CS 677 Parallel Programming for
Many-core Processors
Lecture /

Instructor: Philippos Mordohai

Webpage: www.cs.stevens.edu/” mordohai
E-mail: Philippos.Mordohai@stevens.edu




Logistics

e Midterm: March 22 (after spring break)
— Closed book
— All notes from weeks 2 to 7, except prefix sum
— No version-specific details and parameters

— Device parameters will be provided if
necessary



Overview

Homework 4

Case Study — Electrostatic Potential Calculation
— A class project at UIUC also resulting in publications
— Chapter 12 in K&H

Input Binning
— From NVIDIA and University of Houston
Sparse vector matrix multiplication

Summed area tables



Homework Assignment 4

* Apply Sobel filter on (grayscale) images

-1 0 1 1 -2 -1
G ={-2 0 2 G,={0 0 O

_—1 0 1_ 1 2 1
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Homework Assignment 4. CPU Version

for (1 = 1; 1 < ImageNRows - 1; 1++)
for (J = 1; jJ < ImageNCols -1; j++)
{
suml = u[1-1][j+1] - u[i-1]1[)-1]
+ 2 > uln]pg+1] - 2 * ulrlJ-1]
+ uli+1]1[+1] - u[i+1]1[3-1];
sum2 = u[i-1][3-1] + 2 * u[1-1]11]
+ uln-1][3+1] - uli+1][y-1]
- 2 * uli+110] - ule+1]+1];
magnitude = suml*suml + sum2*sum2;
iIT (magnitude > THRESHOLD)

e[1131 = 255;
e[11D1 = O;

else
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Homework Assignment 4

IV U I E

| > | >

suml sum?2

unly . nnw . both

 Compute magnitude of filter response G,*+ G, and output:
— 0 if magnitude below threshold

— 255 if magnitude above threshold
— 0 pixel is within 1 pixel of image border

Mary Hall
CS6963 University of Utah



Example Output
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Open Questions

Memory bandwidth

1D vs. 2D block structure
— Fetching of pixels at block boundaries

| prefer solutions without padding, but you
can pad for a 10% penalty

Solutions using global memory only will
receive little credit

Mary Hall
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The PPM Image Format

« PPM is a very simple format

« Each image file consists of a header
followed by all the pixel data

e Header

Mary Hall
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P6

P3 means ASCII file

# comment 1 P6 means binary (most
# comment 2 practical)

#coﬁment N See filereading code
rows columns maxvalue In homework zip file
pixels

Use Gimp or IrfanView to manipulate
Images and convert between formats




Reading the Header
fp = fopen(Filename, "rb");

int num = fread(chars, sizeof(char), 1000, fp);
iIT (chars|0] '= "P" || chars[1l] = "6")

{
fprintf(stderr, “ERR file "%s" does not
start with \"P6\" am expecting a binary
PPM file\n", filename);
return NULL;
by

check for “P6”
In first line
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Reading the Header (cont)

unsigned 1nt width, height, maxvalue;
char *ptr = chars+3; // P 6 newline

it (ptr == “#%) // comment line! skip over comments by

{ looking for # in first
ptr = 1 + strstr(ptr, '"\n""); column

+

num = sscanf(ptr, "%d\n%d\n%d"",
&width, &height, &maxvalue);
fprintf(stderr, "read %d things width %d height %d
maxval %d\n", num, width, height, maxvalue);
*xXsize = width;
*ysize = height;
*maxval = maxvalue;
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Reading the Data

// allocate buffer to read the rest of the file iInto

int bufsize = 3 * width * height * sizeof(unsigned char);
It ((maxval) > 255) bufsize *= 2;

unsigned char *buf = (unsigned char *)malloc( bufsize );

long numread = fread(buf, sizeof(char), bufsize, fp);

int pixels = (*xsi1ze) * (*ysize);
for (int 1=0; i1<pixels; 1++)

pic[1] = (int) buf[3*1]; // red channel
return pic; // success
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Motivation

Electrostatic potential map is used in building stable structures for
molecular dynamics simulation

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 13



Core Computation

I o r;: distance
Lattice point | from lattice|j]
being evaluated 1 to atom[1]
_
“ atom|1]

* The contribution of atom|i] to the electrostatic
potential at lattice point | is atom([i].charge / r;

* The total potential at Iattice point j is the sum of
contributions from all atoms in the system

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign



Sequential CPU Code

void cenergy(float *energygrid. dim3 grid, float gridspacing, float z. const float *atoms,
int numatoms) {
int 1,],1:
int atomarrdim = nuumatoms * 4;

for (j=0: j<grid.y: j++) { Computes a single slice (const z)

float v = gridspacing * (float) j;
for (1=0; 1=gnid.x: 1++) {
float x = gridspacing * (float) 1:
tloat energy = 0.0f;
for (n=0: n<atomarrdim: n+=4) { // calculate potential contribution of each atom
float dx = x - atoms[n |:
float dy = v - atoms[n+1]:
float dz = z - atoms[n+2]:
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz):
h
energygrid[grid.x*grid.y*k + grid.x*) + 1] = energy:
h
y

h



GPU Implementation

e Option 1: each thread calculates the
contribution of one atom to all grid points

— “Scatter”

e Option 2: each thread calculates the
accumulated contributions of all atoms to
one grid point
— “Gather”

 Pros/cons?



Loop Transformation

 Need perfectly  for =0 j<grid.y; j++) {
tfloat v = gridspacing * (float) j;
nested IOOpS for (1=0; 1<grid.x; 1++) {
— as in MR tloat x = gridspacing * (float) 1:
examp|e tfloat energy = 0.0f;

for (n=0; n<atomarrdim: n+=4) {
float dx = x - atoms[n |:

— Move float dy = v - atoms[n+1]:
calculation of y float dz = z - atoms[n+2];
into inner IOOp energy += atoms[n—3] / sqrtf(dx*dx + dy*dy + dz*dz):
i
energygrid| grid.x*grid.yv*k + grid.x*) + 1] = energy:
— Pros/cons? j

1
]



DCS Kernel Design Overview

Thread blocks:
64-256 threads Q
/]
4
\ [
VO LA
VLA
|/
./
v

Threads compute
up to & potentials,
skipping by half-warps

Cache

Cache

Host
SEEI REEE (AR 51 A8 Atomic
/ Coordmates
Charges
|
Constant Memory GPU
Parallel Data Parallel Da

Cache

Parallel Data| |Parallel Data |Parallel Data, |Parallel Data 3
Cache Cache Cache
| [rexture }|{ [ | rexture} | |§ |} Texturel-| |} {rexture!-|| § |- rexture} | ||} /rexture]-

Global Memory
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DCS Kernel Version 1

float curenergy = energyeridfoutaddr]; ——=—__ Start global memory reads
early. Kernel hides some of

— 1 1 * %1 ) :
tloat coorx = gridspacing * xindex: its own latency.

tfloat coory = gridspacing * yindex;

int atomid;

float energyval=0.0f:

for (atomi1d=0:; atomid<numatoms: atomid++) {
float dx = coorx - atominfo[atomid].x;
float dy = coory - atominfo[atomid].y;
energyval += atominfo[atomid].w *

rsqrtf(dx*dx + dy*dy + atominfo[atomid].z):

} _______——————————_‘_J Only dependency on global
energygrid[outaddr| = curenergy + energyval; memory read 1s at the end of

the kemel...

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 . .
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DCS Kernel Version 1

float curenergy = energyeridfoutaddr]; ——=—__ Start global memory reads
early. Kernel hides some of

— 1 1 * %1 ) :
tloat coorx = gridspacing * xindex: its own latency.

tfloat coory = gridspacing * yindex;

int atomid: LPvs. TLP
float energyval=0.0f:
for (atomi1d=0:; atomid<numatoms: atomid++) {
float dx = coorx - atominfo[atomid].x; atominfo[].z is already squared

float dy = coory - atominfo[atomid].y;
energyval += atominfo[atomid].w *
rsqrtf(dx*dx + dy*dy + atominfo[atomid].z):

} ________——————————_‘_J Only dependency on global
energygrid[outaddr| = curenergy + energyval; memory read is at the end of
the kernel. ..

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 . .
ECE408, University of Illinois, Urbana-Champaign gsq rtf() reC|pr0ca| square root 20



Information Reuse

/\

I

Distances to
Atom[i]

Atom][1]

\,‘/

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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DCS kernel Version 2

...for (atom1d=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y:;
tloat dysqpdzsq = (dy * dy) Satominfo[atomuid].z;

tloat x = atominfo[atomid].x;
float dx1 = coorx1 - x:
float dx2 = coorx2 - Xx;

Compared to non-unrolled
kernel: memory loads are
decreased by 4x, and FLOPS
per evaluation are reduced, but
register use 1s increased. . .

float dx3 = coorx3 - x;
float dx4 = coorx4 - x;

float charge = atominfo[atomid].w;
energyvalxl += charge * rsqrtf(dx1*dx1 + dysqpdzsq):
energyvalx2 += charge * rsqrtf(dx2*dx2 + dysqpdzsq):
energyvalx3 += charge * rsqrtt(dx3*dx3 + dysqpdzsq):
energyvalx4 += charge * rsqrtf(dx4*dx4 + dysqpdzsq):
]
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Memory Coalescing

e Two Issues:

— Each thread calculates potentials of four
adjacent grid points

— If grid width is not multiple of tile
width, boundary management becomes
complicated



Memory Layout for Coalescing

. (unrolled, coalesced)

Unrolling increases -

computational tile size Grid of thread blocks: >
Thread bloéigs_;: \
64-256 threads \\ 0.0 0.1
LS t

S
N |'

1.0 .1
\ |

Threads compute

up to 8 potentials,
skipping by half-warps

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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DCS Kernel Version 3

..float coory = gridspacing * yindex;
float coorx = gridspacing * xindex:
float gridspacing_coalesce = gridspacing * BLOCKSIZEX:'—::J Points spaced for
int atomid; l

. | _ memory coalescing
for (atomid=0: atomid<numatoms: atomid++) {

float dy = coory - atominfo[atomid].y:

= * + & . s . L — ] .
float dyz2 = (dy * dy) + atominfo[atomid].z ——— Reuse partial distance

float dx1 = coorx - atominfo[atomid].x;
components dy”2 + dz*2

[...]

float dx8 = dx7 + gridspacing coalesce;

energyvalx1 += atominfo[atomid].w * rsqrtf(dx1*dx1 + dyz2);

[...]
energyvalx8 += atominfo[atomid].w * rsqrtf(dx8*dx8 + dyz2);
h
energygrid[outaddr ] += energyvalx1: K_ Global memory ops
[...] occur only at the end
energygrid[outaddr+7*BLOCKSIZEX] += energyvalx7: of the kernel,
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 ”_P VS TLP decreases regISter usc
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Performance Comparison

Number of thread blocks modulo number of SMs results in
significant performance variation for small workloads

40- / T = 1 T T T -
D SN, _e—e—— CUDA-Unroll8clx:
g 35+ o _ T o Rk fastest GPU kernel,
E .... / - _._‘?_-;_.ﬂiilx: -'__'_,: -«.1 ¥ i P SVRVELS i R e | ‘
i 30 + I/ /¥ cUDA-Simple Kemel -+ 1 44x faster than CPU,
S o5 | % CUDA-Unroll4x Kernel 291 GFLOPS on
O X /T % CUDA-Unroll8x Kernel = GeForce 8800GTX
5 20 FE CUDA-Unroll8clx Kernel —s— | -
o F /X CUDA-Unroll8csx Kernel .
Q 15 [/ Intel QX6700 SSE3 Kernel - _
(_"g j* + ._4__|_,-|-+-r'+++=++-++++—-++++---r-++=-+1-—++=--r-1- CUDA—S]HIPIB:
5 10 /7 14.8x faster,
S 5| 33% of fastest
< 0 J l J | J _ _ GPU kernel
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Side length of 2-D potential map slice

GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,

J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.
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CPU vs. CPU-GPU Comparison

==
i Performance vs. Size
Lower . ) | .
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Accelerating molecular modeling applications with graphics processors.
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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UIUC ECE 598HK

Computational Thinking for
Many-core Computing

Input Binning



Objective

 To understand how data scalability
problems in gather parallel execution
motivate input binning

e To learn basic input binning techniques

 To understand common tradeoffs in input
binning

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010



Scatter to Gather Transformation

out

GPU Computing Forum



However

* Input tends to be much less regular than output

— It may be difficult for each thread to efficiently locate
all inputs relevant to its output

— Or, to efficiently exclude all inputs irrelevant to its

output
* In a nailve arrangement, all threads may have to

process all inputs to decide if each input is relevant

to its output

— This makes execution time scale poorly with data set
size

— Important problem when processing large data sets

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010



DCS Algorithm for Electrostatic Potentials

Revisited
q/r added to the e At each grid point, sum
+  potential here + the electrostatic

potential from all atoms

Distance r — All threads read all inputs
+ + + Highly data-parallel
« But has quadratic
Atom with charge g complexity
+ + + + — Number of grid points x

number of atoms
— Both proportional to volume
— Poor data scalability

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 32



Algorithm for Electrostatic Potentials
With a Cutoft

e |gnore atoms beyond a

+ + cutoff distance, r.
! — Typically 8A-12A

N\ / — Long-range potential may
/ be computed separatel
+ + o * P P : y
. .- - « Number of atoms within
cutoff distance is

Atoms outside cutoff

distance are skipped . roughly constant
+ + + (uniform atom density)

— 200 to 700 atoms within
8A-12A cutoff sphere for
typical biomolecular
structures

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010



Implementation Challenge

* For each tile of grid points, we need to
identify the set of atoms that need to be
examined
— One could naively examine all atoms and only

use the ones whose distance is within the given
range

— But this examination still takes time, and brings
the time complexity right back to
e number of atoms x number of grid points

— Each thread needs to avoid examining the atoms
outside the range of its grid point(s)



Binning
e A process that groups data to form a
chunk called bin

* Helps problem solving due to data
coarsening

* Uniform bin arrays, Variable bins, KD
Trees, ..

B '/"’A
(

. =

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010




Binning for Cut-Off Potential

e Divide the simulation volume with non-
overlapping uniform cubes

* Every atom in the simulation volume falls into a
cube based on its spatial location
— Bins represent location property of atoms

» After binning, each cube has a unique index in
the simulation space for easy parallel access

. 4 vl L 2
L @ | | | [ | |

& | &

4 ¢ ®* | |

(a) Simulation (b} Simulation
volume volume

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 with eight bins




Spatial Sorting Using Binning

Q. |- o, @  Presort atoms into bins
tr v+ @R F ”.P“{’ * *|* by location in space
+.+.+r++.++\++.++ _
ile @+ @+ +|+ + .‘H 2. |, ¢ Each bin holds several
+ +.+ + + ‘vt\ +, @ + ’,-I;" + .‘ + atoms |
|+ +|@ + [+ ¥+ @+ @+ +|+ o Cutoff potential only
+|@ +|+ @+ + +g++ + @ +|+  yses bins within r,
4+ Bins far beyond the @O+ +|+ +|+ _ _ _
— cutoff distance are — Yields a linear complexity
*, never 5C°"|“ed t 0 @@ cutoff potential algorithm

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 37



Bin Size Considerations

o Capacity of atom bins needs to be balanced
— Too large - many dummy atoms in bins
— Too small - some atoms will not fit into bins
— Target bin capacity to cover more than 95% or atoms

« CPU places all atoms that do not fit into bins into
an overflow bin

— Use a CPU sequential algorithm to calculate their
contributions to the energy grid lattice points.

— CPU and GPU can do potential calculations in parallel

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010



Bin Design

« Uniform sized/capacity bins allow array implementation
— And the relative offset list approach

e Bin capacity should be big enough to contain all the

atoms that fall into a bin

— Cut-off will screen away atoms that weren’t processed
— Performance penalty if too many are screened away
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Going from DCS Kernel to Large
Bin Cut-off Kernel

» Adaptation of techniques from the direct Coulomb
summation kernel for a cutoff kernel

 Atoms are stored in constant memory as with DCS
kernel

« CPU loops over potential map regions that are (24A)3 in
volume (cube containing cutoff sphere)

« Large bins of atoms are appended to the constant
memory atom buffer until it is full, then GPU kernel is
launched

e Host loops over map regions reloading constant memory
and launching GPU kernels until completion

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010



Large Bin Design Concept

« Map regions are (24A)3 in volume

* Regions are sized large enough to provide
the GPU enough work in a single kernel
launch

— (48 lattice points)3 for lattice with 0.5A spacing

— Small bins don’t provide the GPU enough
work to utilize all SMs, to amortize constant
memory update time, or kernel launch
overhead

©Wen-mei W. Hwu and David Kirk/NVIDIA
Urbana, Illinois, August 2-5, 2010



Large-bin Cutoff Kernel Evaluation

e 6x speedup relative to fast CPU version

 Work-inefficient
— Coarse spatial hashing into (24A)3 bins

— Only 6.5% of the atoms a thread tests are
within the cutoff distance

o Better adaptation of the algorithm to the
GPU will gain another 2.5x

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010



Improving Work Efficiency

 Thread block examines atom bins Points computed by

up to the cutoff distance Bins one thread block
— Use a sphere of bins / \\\- I
— All threads in a block scan the same T 1
bins and atoms | ! .
« No hardware penalty for multiple |
simultaneous reads of the same address | / Cutoff
« Simplifies fetching of data ;’ distance
— The sphere has to be big enough to '-», =l L
cover all grid point at corners Vo diagonal @ |
— There will be a small level of s
divergence )
 Not all grid points processed by a thread 4‘&: i OO N PP
block relate to all atoms in a bin the

same way

* (A within cut-off distance of N but outside
cut-off of M)

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010



The Neighborhood is a volume

v
e (Calculating and

specifying all bin

Indexes of the

sphere can be

gquite complex

Z

— Rough ———Fr

approximations
reduce efficiency

©Wen-mei W. Hwu and David
Kirk/NVIDIA 2010



Neighborhood Offset List

(Pre-calculated)

» A list of relative offsets enumerating the bins
that are located within the cutoff distance for a
given location in the simulation volume

e Detection of surrounding atoms becomes
realistic for output grid points

— By visiting bins in the neighborhood offset list and
iterating over the atoms they contain

a bin in the neighborhood

(1,2) - list

cutoff distance

(-1.-1)

not included —— center (0, 0)

©Wen-mei W. Hwu and David Kirk/NVIDI4s 45
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Performance

e O(MN’) where M and N’ are the number of
output grid points and atoms in the
neighborhood offset list, respectively

— In general, N’ is small compared to the
number of all atoms

e Works well if the distribution of atoms is
uniform

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010



Details on Small Bin Design

* For 0.5A lattice spacing, a Points computed by
(4A)3 cube of the potential Bins one thread block
map is computed by each | \ S 1 11
thread block 1 =

— 8x8x8 potential map points /I l : =

— 128 threads per block /
(4 points/thread) / Cutofft

— 34% of examined atoms ! f‘?’fc‘“‘;ﬁ ]
are within cutoff distance '-,\ ofg?n -5

1 diagonal /.
/!

#

A ’

&
N r
#
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More Design Considerations for the
Cutoff Kernel

* High memory throughput to atom data
essential

— Group threads together for locality
— Fetch bins of data into shared memory
— Structure atom data to allow fetching

 After taking care of memory

demand, optimize to reduce instruction
count

— Loop and instruction-level optimization

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010



Tiling Atom Data

 Shared memory used to reduce Global

Memory bandwidth consumption

— Threads in a thread block collectively load

one bin at a time into shared memory

— Once loaded, threads scan atoms in
shared memory

— Reuse: Loaded bins used 128 times
Execution cycle of a thread block

Threads individually
compute potentials
using bin in shared mem

Collectively
load next
bin

Time

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Suspend

Data returned
from global
memory

Ready

Another thread block runs
while this one waits

Write bin to
shared
memory




Handling Overfull Bins

 |n typical use, 2.6% of atoms exceed bin
capacity

o Spatial sorting puts these into a list of extra
atoms

e Extra atoms processed by the CPU
— Computed with CPU-optimized algorithm
— Takes about 66% as long as GPU computation

— Overlapping GPU and CPU computation yields
additional speedup

— CPU performs final integration of grid data



CPU Grid Data Integration

o Effect of overflow

atoms are added
to the CPU master
energygrid array

 Slice of grid point
values calculated
by GPU are added

1,0 1,1

Into the master
energygrid array
while removing the

padded elements

©Wen-mei W. Hwu and David
Kirk/NVIDIA 2010



GPU Thread Coarsening

 Each thread computes
potentials at four potential

: x and z components
map pOIntS of distance ccﬁculated
— Reuse x and z components only once
+ + o+

of distance calculation

— Check x and z components
against cutoff distance . :
Cylinder test rejects

(cylinder test) points that are outside
the cutoff distance

e Exitinner loop early upon  from all four points
encountering the first + +@+
empty slot in a bin

+ + +

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010



GPU Thread Inner Loop

Exit when an empty atom bin
entry is encountered

Cylinder test

Cutoff test
and potential value
calculation

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

for (1 = 0; 1 < BIN DEPTH; 1++)

ag = AtomBinCache[i] .w;
if (ag == 0) break;

dx = AtomBinCache[i] .x - Xx;

dz = AtomBinCachel[i] .z - z;
dxdz2 = dx*dx + dz*dz;

1f (dxdz2 > cutoff2) continue;

dy = AtomBinCache[i] .y - Vv;
r2 = dy*dy + dxdz2;
1f (r2 < cutoff2)
poten0 += ag * rsqrtf(r2);
// Simplified example

dy = dy - 2 * grid spacing;
/* Repeat three more times */
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Cutoff Summation Runtime

1000 | | | |
' CPU-SSE3 —+
' LargeBin -
100 ¢ SmallBin -~ * -
SmallBin-Overlap &
10 |

Execution time (seconds)

1} o] e GPU cutoff with
' X T < CPU overlap:
01 ” 12x-21x faster
than CPU core
0.01 .
| ) < >
0001 il | | 50k—1M atom structure size
1000 8000 64000 1e+06 8e+06

Volume of potential map (Angstroms)

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 54



Summary

e Large bins allow re-use of all-input
kernels with little code change

— But work efficiency can be very low

o Use of small-sized bins require more
sophisticated kernel code to traverse list
of small bins
— Much higher work efficiency
— Small bins also serve as tiles for locality

 CPU processes overflow atoms from
fixed capacity bins

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010



Sparse Matrix-Vector
Multiplication

slides by
Jared Hoberock and David Tarjan
(Stanford CS 193QG)



Overview

 GPUs deliver high Sparse Matrix Vector
(SpMV) performance

 No one-size-fits-all approach
— Match method to matrix structure

* Exploit structure when possible
— Fast methods for regular portion
— Robust methods for irregular portion



Characteristics of SpMV

« Memory bound

— FLOP : MemOQp ratio is very low

 Generally irregular & unstructured
— Unlike dense matrix operations
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Finite-Element Methods

e Discretized on structured or unstructured
meshes

— Determines matrix sparsity structure
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Objectives

» Expose sufficient parallelism
— Develop 1000s of independent threads

 Minimize execution path divergence
— SIMD utilization

 Minimize memory access divergence
— Memory coalescing
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Compressed Sparse Row (CSR)

 Rows laid out in sequence
* Inconvenient for fine-grained parallelism
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CSR (scalar) kernel

* One thread per row
— Poor memory coalescing
— Unaligned memory access
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CSR (vector) kernel

 One SIMD vector or warp per row
— Partial memory coalescing
— Unaligned memory access
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ELLPACK (ELL)

» Storage for K nonzeros per row

— Pad rows with fewer than
— Inefficient when row lengt

=

K nonzeros
N varies
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Hybrid Format

 ELL handles typicalentries

« COO handles exceptional entries
— Implemented with segmented reduction
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Exposing Parallelism

 DIA, ELL & CSR (scalar)
— One thread per row

 CSR (vector)
— One warp per row

« COO

— One thread per nonzero
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Execution Divergence

« Variable row lengths can be problematic
— Idle threads in CSR (scalar)
— Idle processors in CSR (vector)

* Robust strategies exist
— COQO is insensitive to row length



Memory Access Divergence

 Uncoalesced memory access is costly
— Sometimes mitigated by cache

* Misaligned access is suboptimal
— Align matrix format to coalescing boundary

* Access to matrix representation
— DIA, ELL and COO are fully coalesced
— CSR (vector) is partially coalesced
— CSR (scalar) is seldom coalesced



Performance Comparison

System Cores Clock (GHz) Notes

GTX 285 240 1.5 NVIDIA GeForce GTX 285

Cell 8 (SPEs) 3.2 IBM QS20 Blade (half)

Core i7 4 3.0 Intel Core i7 (Nehalem)
Sources:

Implementing Sparse Matrix-Vector Multiplication on Throughput-Oriented Processors
N. Bell and M. Garland, Proc. Supercomputing ‘09, November 2009

Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms
Samuel Williams et al., Supercomputing 2007.

71



GFLOP/s

18

16

14

12

10

Performance Comparison

® GTX 285 A Cell Corei7
°
o
. .
o
¢ o
°
® .
A o
A A o [¢]
A A A
4 A
4 A A A A
i N\ . :
N ¢ AR S K\ & O & &
? \%Q \(J’bo . \(\6 <<,® <<<<’ %QOQ ) 6?50 (J(ae @Q/
& D« N\
& <&

72



ELL kernel

__global __ void ell_spmv(const int num_rows, const int num_cols,
const 1Int num_cols per_row, const int stride,
const double * Aj, const double * Ax,
const double * x, double * y)

{

blockDim.x * blockldx.x + threadldx.x;
gridDim.x * blockDim.x;

const int thread_id
const int grid_size

for (int row = thread i1d; row < num_rows; row += grid _size) {
double sum = y[row];

int offset = row;

for (int n = 0; n < num_cols per_row; n++) {
const int col = Aj[offset];

it (col 1= -1)
sum += Ax[offset] * x[col];

offset += stride;

}

y[row] = sum;



#include <cusp/hyb_matrix.h>
#include <cusp/io/matrix_market.h>
#include <cusp/krylov/cg.h>

int main(void)

{

// create an empty sparse matrix structure (HYB format)
cusp::-hyb_matrix<int, double, cusp::device _memory> A;

// load a matrix stored iIn MatrixMarket format
cusp::i10::read_matrix_market file(A, "5pt_10x10.mtx");

// allocate storage for solution (x) and right hand side (b)
cusp: :arrayld<double, cusp::device_memory> X(A.num_rows, 0);
cusp: :arrayld<double, cusp::device_memory> b(A.num_rows, 1);

// solve linear system with the Conjugate Gradient method
cusp::krylov::cg(A, x, b);

return O;

cusplibrary.github.com

A library for sparse linear algebra and graph computations on CUDA
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Summed Area Table

« Summed Area Table (SAT): 2D table where
each element stores the sum of all elements
in an input image between the lower left
corner and the entry location.



Summed Area Table

Example:
Input image
2| 1]] o]| o
ol 2] 2|| o
1| 2][ 2]| o
1|[ 12][ o] 2

SAT
4 91112 |14
2 6 91|11
2 S 6 8
1 2 2 4

(1+1+0)+(1+2+1)+(0+1+2)=9




Summed Area Table

 Benefit

— Used to compute different width filters at every
pixel in the image in constant time per pixel

— Just sample four pixels in SAT:
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Summed Area Table

e Uses

— Glossy
environment
reflections and
refractions

— Approximate depth
of field
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Image from http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html



Summed Area Table

Input image SAT

2 1
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Summed Area Table

Input image SAT
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Summed Area Table

Input image SAT
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Summed Area Table

Input image SAT
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Summed Area Table

Input image SAT

2 1
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Summed Area Table

Input image SAT
2 1 0 0
0 1 2 0
1 2 1 0] 2
1 1 0 2 1 2 2




Summed Area Table

Input image SAT
2 1 0 0
0 1 2 0
1 2 1 0 2 5
1 1 0 2 1 2 2




Summed Area Table

Input image
2 1 0
0 1 0
1 2 0
1 1 2

SAT
4 9
2 6 11
2 S 8
1 2 4




Summed Area Table

Input image
2 1 0
0 1 0
1 2 0
1 1 2

SAT
4 9112
2 6 911
2 S 6 8
1 2 2 4




Summed Area Table

Input image
2 1 0
0 1 0
1 2 0
1 1 2

SAT
4 91112 |14
2 6 911
2 S 6 8
1 2 2 4




Summed Area Table

How would you iImplement
this on the GPU?



Summed Area Table

e Recall Inclusive Scan:




Summed Area Table

Step 1 of 2:
Input image
2 1 o)
0] 1 0]
1 2 o)
1 1 2

Partial SAT
2 3 3 3
0 1 3 3
1 3 4 4
1 2 2 4

One inclusive scan for each row



Summed Area Table

Step 2 of 2:
Partial SAT Final SAT
2 3 3 3 4 9|12 | |14
0 1 3 3 2 6 9|11
1 3 4 4 2 5 6 8
1 2 2 4 1 2 2 4

One inclusive scan for each
Column, bottom to top




