cache Size	512KB	2048KB		
TDP	195 Watts	165 Watts		
Transistors	3.54 billion	5.2 billion		
Die Size	294 mm ²	398 mm²		
Manufacturing Process	28-nm	28-nm		

New Features

- Improved instruction scheduling
 - Four warp schedulers per SMM (Maxwell SM), no shared core functional units
- Increased occupancy

 Maximum active blocks per SMM has doubled
- Larger dedicated shared memory – L1 is now with texture cache
- Faster shared memory atomics
- Broader support for dynamic parallelism

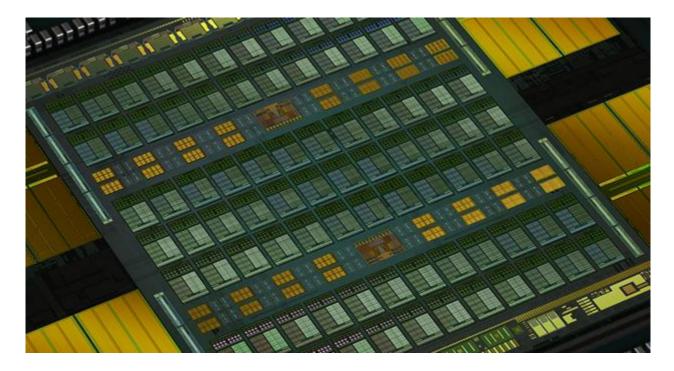
Graphics

NEXT GENERATION GRAPHICS

Enabling New Algorithms and Superior Image Quality

- Voxel Global Illumination
- Multi Projection
- Conservative Raster
- Shader : Raster Ordered View
- Tiled Resources
- Advanced Sampling

Pascal



Released in 2016

Key New Features

- Smaller manufacturing process
 16 nm vs. 28 nm of previous generations
- Much faster memory
- Higher clock frequency – 1607 MHz vs. 1216 MHz
- Dynamic load balancing including graphics pipeline
- Page Migration Engine

Volta

Released in 2017

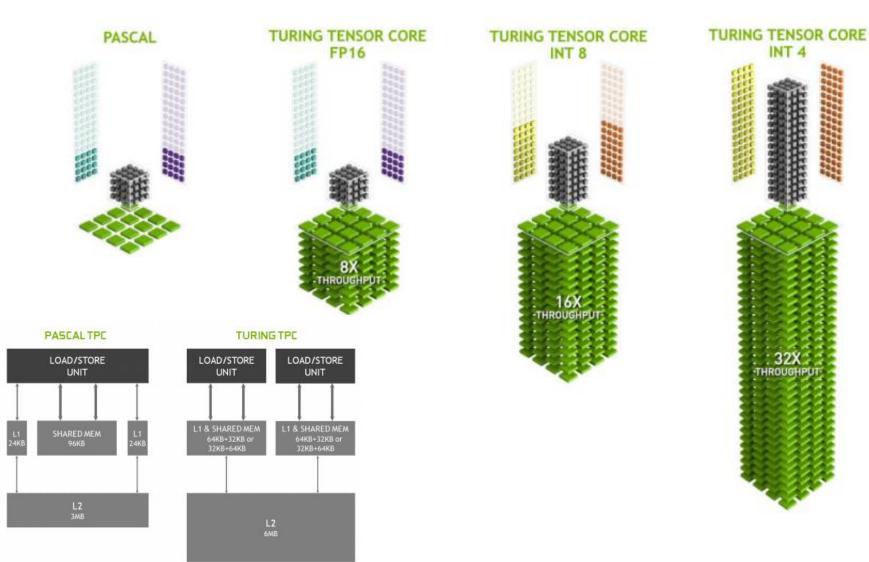
Key New Features

- Up to 640 Tensor Cores for deep learning
 - Multiply and add floating point matrices (64 operations per clock)
 - Over 125 TFLOPS (5x more than Pascal)
- Next generation NVLink doubles bandwidth (up to 300 GB/s)
- 84 SMs
- Simultaneous execution of FP32 and INT32 operations

Tesla Product	Tesla K40	Tesla M40	Tesla P100	Tesla V100
GPU	GK180 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)	GV100 (Volta)
SMs	15	24	56	80
TPCs	15	24	28	40
FP32 Cores / SM	192	128	64	64
FP32 Cores / GPU	2880	3072	3584	5120
FP64 Cores / SM	64	4	32	32
FP64 Cores / GPU	960	96	1792	2560
Tensor Cores / SM	NA	NA	NA	8
Tensor Cores / GPU	NA	NA	NA	640
GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz	1530 MHz
Peak FP32 TFLOPS ¹	5	6.8	10.6	15.7
Peak FP64 TFLOPS ¹	1.7	.21	5.3	7.8
Peak Tensor TFLOPS1	NA	NA	NA	125
Texture Units	240	192	224	320
Memory Interface	384-bit GDDR5	384-bit GDDR5	4096-bit HBM2	4096-bit HBM2
Memory Size	Up to 12 GB	Up to 24 GB	16 GB	16 GB
L2 Cache Size	1536 KB	3072 KB	4096 KB	6144 KB
Shared Memory Size / SM	16 KB/32 KB/48 KB	96 KB	64 KB	Configurable up to 96 KB
Register File Size / SM	256 KB	256 KB	256 KB	256KB
Register File Size / GPU	3840 KB	6144 KB	14336 KB	20480 KB
TDP	235 Watts	250 Watts	300 Watts	300 Watts
Transistors	7.1 billion	8 billion	15.3 billion	21.1 billion
GPU Die Size	551 mm²	601 mm ²	610 mm ²	815 mm ²
Manufacturing Process	28 nm	28 nm	16 nm FinFET+	12 nm FFN

.

Turing



Released in 2018

Key New Features

- CUDA, Ray-tracing and Tensor cores
 - 14.2 TFLOPS of FP32 performance, 113.8 Tensor TFLOPS and 10 Giga Rays/sec
- Up to 24 GB of RAM in Titan RTX
- Independent integer and floating-point datapaths and unified shared memory, texture caching and memory load caching lead to 50% performance improvement per core

Turing Tensor Cores

Memory Compression

- Several lossless memory compression techniques to reduce bandwidth demands
- Improvements over Pascal

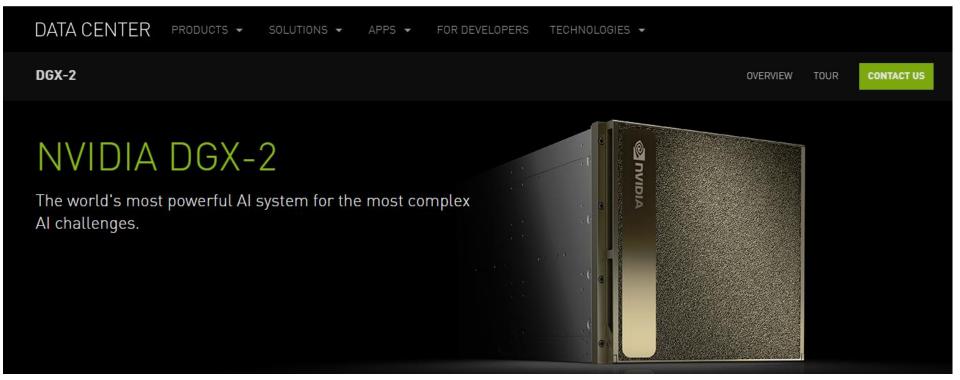
Reflections Demo

NVIDIA DGX-1

NVIDIA DGX-1 WORLD'S FIRST DEEP LEARNING SUPERCOMPUTER

Engineered for deep learning | 170TF FP16 | 8x Tesla P100 NVLink hybrid cube mesh | Accelerates major Al frameworks

"250 SERVERS IN-A-BOX"


	DUAL XEON	DGX-1
FLOPS (CPU + GPU)	3 TF	170 TF
AGGREGATE NODE BW	76 GB/ s	768 GB/ s
ALEXNET TRAIN TIME	150 HOURS	2 HOURS
TRAIN IN 2 HOURS	>250 NODES*	1 NODE

*Caffe Training on Multi-node Distributed-memory Systems Based on Intel® Xeon® Processor E5 Family (extrapolated) Gennady Fedorov (Intel)'s picture Submitted by Gennady Fedorov (Intel), Vadim P. (Intel) on October 29, 2015 https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems-based-on-intel-xeon-processor-e5

SYSTEM SPECIFICATIONS

GPUs	8X Tesla V100
Performance (Mixed Precision)	1 petaFLOPS
GPU Memory	256 GB total system
CPU	Dual 20-Core Intel Xeon E5-2698 v4 2.2 GHz
NVIDIA CUDA® Cores	40,960
NVIDIA Tensor Cores (on V100 based systems)	5,120
Power Requirements	3,500 W
System Memory	512 GB 2,133 MHz DDR4 RDIMM
Storage	4X 1.92 TB SSD RAID 0
Network	Dual 10 GbE, 4 IB EDR
Operating System	Canonical Ubuntu, Red Hat Enterprise Linux
System Weight	134 lbs
System Dimensions	866 D x 444 W x 131 H (mm)
Packing Dimensions	1,180 D x 730 W x 284 H (mm)
Operating Temperature Range	5–35 °C

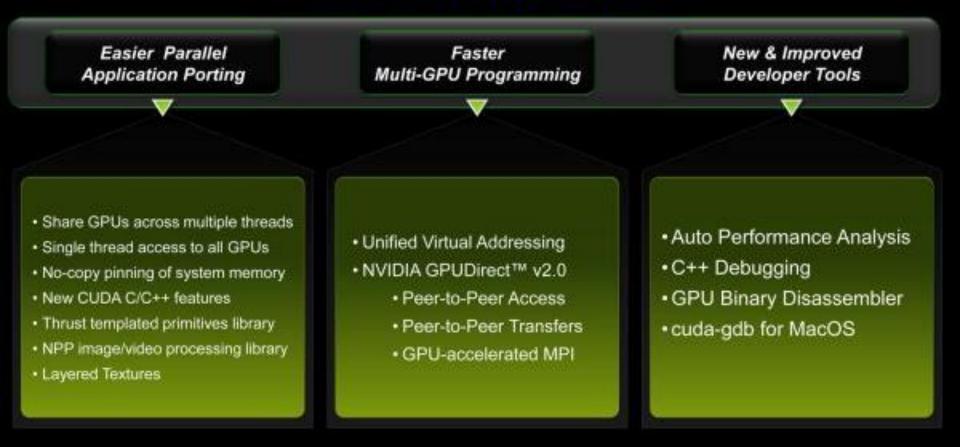
NVIDIA DGX-2

SYSTEM SPECIFICATIONS

GPUs	16X NVIDIA® Tesla V100
GPU Memory	512GB total
Performance	2 petaFLOPS
NVIDIA CUDA® Cores	81920
NVIDIA Tensor Cores	10240
NVSwitches	12
Maximum Power Usage	10kW
CPU	Dual Intel Xeon Platinum 8168, 2.7 GHz, 24-cores
System Memory	1.5TB
Network	8X 100Gb/sec Infiniband/100GigE Dual 10/25/40/50/100GbE
Storage	OS: 2X 960GB NVME SSDs Internal Storage: 30TB (8X 3.84TB) NVME SSDs
Software	Ubuntu Linux OS Red Hat Enterprise Linux OS See Software stack for details
System Weight	360 lbs (163.29 kgs)
Packaged System Weight	400lbs (181.44kgs)
System Dimensions	Height: 17.3 in (440.0 mm) Width: 19.0 in (482.3 mm) Length: 31.3 in (795.4 mm) - No Front Bezel 32.8 in (834.0 mm) - With Front Bezel
Operating Temperature Range	5°C to 35°C (41°F to 95°F)

AMD RX Vega

- 8 GB high bandwidth memory (HBM2)
 14 nm production process
- 4096 cores
- 12.7 TFLOPS
 - Compared to 11 TFLOPS of NVIDIA GTX Titan X and 15.7 TFLOPS of NVIDIA GV100 (Volta)


AMD RADEON VII

- 16 GB high bandwidth memory (HBM2)
 7 nm production process
- 3840 cores
- 13.2 billion transistors
- 13.8 TFLOPS

CUDA 4.0

CUDA 4.0: Highlights

© NV/DIA Corporation 2011

CUDA 4.0 Release

- March 2011
- Independent software release
- Unlike:
 - CUDA 1.0 released with G80/G9x in 2007 (nearly a year later than the hardware)
 - CUDA 2.0 released for GT200 in 2008
 - CUDA 3.0 released for Fermi in 2009

CUDA 4.0 - Application Porting

- Unified Virtual Addressing
- Faster Multi-GPU Programming – NVIDIA GPUDirect 2.0
- Easier Parallel Programming in C++

 Thrust

Easier Porting of Existing Applications

Share GPUs across multiple threads

- Easier porting of multithreaded apps
 - pthreads / OpenMP threads share a GPU
- Launch concurrent kernels from different host threads
 - Eliminates context switching overhead
- New, simple context management APIs
 - Old context migration APIs still supported

Single thread access to all GPUs

- Each host thread can now access all GPUs in the system
 - One thread per GPU limitation removed
- Easier than ever for applications to take advantage of multi-GPU
 - Single-threaded applications can now benefit from multiple GPUs
 - Easily coordinate work across multiple GPUs

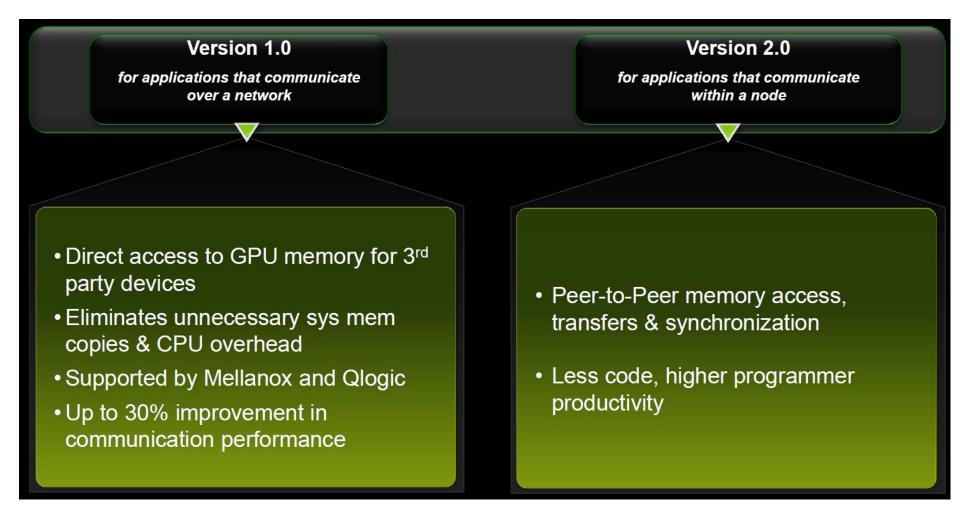
New CUDA C/C++ Language Features

• C++ new/delete

– Dynamic memory management

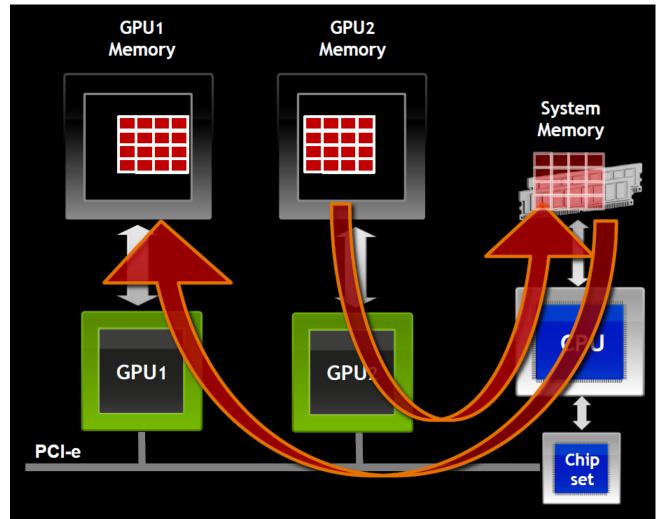

C++ virtual functions

 Easier porting of existing applications

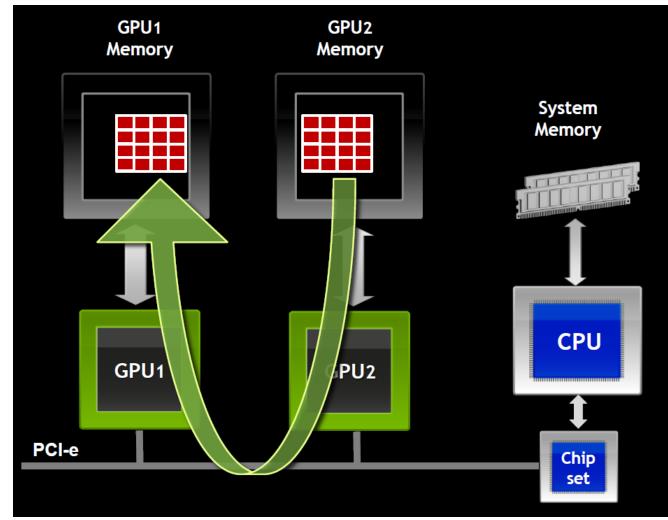

- Inline PTX
 - Enables assembly-level optimization

GPU-Accelerated Image Processing

- NVIDIA Performance Primitives (NPP) library
 - 10x to 36x faster image processing
 - Initial focus on imaging and video related primitives
 - Data exchange and initialization
 - Color conversion
 - Threshold and compare operations
 - Statistics
 - Filter functions
 - Geometry transforms
 - Arithmetic and logical operations
 - JPEG



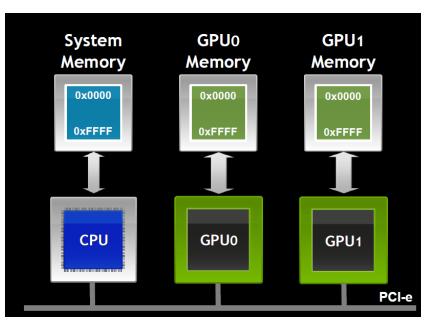
NVIDIA GPUDirect:Towards Eliminating the CPU Bottleneck


Before GPUDirect 2.0

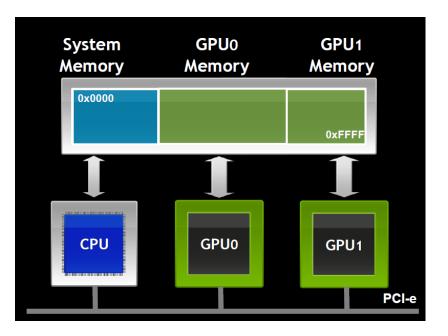
Two copies required

GPUDirect 2.0: Peer-to-Peer Communication

Only one copy required



GPUDirect 2.0: Peer-to-Peer Communication


- Direct communication between GPUs
 - Faster no system memory copy overhead
 - More convenient multi-GPU programming
- Direct Transfers
 - Copy from GPU0 memory to GPU1 memory
 - Works transparently with UVA
- Direct Access
 - GPU0 reads or writes GPU1 memory (load/store)
- Supported on Tesla 20-series and other Fermi GPUs
 - 64-bit applications on Linux and Windows

Unified Virtual Addressing

No UVA: Multiple
 Memory Spaces

UVA: Single Address
 Space

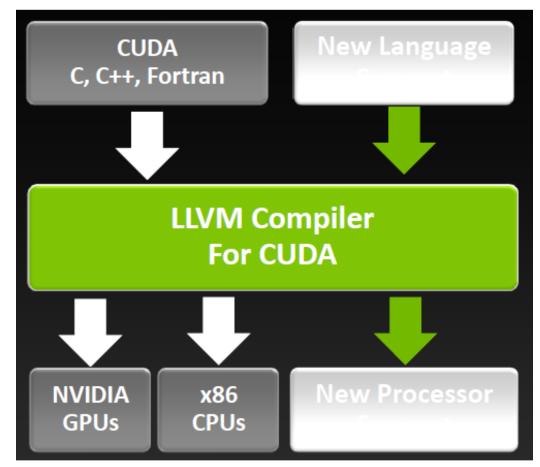
Unified Virtual Addressing

- One address space for all CPU and GPU memory
 - Determine physical memory location from pointer value
 - Enables libraries to simplify their interfaces (e.g. cudaMemcpy)
- Supported on Tesla 20-series and other Fermi GPUs

Before UVA	With UVA
Separate options for each permutation	One function handles all cases
cudaMemcpyHostToHost cudaMemcpyHostToDevice cudaMemcpyDeviceToHost cudaMemcpyDeviceToDevice	cudaMemcpyDefault (data location becomes an implementation detail)

New Developer Tools

- Auto Performance Analysis: Visual Profiler
 - Identify limiting factor
 - Analyze instruction throughput
 - Analyze memory throughput
 - Analyze kernel occupancy
- C++ Debugging

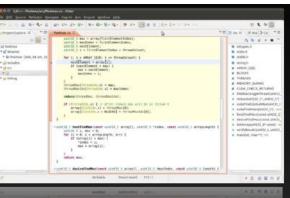

 cuda-gdb for MacOS
- GPU Binary Disassembler

CUDA 5.0

Mark Harris Chief Technologist, GPU Computing

Open Source LLVM Compiler

 Provides ability for anyone to add CUDA to new languages and processors



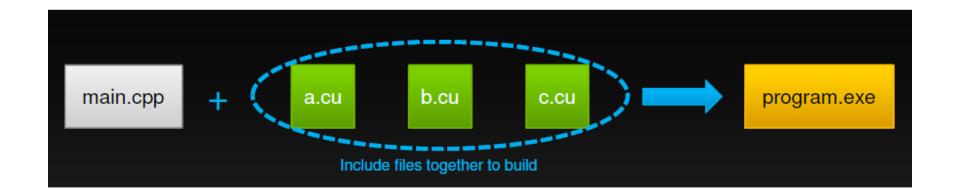
NVIDIA Nsight, Eclipse Edition

Colleg - Fedman, Jon, Fedman an - Cider						
Die 281 Gerrer Befetter Mongata Search Ban Brejett Mittelen Delp-						
Te 2 2 2 2 0+ 9+ 9+ 9+ 8+ 10 1+ 1+ 1					0.61810	ŀ.,
Blong B	T Hi Variables 🗰 CAS	Alaformation II	S Braskamida		E . T . C	
* Effertman (s/c++ #galloutour)	me guin	ep?				15
* The content indifferent (2) [(Review II) (Suspendent 1989)]	T D D cudalindatas R. sound		Desira 6	and CALES IN DISKS Place		91
* P CMDA Thread (0.3, 0.06 and (0.3, 4)	A DETLAN	Buttone	1.1		a section.	12
B colaFiedMax() at findmax.co.1163x81Pbd8	P (234.0.0)	Autoing	Wwp.71.80e0	3 Indeau or	113(00977316)	1
* # CUDA Thread (1.0.0) Block do.0.0) * The Block On 0.0 Date: 61 (206 Active Threadta)	P 025,8.0	maning	Wegi7Lane1	2 Federal OLT 1 2 (2009) 7 2 10		1
 The back (10,00 per b) case access (new the wate) The back (10,00 per b) case access (new the wate) 	P (225.0.0)	having	Waip7Late2		113104917316	
	Amen	Benting	Salarin 72 ares 1		1110-1010-00	ł.,
il fistmates II		-0	2 Outline IR D	cassamily 22 sep		
<pre>sin(32) restElement; sin(32) 1 = f(refElementIndex + threads()out;</pre>					48787	7
Ner (1 1 + 19917 1179) -++ threadstautt) (fearue	191.0.0000.0.0	TILLORIGAG	
any finnest + arim(1);			12.90	10	8.	
<pre>stimesticeent & mail(</pre>			NO.81	16276272	16710072	
manDiske + 11	D.		177.42 177.85	4133029	2024586	
			With .	#192 314#53#	8193	
threatMax(threation.s) = max;			W-43	31-91-94	TTD-TH	
throughandan[http://iteration.og = anti-linden;			197.84	1040174	NOBILINA	
and a state of the second seco			may .			
E Contacto E	B Danak II			ALTING .	81718	
History (Contactorian) Indians			10.89	8	8	
Ruming simile-threader tools			AU AT A	6367951	14738246	
Max number is Build0000 ucth looks 2723080			(中計1) (中計2)	0	8 +0485246	
Running multi-threaded device code			an and	10411/9	1045-9	
			William .	4	4	
N						
1977 <u>-</u>						
Caller 1						
1						
grant of sector service bearing cross						

CUDA-Aware Editor

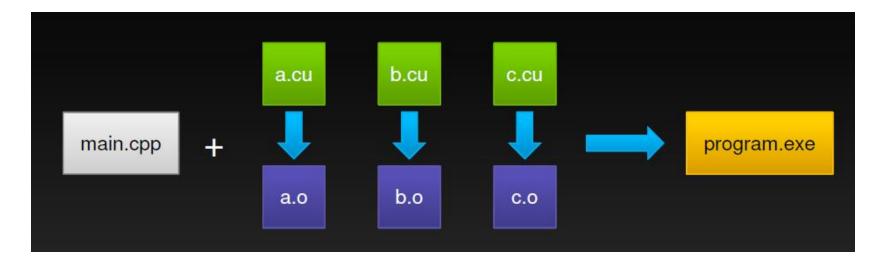
- Automated CPU to GPU code refactoring
- Semantic highlighting of CUDA code
- Integrated code samples & docs

Nsight Debugger

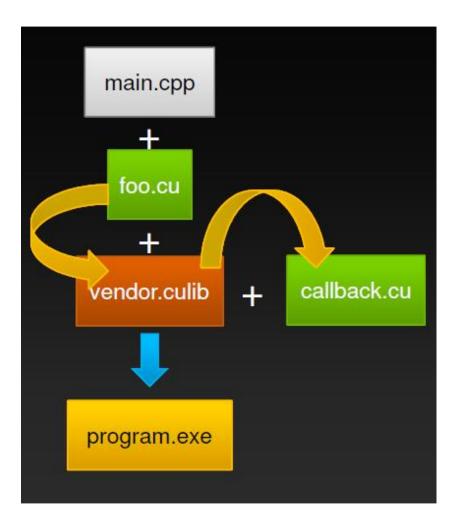

- Simultaneously debug of CPU and GPU
- Inspect variables across CUDA threads
- Use breakpoints & single-step debugging

Nsight Profiler

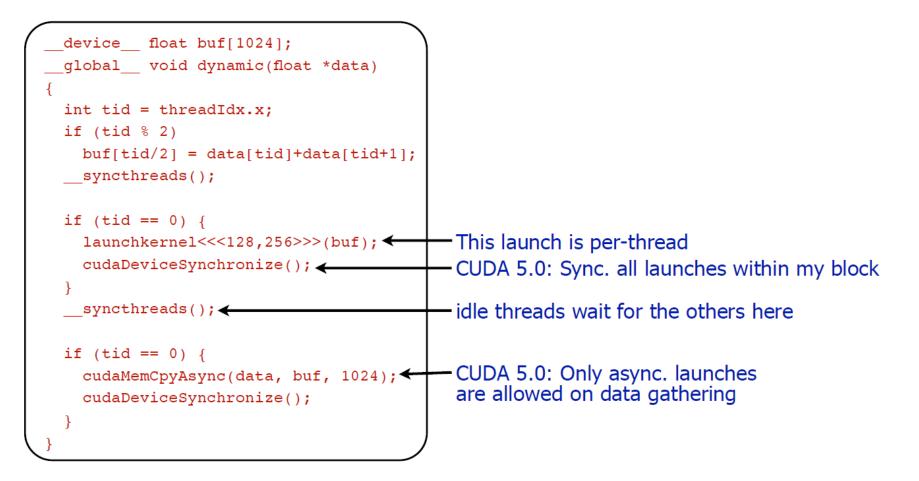
- Quickly identifies performance issues
- Integrated expert system
- Automated analysis
- Source line correlation


For Linux and Mac OS

CUDA 4: Whole-Program Compilation & Linking


CUDA 5: GPU Library Object Linking

- Separate compilation allows building independent object files
- CUDA 5 can link multiple object files into one program
- Can also combine object files into static libraries
 - Link and externally call *device* code



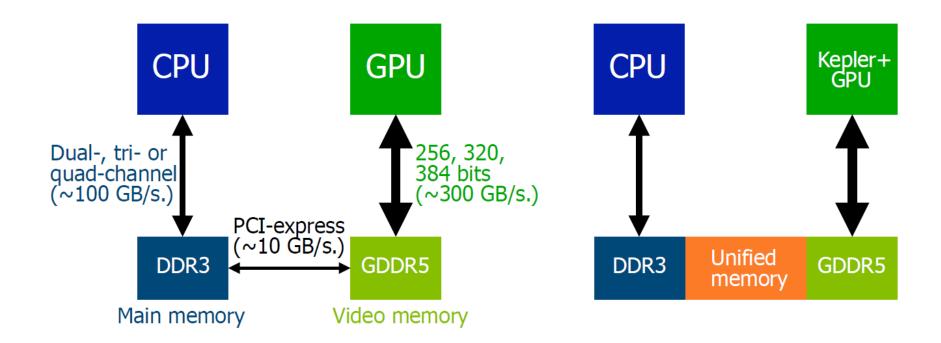
CUDA 5: GPU Library Object Linking

- Enables 3rd party closed-source device libraries
- User-defined device callback functions

CUDA 5.0: Run-time Syntax and Semantics

CUDA 6.0

Manuel Ujaldon Nvidia CUDA Fellow Computer Architecture Department University of Malaga (Spain)


CUDA 6 Highlights

- Unified Memory:
 - CPU and GPU can share data without much programming effort
- Extended Library Interface (XT) and Drop-in Libraries:
 - Libraries much easier to use
- GPUDirect RDMA:
 - A key achievement in multi-GPU environments
- Developer tools:
 - Visual Profiler enhanced with:
 - Side-by-side source and disassembly view showing.
 - New analysis passes (per SM activity level), generates a kernel analysis report.
- Multi-Process Server (MPS) support in nvprof and cudamemcheck
- Nsight Eclipse Edition supports remote development (x86 and ARM)

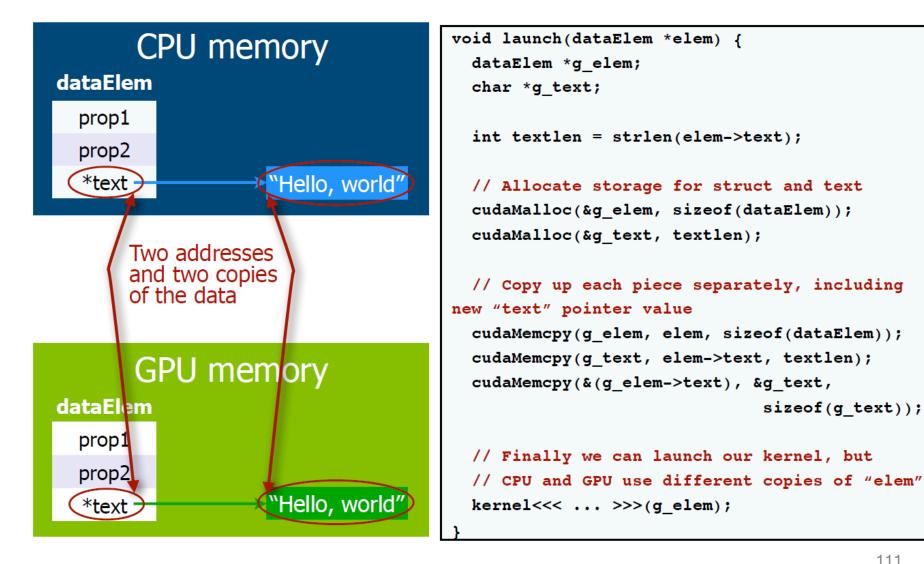
CUDA 6.0: Performance Improvements in Key Use Cases

- Kernel launch
- Repeated launch of the same set of kernels
- cudaDeviceSynchronize()
- Back-to-back grids in a stream

Unified Memory

Unified Memory Contributions

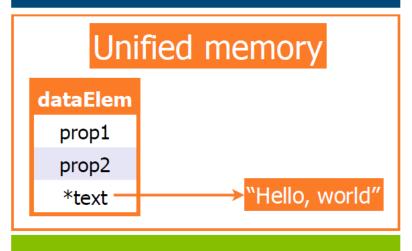
- Creates pool of managed memory between CPU and GPU
- Simpler programming and memory model:
 - Single pointer to data, accessible anywhere
 - Eliminate need for cudaMemcpy(), use cudaMallocManaged()
 - No need for deep copies
- Performance through data locality:
 - Migrate data to accessing processor
 - Guarantee global coherency
 - Still allows cudaMemcpyAsync() hand tuning


Memory Types

	Zero-Copy (pinned memory)	Unified Virtual Addressing	Unified Memory
CUDA call	cudaMallocHost(&A, 4);	cudaMalloc(&A, 4);	cudaMallocManaged(&A, 4);
Allocation fixed in	Main memory (DDR3)	Video memory (GDDR5)	Both
Local access for	CPU	Home GPU	CPU and home GPU
PIC-e access for	All GPUs	Other GPUs	Other GPUs
Other features	Avoid swapping to disk	No CPU access	On access CPU/GPU migration
Coherency	At all times	Between GPUs	Only at launch & sync.
Full support in	CUDA 2.2	CUDA 1.0	CUDA 6.0

Additions to the CUDA API

- New call: cudaMallocManaged()
 - Drop-in replacement for cudaMalloc() allocates managed memory
 - Returns pointer accessible from both Host and Device
- New call: cudaStreamAttachMemAsync()
 - Manages concurrency in multi-threaded CPU applications
- New keyword: <u>managed</u>
 - Declares global-scope migratable device variable
 - Symbol accessible from both GPU and CPU code


Code without Unified Memory

sizeof(g text));

Code with Unified Memory

CPU memory

GPU memory

void launch(dataElem *elem) { kernel<<< ... >>>(elem);

- What remains the same:
 - Data movement
 - GPU accesses a local copy of text
- What has changed:
 - Programmer sees a single pointer
 - CPU and GPU both reference the same object
 - There is coherence

CUDA 7.0

By Mark Harris NVIDIA

New Features: C++11

- C++11 features on device including:
 - auto,
 - lambda,
 - variadic templates,
 - rvalue references,
 - range-based for loops

Example

#include <initializer_list>
#include <iostream>
#include <cstring>

```
// Generic parallel find routine. Threads search through the
// array in parallel. A thread returns the index of the
// first value it finds that satisfies predicate p_{,} or -1.
template <typename T, typename Predicate>
 device int find(T *data, int n, Predicate p)
{
    for (int i = blockIdx.x * blockDim.x + threadIdx.x;
         i < n;
         i += blockDim.x * gridDim.x)
    {
        if (p(data[i])) return i;
    }
    return -1;
```

```
// Use find with a lambda function that searches for x, y, z
// or w. Note the use of range-based for loop and
// initializer_list inside the functor, and auto means we
// don't have to know the type of the lambda or the array
__global___
void xyzw_frequency(unsigned int *count, char *data, int n)
{
```

```
auto match_xyzw = [](char c) {
   const char letters[] = { 'x','y','z','w' };
   for (const auto x : letters)
        if (c == x) return true;
   return false;
};
int i = find(data, n, match_xyzw);
```

```
if (i >= 0) atomicAdd(count, 1);
```

}

```
int main(void)
{
    char text[] = "zebra xylophone wax";
    char *d text;
    cudaMalloc(&d text, sizeof(text));
    cudaMemcpy(d text, text, sizeof(text),cudaMemcpyHostToDevice);
   unsigned int *d count;
    cudaMalloc(&d count, sizeof(unsigned int));
    cudaMemset(d count, 0, sizeof(unsigned int));
   xyzw frequency<<<1, 64>>>(d count, d text, strlen(text));
   unsigned int count;
    cudaMemcpy(&count, d count, sizeof(unsigned int), cudaMemcpyDeviceToHost);
    std::cout << count << " instances of 'x', 'y', 'z', 'w'"</pre>
              << "in " << text << std::endl;
   cudaFree(d count);
    cudaFree(d text);
```

```
return 0;
```

Other Features

- Thrust version 1.8
 - Thrust algorithms can now be invoked from the device
- cuSOLVER, cuFFT
 - cuSolver library is a high-level package based on the cuBLAS and cuSPARSE libraries
- Runtime compilation
 - No need to generate multiple optimized kernels at compile time

CUDA 8.0

By Milind Kukanur NVIDIA

What's New

Unified Memory

 Oversubscribe GPU memory, up to system memory size

```
void foo() {
    // Allocate 64 GB
    char *data;
    size_t size = 64*1024*1024*1024;
    cudaMallocManaged(&data, size);
```

Unified Memory

```
__global__ void mykernel(char *data) {
    data[1] = `g';
}
```

```
void foo() {
    char *data;
    cudaMallocManaged(&data, 2);
```

```
mykernel<<<...>>>(data);
// no synchronize here
data[0] = `c';
```

cudaFree(data);

}

CUDA 9.0

By Mark Harris NVIDIA

New Features

- Support for Volta
- Cooperative groups
- Tensor Core API
- New Visual Profiler
- Support for C++ 14

Cooperative Groups

• Ability to define groups of threads explicitly at sub-block and multiblock granularities

```
__global___ void cooperative_kernel(...)
    // obtain default "current thread block" group
    thread group my block = this thread block();
    // subdivide into 32-thread, tiled subgroups
    // Tiled subgroups evenly partition a parent group into
    // adjacent sets of threads - in this case each one warp in size
    thread group my tile = tiled partition (my block, 32);
    // This operation will be performed by only the
    // first 32-thread tile of each block
    if (my block.thread rank() < 32) {
        my tile.sync();
```

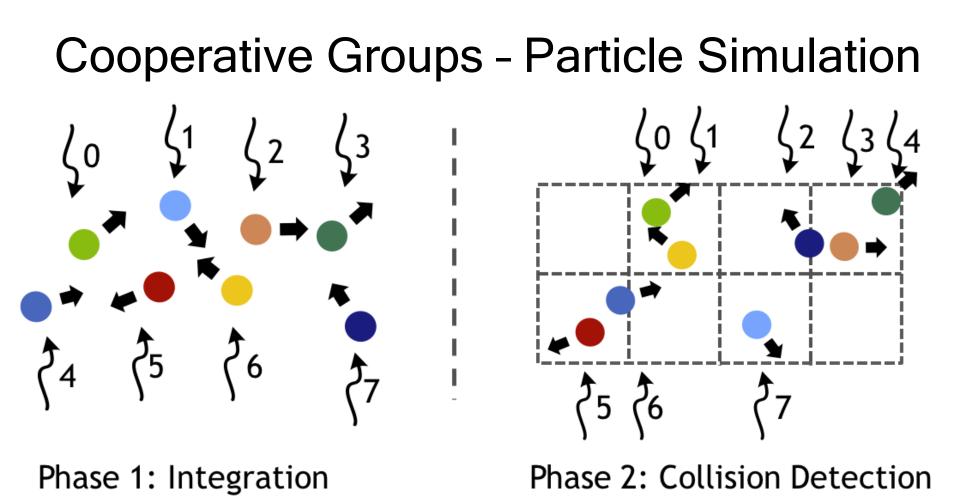


Figure 2: Two phases of a particle simulation, with numbered arrows representing the mapping of parallel threads to particles. Note that after integration and construction of the regular grid data structure, the ordering of particles in memory and mapping to threads changes, necessitating a synchronization between phases.

Old Implementation

// threads update particles in parallel
integrate<<<blocks, threads, 0, s>>>(particles);

// Note: implicit sync between kernel launches

// Collide each particle with others in neighborhood collide<<<blocks, threads, 0, s>>>(particles);

New Implementation

__global___void particleSim(Particle *p, int N) {

```
grid_group g = this_grid();
// phase 1
for (i = g.thread_rank(); i < N; i += g.size())
    integrate(p[i]);</pre>
```

g.sync() // Sync whole grid

}

```
// phase 2
for (i = g.thread_rank(); i < N; i += g.size())
    collide(p[i], p, N);</pre>
```

CUDA 10.0

By Pramod Ramarao NVIDIA

New Features

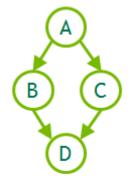
- Support for Turing
- CUDA graphs
- New asynchronous task-graph programming model
- New profiler and debugger

New Turing Warp Matrix Functions

	Input Precision	Output	Supported Sizes	Max Ops/Clock/SM
Native Types	half	half or float	16 x 16 x 16 32 x 8 x 16 8 x 32 x 16	1024
	char	integer (int32)		2048
	unsigned char	integer (intsz)		
Experimental	precision::u4 (4-bit unsigned)		8 x 8 x 32	4096
	precision::s4 (4-bit signed)	integer (int32)		
	precision::b1 (1-bit)		8 x 8 x 128	16384

CUDA graphs

// Define graph of work + dependencies


cudaGraphCreate(&graph); Workflow Graph cudaGraphAddNode(graph, kernel a, {}, ...); cudaGraphAddNode(graph, kernel b, { kernel a }, ...); cudaGraphAddNode(graph, kernel c, { kernel a }, ...); cudaGraphAddNode(graph, kernel d, { kernel b, kernel c }, ...);

// Instantiate graph and apply optimizations

cudaGraphInstantiate(&instance, graph);

// Launch executable graph 100 times

```
for(int i=0; i<100; i++)</pre>
      cudaGraphLaunch(instance, stream);
```


OpenMP

Based on tutorial by Joel Yliluoma http://bisqwit.iki.fi/story/howto/openmp/

OpenMP in C++

- OpenMP consists of a set of compiler #pragmas that control how the program works.
- The pragmas are designed so that even if the compiler does not support them, the program will still yield correct behavior, but without any parallelism.

Simple Example

• Multiple threads

```
#include <cmath>
int main()
{
  const int size = 256;
  double sinTable[size];
  #pragma omp parallel for
  for(int n=0; n<size; ++n)</pre>
    sinTable[n] = std::sin(2 * M PI * n / size);
  // the table is now initialized
}
```

Simple Example

• Single thread multiple data, SIMD

```
#include <cmath>
int main()
{
  const int size = 256;
  double sinTable[size];
  #pragma omp simd
  for(int n=0; n<size; ++n)</pre>
    sinTable[n] = std::sin(2 * M PI * n / size);
  // the table is now initialized
}
```

Simple Example

• Multiple threads on another device

```
#include <cmath>
int main()
{
    const int size = 256;
    double sinTable[size];
    #pragma omp target teams distribute parallel for
        map(from:sinTable[0:256])
    for(int n=0; n<size; ++n)
        sinTable[n] = std::sin(2 * M_PI * n / size);
    // the table is now initialized
}</pre>
```

Syntax

- All OpenMP constructs start with #pragma omp
- The parallel construct
 - Creates a *team* of N threads (N determined at runtime) all of which execute statement or next block
 - All variables declared within block become local variables to each thread
 - Variables shared from the context are handled transparently, sometimes by passing a reference and sometimes by using register variables

if

```
extern int parallelism_enabled;
#pragma omp parallel for if(parallelism_enabled)
for(int c=0; c<n; ++c)
handle(c);</pre>
```

for

```
#pragma omp for
for(int n=0; n<10; ++n)
{
    printf(" %d", n);
}
printf(".\n");
```

• Output may appear in arbitrary order

Creating a New Team

```
#pragma omp parallel
{
    #pragma omp for
    for(int n=0; n<10; ++n) printf(" %d", n);
}
printf(".\n");</pre>
```

• Or, equivalently

```
#pragma omp parallel for
for(int n=0; n<10; ++n) printf(" %d", n);
printf(".\n");
```

Specifying Number of Threads

#pragma omp parallel num_threads(3)
{

// This code will be executed by three threads.

// Chunks of this loop will be divided amongst
// the (three) threads of the current team.
#pragma omp for
for(int n=0; n<10; ++n) printf(" %d", n);</pre>

parallel, for, parallel for

The difference between parallel, parallel for and for is as follows:

- A team is the group of threads that execute currently.
 - At the program beginning, the team consists of a single thread.
 - A parallel construct splits the current thread into a new team of threads for the duration of the next block/statement, after which the team merges back into one.
- for divides the work of the for-loop among the threads of the current team. It does not create threads.
- parallel for is a shorthand for two commands at once. Parallel creates a new team, and for splits that team to handle different portions of the loop.
- If your program never contains a parallel construct, there is never more than one thread.

Scheduling

 Each thread independently decides which chunk of the loop it will process

```
#pragma omp for schedule(static)
for(int n=0; n<10; ++n) printf(" %d", n);
printf(".\n");</pre>
```

- In dynamic schedule, each thread asks OpenMP runtime library for an iteration number, then handles it and asks for next.
 - Useful when different iterations take different amounts of time to execute

```
#pragma omp for schedule(dynamic)
```

```
for(int n=0; n<10; ++n) printf(" %d", n);
printf(".\n");</pre>
```

Scheduling

 Each thread asks for iteration number, executes 3 iterations, then asks for another

#pragma omp for schedule(dynamic, 3)
for(int n=0; n<10; ++n) printf(" %d", n);
printf(".\n");</pre>

ordered

```
#pragma omp for ordered schedule(dynamic)
for(int n=0; n<100; ++n)
{
  files[n].compress();
  #pragma omp ordered
  send(files[n]);
}</pre>
```

reduction

```
int sum=0;
#pragma omp parallel for reduction(+:sum)
for(int n=0; n<1000; ++n)
     sum += table[n];
```

Sections

```
#pragma omp parallel sections
{
    { Work1(); }
    #pragma omp section
    { Work2();
    Work3(); }
    #pragma omp section
    { Work4(); }
}
```

```
#pragma omp parallel // starts a new team
{
  Work0(); // this function would be run by all threads.
  #pragma omp sections // divides the team into sections
  {
    // everything herein is run only once.
    { Work1(); }
    #pragma omp section
    { Work2();
      Work3(); }
    #pragma omp section
    { Work4(); }
  }
```

Work5(); // this function would be run by all threads.

simd

- SIMD means that multiple calculations will be performed simultaneously using special instructions that perform the same calculation to multiple values at once.
- This is often more efficient than regular instructions that operate on single data values. This is also sometimes called vector parallelism or vector operations.

```
float a[8], b[8];
...
#pragma omp simd
for(int n=0; n<8; ++n) a[n] += b[n];</pre>
```

simd

```
#pragma omp declare simd aligned(a,b:16)
void add_arrays(float *_restrict__ a, float
*_restrict__ b)
{
    #pragma omp simd aligned(a,b:16)
    for(int n=0; n<8; ++n) a[n] += b[n];
}</pre>
```

Reduction:

```
int sum=0;
#pragma omp simd reduction(+:sum)
for(int n=0; n<1000; ++n) sum += table[n];</pre>
```

aligned

```
#pragma omp declare simd aligned(a,b:16)
void add_arrays(float *__restrict__ a, float
*__restrict__ b)
{
    #pragma omp simd aligned(a,b:16)
    for(int n=0; n<8; ++n) a[n] += b[n];</pre>
```

- Tells compiler that each element is aligned to the given number of bytes
- Increases performance

}

declare target

```
#pragma omp declare target
int x;
void murmur() { x+=5; }
#pragma omp end declare target
```

- This creates one or more versions of "x" and "murmur". A set that exists on the host computer, and also a separate set that exists and can be run on a device.
- These two functions and variables are separate, and may contain values separate from each others.

target, target data

- The target data construct creates a device data environment.
- The target construct executes the construct on a device (and also has target data features).
- These two constructs are identical in effect:

```
#pragma omp target // device()... map()... if()...
{
    <<statements...>>
}
.....
#pragma omp target data // device()... map()... if()...
{
    #pragma omp target
    {
        <statements...>>
    }
}
```

critical

- Restricts the execution of the associated statement / block to a single thread at time
- May optionally contain a global name that identifies the type of the critical construct. No two threads can execute a critical construct of the same name at the same time.
- Below, only one of the critical sections named "dataupdate" may be executed at any given time, and only one thread may be executing it at that time. I.e. the functions "reorganize" and "reorganize_again" cannot be invoked at the same time, and two calls to the function cannot be active at the same time

```
#pragma omp critical(dataupdate)
{
   datastructure.reorganize();
}
...
#pragma omp critical(dataupdate)
{
   datastructure.reorganize_again();
}
```

```
int a, b=0;
#pragma omp parallel for private(a) shared(b)
for(a=0; a<50; ++a)
{
    #pragma omp atomic
    b += a;
}
```

- Variables with static storage duration are shared.
- Dynamically allocated objects are shared.
- Variables with automatic storage duration that are declared in a parallel region are private.
- Variables in heap allocated memory are shared. There can be only one shared heap.
- All variables defined outside a parallel construct become shared when the parallel region is encountered.
- Loop iteration variables are private within their loops. The value of the iteration variable after the loop is the same as if the loop were run sequentially.
- Memory allocated within a parallel loop by the alloca function persists only for the duration of one iteration of that loop, and is private for each thread.

```
#include <string>
#include <iostream>
int main()
{
    std::string a = "x", b = "y";
    int c = 3;
    #pragma omp parallel private(a,c) shared(b)
            num threads (2)
    {
        a += "k";
        c += 7;
        std::cout << "A becomes (" << a << "),</pre>
                   b is (" << b << ")\n";
    }
```

• Outputs "k" not "xk", c is uninitialized

```
#include <string>
#include <iostream>
int main()
{
    std::string a = "x", b = "y";
    int c = 3;
    #pragma omp parallel firstprivate(a,c) shared(b)
            num threads (2)
    {
        a += "k";
        c += 7;
        std::cout << "A becomes (" << a << "),</pre>
                   b is (" << b << ")\n";
    }
```

• Outputs "xk"

Barriers

```
#pragma omp parallel
{
    /* All threads execute this. */
    SomeCode();
```

#pragma omp barrier

/* All threads execute this, but not before
 * all threads have finished executing
 SomeCode().
 */

SomeMoreCode();

}

```
#pragma omp parallel
 {
   #pragma omp for
   for(int n=0; n<10; ++n) Work();</pre>
   // This line is not reached before the for-loop is completely finished
   SomeMoreCode();
// This line is reached only after all threads from
 // the previous parallel block are finished.
CodeContinues();
 #pragma omp parallel
 {
   #pragma omp for nowait
   for(int n=0; n<10; ++n) Work();</pre>
   // This line may be reached while some threads are still executing for-loop.
   SomeMoreCode();
 }
```

// This line is reached only after all threads from
// the previous parallel block are finished.
CodeContinues();

Nested Loops

```
#pragma omp parallel for
 for(int y=0; y<25; ++y)
   #pragma omp parallel for
   for(int x=0; x<80; ++x)
   {
     tick(x, y);
  Code above fails, inner loop runs is sequence
 #pragma omp parallel for collapse(2)
 for(int y=0; y<25; ++y)
   for(int x=0; x<80; ++x)
```

{

}

tick(x,y);