
1

CS 677 Parallel Programming forCS 677: Parallel Programming for
Many-core Processors y

Lecture 7

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E il Phili M d h i@ dE-mail: Philippos.Mordohai@stevens.edu

LogisticsLogistics

• Midterm: March 22 (after spring break)Midterm: March 22 (after spring break)
– Closed book

All notes from weeks 2 to 7 except prefix sum– All notes from weeks 2 to 7, except prefix sum

– No version-specific details and parameters

De ice parameters ill be pro ided if– Device parameters will be provided if
necessary

2

OverviewOverview

• Homework 4Homework 4
• Case Study – Electrostatic Potential Calculation

A class project at UIUC also resulting in publications– A class project at UIUC also resulting in publications
– Chapter 12 in K&H

• Input Binning• Input Binning
– From NVIDIA and University of Houston

Sparse vector matrix multiplication• Sparse vector matrix multiplication
• Summed area tables

3

Homework Assignment 4Homework Assignment 4

• Apply Sobel filter on (grayscale) imagesApply Sobel filter on (grayscale) images

 202
101

xG

 000
121

yG
 101

 121

4
Mary Hall
CS6963 University of Utah

Homework Assignment 4: CPU Version

for (i = 1; i < ImageNRows ‐ 1; i++)
for (j = 1; j < ImageNCols ‐1; j++)
{

sum1 = u[i‐1][j+1] ‐ u[i‐1][j‐1]
+ 2 * u[i][j+1] ‐ 2 * u[i][j‐1]
+ u[i+1][j+1] ‐ u[i+1][j‐1];

sum2 = u[i‐1][j‐1] + 2 * u[i‐1][j]
+ u[i‐1][j+1] - u[i+1][j‐1]
‐ 2 * u[i+1][j] ‐ u[i+1][j+1];u[][j] u[][j];

magnitude = sum1*sum1 + sum2*sum2;
if (magnitude > THRESHOLD)

e[i][j] = 255;
else

e[i][j] = 0;
}

5
Mary Hall
CS6963 University of Utah

Homework Assignment 4

C t it d f filt G 2+ G 2 d t t• Compute magnitude of filter response Gx
2+ Gy

2 and output:
– 0 if magnitude below threshold
– 255 if magnitude above threshold

0 pixel is within 1 pixel of image border– 0 pixel is within 1 pixel of image border

6
Mary Hall
CS6963 University of Utah

Example OutputExample Output

7
Mary Hall
CS6963 University of Utah

Open QuestionsOpen Questions

• Memory bandwidthMemory bandwidth

• 1D vs. 2D block structure
F t hi f i l t bl k b d i– Fetching of pixels at block boundaries

• I prefer solutions without padding, but you
can pad for a 10% penalty

• Solutions using global memory only will
receive little creditece e e c ed

8
Mary Hall
CS6963 University of Utah

The PPM Image FormatThe PPM Image Format

• PPM is a very simple formatPPM is a very simple format

• Each image file consists of a header
followed by all the pixel datafollowed by all the pixel data

• Header
P6 P3 means ASCII fileP6
comment 1
comment 2

.

P6 means binary (most
practical)

#comment n
rows columns maxvalue
pixels

See filereading code
in homework zip file

9
Mary Hall
CS6963 University of Utah

Use Gimp or IrfanView to manipulate
images and convert between formats

Reading the HeaderReading the Header

fp = fopen(filename, "rb");
…
int num = fread(chars, sizeof(char), 1000, fp);
if (chars[0] != 'P' || chars[1] != '6')
{

fprintf(stderr, “ERROR file '%s' does not
start with \"P6\" I am expecting a binary
PPM file\n", filename);

return NULL;
}

check for “P6”
in first line

10
Mary Hall
CS6963 University of Utah

Reading the Header (cont)Reading the Header (cont)

unsigned int width, height, maxvalue;
char *ptr = chars+3; // P 6 newline
if (*ptr == '#') // comment line!
{

skip over comments by
l ki f # i fi t{

ptr = 1 + strstr(ptr, "\n");
}
num = sscanf(ptr "%d\n%d\n%d"

looking for # in first
column

num = sscanf(ptr, "%d\n%d\n%d",
&width, &height, &maxvalue);

fprintf(stderr, "read %d things width %d height %d
maxval %d\n", num, width, height, maxvalue);maxval %d\n , num, width, height, maxvalue);

*xsize = width;
*ysize = height;
*maxval = maxvalue;

11
Mary Hall
CS6963 University of Utah

Reading the Data
// allocate buffer to read the rest of the file into
int bufsize = 3 * width * height * sizeof(unsigned char);
if ((*maxval) > 255) bufsize *= 2;
unsigned char *buf = (unsigned char *)malloc(bufsize);

…

long numread = fread(buf, sizeof(char), bufsize, fp);

…

int pixels = (*xsize) * (*ysize);
for (int i=0; i<pixels; i++)

pic[i] = (int) buf[3*i]; // red channel p [] () []; //
return pic; // success

12
Mary Hall
CS6963 University of Utah

MotivationMotivation

Electrostatic potential map is used in building stable structures for
molecular dynamics simulation

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 13

Core Computationp

•The contribution of atom[i] to the electrostatic
potential at lattice point j is atom[i].charge / rij

•The total potential at lattice point j is the sum of
contributions from all atoms in the system

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 14

contributions from all atoms in the system

Sequential CPU Code

Computes a single slice (const z)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 15

15

GPU ImplementationGPU Implementation

• Option 1: each thread calculates theOption 1: each thread calculates the
contribution of one atom to all grid points

“Scatter”– Scatter

• Option 2: each thread calculates the
accumulated contributions of all atoms toaccumulated contributions of all atoms to
one grid point

“G h ”– “Gather”

• Pros/cons?

16

Loop TransformationLoop Transformation

• Need perfectlyNeed perfectly
nested loops
– as in MRI

example

M– Move
calculation of y
into inner loopp

– Pros/cons?

17

DCS Kernel Design Overview

18

DCS Kernel Version 1

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 19qsqrtf(): reciprocal square root

DCS Kernel Version 1

ILP vs. TLP

atominfo[].z is already squaredatominfo[].z is already squared

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 20qsqrtf(): reciprocal square root

Information ReuseInformation Reuse

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 21

DCS kernel Version 2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 22

Memory CoalescingMemory Coalescing

• Two issues:Two issues:
– Each thread calculates potentials of four

adjacent grid pointsadjacent grid points

– If grid width is not multiple of tile– If grid width is not multiple of tile
width, boundary management becomes
complicatedp

23

Memory Layout for Coalescing

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 24

DCS Kernel Version 3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign ILP vs. TLP

Performance Comparison

26
26

CPU vs. CPU-GPU Comparison

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 27

UIUC ECE 598HK

Computational Thinking for
Many-core Computingy p g

Input Binningp g

28

ObjectiveObjective

• To understand how data scalabilityTo understand how data scalability
problems in gather parallel execution
motivate input binningmotivate input binning

• To learn basic input binning techniques

T d d d ff i i• To understand common tradeoffs in input
binning

29©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Scatter to Gather Transformation

in

Thread 1 Thread 2 …

in
out

Thread 1 Thread 2 …
out

GPU Computing Forum

However
• Input tends to be much less regular than output

It b diffi lt f h th d t ffi i tl l t– It may be difficult for each thread to efficiently locate
all inputs relevant to its output

– Or, to efficiently exclude all inputs irrelevant to its
output

• In a naïve arrangement, all threads may have to
process all inputs to decide if each input is relevantprocess all inputs to decide if each input is relevant
to its output
– This makes execution time scale poorly with data set

isize
– Important problem when processing large data sets

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 31

DCS Algorithm for Electrostatic Potentials
RevisitedRevisited

• At each grid point, sum g p ,
the electrostatic
potential from all atoms

All threads read all inputs– All threads read all inputs

• Highly data-parallel

• But has quadraticBut has quadratic
complexity
– Number of grid points

number of atomsnumber of atoms

– Both proportional to volume

– Poor data scalability

32©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Algorithm for Electrostatic Potentials
With C t ffWith a Cutoff

• Ignore atoms beyond a g y
cutoff distance, rc

– Typically 8Å–12Å

Long range potential may– Long-range potential may
be computed separately

• Number of atoms within
cutoff distance is
roughly constant
(uniform atom density)(y)
– 200 to 700 atoms within

8Å–12Å cutoff sphere for
typical biomolecular yp
structures

33©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Implementation ChallengeImplementation Challenge

• For each tile of grid points, we need toFor each tile of grid points, we need to
identify the set of atoms that need to be
examined
– One could naively examine all atoms and only

use the ones whose distance is within the given
rangerange

– But this examination still takes time, and brings
the time complexity right back to

• number of atoms × number of grid points

– Each thread needs to avoid examining the atoms
outside the range of its grid point(s)outside the range of its grid point(s)

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 34

Binning

• A process that groups data to form a
chunk called bin

• Helps problem solving due to data
coarseningg

• Uniform bin arrays, Variable bins, KD
TreesTrees, …

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 35

Binning for Cut-Off Potential
• Divide the simulation volume with non-

overlapping uniform cubespp g

• Every atom in the simulation volume falls into a
cube based on its spatial locationcube based on its spatial location
– Bins represent location property of atoms

• After binning each cube has a unique index inAfter binning, each cube has a unique index in
the simulation space for easy parallel access

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010
36

Spatial Sorting Using Binning

• Presort atoms into bins
by location in space

• Each bin holds several
tatoms

• Cutoff potential only
uses bins within rcuses bins within rc

– Yields a linear complexity
cutoff potential algorithm

37©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

Bin Size ConsiderationsBin Size Considerations

• Capacity of atom bins needs to be balancedp y
– Too large – many dummy atoms in bins
– Too small – some atoms will not fit into bins

T bi i h 95%– Target bin capacity to cover more than 95% or atoms

• CPU places all atoms that do not fit into bins into• CPU places all atoms that do not fit into bins into
an overflow bin
– Use a CPU sequential algorithm to calculate their

ib i h id l i icontributions to the energy grid lattice points.
– CPU and GPU can do potential calculations in parallel

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 38

Bin Design
• Uniform sized/capacity bins allow array implementation

– And the relative offset list approach

• Bin capacity should be big enough to contain all the
atoms that fall into a bin
– Cut-off will screen away atoms that weren’t processedCut off will screen away atoms that weren t processed

– Performance penalty if too many are screened away

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 39

Going from DCS Kernel to Large
Bi C ff K lBin Cut-off Kernel

• Adaptation of techniques from the direct Coulomb p q
summation kernel for a cutoff kernel

• Atoms are stored in constant memory as with DCS
k lkernel

• CPU loops over potential map regions that are (24Å)3 in
volume (cube containing cutoff sphere)volume (cube containing cutoff sphere)

• Large bins of atoms are appended to the constant
memory atom buffer until it is full, then GPU kernel is
l h dlaunched

• Host loops over map regions reloading constant memory
and launching GPU kernels until completionand launching GPU kernels until completion

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

40

Large Bin Design ConceptLarge Bin Design Concept

• Map regions are (24Å)3 in volumep g ()

• Regions are sized large enough to provide
the GPU enough work in a single kernelthe GPU enough work in a single kernel
launch
– (48 lattice points)3 for lattice with 0 5Å spacing(48 lattice points) for lattice with 0.5Å spacing

– Small bins don’t provide the GPU enough
work to utilize all SMs, to amortize constantwork to utilize all SMs, to amortize constant
memory update time, or kernel launch
overhead

©Wen-mei W. Hwu and David Kirk/NVIDIA
Urbana, Illinois, August 2-5, 2010

41

Large-bin Cutoff Kernel EvaluationLarge bin Cutoff Kernel Evaluation

• 6 speedup relative to fast CPU version• 6 speedup relative to fast CPU version

• Work-inefficient
Å– Coarse spatial hashing into (24Å)3 bins

– Only 6.5% of the atoms a thread tests are
i hi h ff diwithin the cutoff distance

• Better adaptation of the algorithm to the
GPU will gain another 2.5

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 42

Improving Work Efficiency

• Thread block examines atom bins
up to the cutoff distancep
– Use a sphere of bins
– All threads in a block scan the same

bins and atoms
N h d lt f lti l• No hardware penalty for multiple
simultaneous reads of the same address

• Simplifies fetching of data
– The sphere has to be big enough to

M

Np g g
cover all grid point at corners

– There will be a small level of
divergence

• Not all grid points processed by a thread

N

A

Not all grid points processed by a thread
block relate to all atoms in a bin the
same way

• (A within cut-off distance of N but outside
cut-off of M)

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

cut off of M)

43

The Neighborhood is a volume

• Calculating andCalculating and
specifying all bin
indexes of the
sphere can be
quite complex
– Rough

approximations
reduce efficiencyy

©Wen-mei W. Hwu and David
Kirk/NVIDIA 2010 44

Neighborhood Offset List
(Pre calculated)(Pre-calculated)

• A list of relative offsets enumerating the bins
that are located within the cutoff distance for athat are located within the cutoff distance for a
given location in the simulation volume

• Detection of surrounding atoms becomes g
realistic for output grid points
– By visiting bins in the neighborhood offset list and

i i h h iiterating over the atoms they contain

(1, 2)
(1 1)

a bin in the neighborhood
list

cutoff distance

(-1, -1)

©Wen-mei W. Hwu and David Kirk/NVIDIA
Urbana, Illinois, August 2-5, 2010

center (0, 0)not included
45 45

PerformancePerformance

• O(MN’) where M and N’ are the number ofO(MN) where M and N are the number of
output grid points and atoms in the
neighborhood offset list respectivelyneighborhood offset list, respectively
– In general, N’ is small compared to the

number of all atomsnumber of all atoms

• Works well if the distribution of atoms is
uniformuniform

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 46

Details on Small Bin DesignDetails on Small Bin Design

• For 0.5Å lattice spacing, a
(4Å b f h i l(4Å)3 cube of the potential
map is computed by each
thread block
– 888 potential map points
– 128 threads per block

(4 points/thread)
– 34% of examined atoms

are within cutoff distance

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 47

More Design Considerations for the
C ff K lCutoff Kernel

• High memory throughput to atom dataHigh memory throughput to atom data
essential

Group threads together for locality– Group threads together for locality

– Fetch bins of data into shared memory

Structure atom data to allow fetching– Structure atom data to allow fetching

• After taking care of memory
d d ti i t d i t tidemand, optimize to reduce instruction
count

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

– Loop and instruction-level optimization
48

Tiling Atom Data
• Shared memory used to reduce Global

Memory bandwidth consumptiony p
– Threads in a thread block collectively load

one bin at a time into shared memory
Once loaded threads scan atoms in– Once loaded, threads scan atoms in
shared memory

– Reuse: Loaded bins used 128 times

Threads individually
compute potentials

Collectively
load next

Write bin to
sharedsp

en
d

Data returned
from global ea

dy

Execution cycle of a thread block

Another thread block runs
while this one waits

p p
using bin in shared mem bin memoryS

us

from global
memory R

e

Time

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

while this one waits

49

Handling Overfull BinsHandling Overfull Bins

• In typical use, 2.6% of atoms exceed binIn typical use, 2.6% of atoms exceed bin
capacity

• Spatial sorting puts these into a list of extra p g p
atoms

• Extra atoms processed by the CPU
– Computed with CPU-optimized algorithm
– Takes about 66% as long as GPU computation

O l i GPU d CPU i i ld– Overlapping GPU and CPU computation yields
additional speedup

– CPU performs final integration of grid data

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

CPU performs final integration of grid data

50

CPU Grid Data IntegrationCPU Grid Data Integration
• Effect of overflow

atoms are addedatoms are added
to the CPU master
energygrid array

0,0 0,1 …

gyg y
• Slice of grid point

values calculated
b GPU dd d

1,0 1,1 …

by GPU are added
into the master
energygrid array

… ……

gyg y
while removing the
padded elements

©Wen-mei W. Hwu and David
Kirk/NVIDIA 2010 51

GPU Thread CoarseningGPU Thread Coarsening
• Each thread computes

i l f i lpotentials at four potential
map points
– Reuse x and z components p

of distance calculation

– Check x and z components
against cutoff distanceg
(cylinder test)

• Exit inner loop early upon
encountering the firstencountering the first
empty slot in a bin

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 52

GPU Thread Inner Loop
for (i = 0; i < BIN_DEPTH; i++) {
aq = AtomBinCache[i].w;
if (aq == 0) break;

Exit when an empty atom bin
entry is encountered

if (aq 0) break;

dx = AtomBinCache[i].x - x;
dz = AtomBinCache[i].z - z;
d d 2 d *d d *ddxdz2 = dx*dx + dz*dz;
if (dxdz2 > cutoff2) continue;

dy = AtomBinCache[i].y - y;

Cylinder test

Cutoff test y y y
r2 = dy*dy + dxdz2;
if (r2 < cutoff2)
poten0 += aq * rsqrtf(r2);
// Simplified example

Cutoff test
and potential value

calculation

// Simplified example

dy = dy - 2 * grid_spacing;
/* Repeat three more times */

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010

}

53

Cutoff Summation Runtime

GPU cutoff with
CPU overlap:
12x-21x faster
than CPU core

50k–1M atom structure size

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 54

SummarySummary
• Large bins allow re-use of all-input

k l ith littl d hkernels with little code change
– But work efficiency can be very low

• Use of small sized bins require more• Use of small-sized bins require more
sophisticated kernel code to traverse list
of small bins
– Much higher work efficiency
– Small bins also serve as tiles for locality

• CPU processes overflow atoms from
fixed capacity bins

©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 55

Sparse Matrix-Vector
Multiplication

slides by

Jared Hoberock and David TarjanJared Hoberock and David Tarjan

(Stanford CS 193G)

56

Overview

• GPUs deliver high Sparse Matrix VectorGPUs deliver high Sparse Matrix Vector
(SpMV) performance

• No one-size-fits-all approach
– Match method to matrix structureMatch method to matrix structure

• Exploit structure when possibleExploit structure when possible
– Fast methods for regular portion
– Robust methods for irregular portiong p

57

Characteristics of SpMV

• Memory bound
FLOP : MemOp ratio is very low– FLOP : MemOp ratio is very low

• Generally irregular & unstructured
– Unlike dense matrix operations

58

Finite-Element Methods
• Discretized on structured or unstructured

meshesmeshes
– Determines matrix sparsity structure

59

ObjectivesObjectives

• Expose sufficient parallelismExpose sufficient parallelism
– Develop 1000s of independent threads

• Minimize execution path divergence
– SIMD utilization

• Minimize memory access divergence
– Memory coalescing

60

Sparse Matrix FormatsSparse Matrix Formats

Structured Unstructured

61

Compressed Sparse Row (CSR)Compressed Sparse Row (CSR)

• Rows laid out in sequenceRows laid out in sequence

• Inconvenient for fine-grained parallelism

62

CSR (scalar) kernelCSR (scalar) kernel

• One thread per rowOne thread per row
– Poor memory coalescing

Unaligned memory access– Unaligned memory access

… … ……

63

CSR (vector) kernelCSR (vector) kernel

• One SIMD vector or warp per rowOne SIMD vector or warp per row
– Partial memory coalescing

Unaligned memory access– Unaligned memory access

64

ELLPACK (ELL)ELLPACK (ELL)

• Storage for K nonzeros per rowStorage for K nonzeros per row
– Pad rows with fewer than K nonzeros

Inefficient when row length varies– Inefficient when row length varies

65

Hybrid FormatHybrid Format

• ELL handles typical entriesELL handles typical entries

• COO handles exceptional entries
I l t d ith t d d ti– Implemented with segmented reduction

66

Exposing ParallelismExposing Parallelism

• DIA ELL & CSR (scalar)DIA, ELL & CSR (scalar)
– One thread per row

ul
ar

ity

• CSR (vector)

ne
r

G
ra

nu

– One warp per row Fi
n

• COO
– One thread per nonzero

67

Exposing Parallelism

18

20

COO CSR (scalar) CSR (vector) ELL

14

16

18

10

12

G
FL
O
P/
s

4

6

8

G

0

2

4

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

Matrix Rows
68

Execution DivergenceExecution Divergence

• Variable row lengths can be problematicVariable row lengths can be problematic
– Idle threads in CSR (scalar)

Idle processors in CSR (vector)– Idle processors in CSR (vector)

R b t t t i i t• Robust strategies exist
– COO is insensitive to row length

69

Memory Access DivergenceMemory Access Divergence

• Uncoalesced memory access is costlyy y
– Sometimes mitigated by cache

Mi li d i b ti l• Misaligned access is suboptimal
– Align matrix format to coalescing boundary

• Access to matrix representation
– DIA, ELL and COO are fully coalescedy
– CSR (vector) is partially coalesced
– CSR (scalar) is seldom coalesced

70

Performance ComparisonPerformance Comparison

System Cores Clock (GHz) Notes
GTX 285 240 1.5 NVIDIA GeForce GTX 285

Cell 8 (SPEs) 3 2 IBM QS20 Blade (half)Cell 8 (SPEs) 3.2 IBM QS20 Blade (half)

Core i7 4 3.0 Intel Core i7 (Nehalem)

Sources:
Implementing Sparse Matrix-Vector Multiplication on Throughput-Oriented Processors
N. Bell and M. Garland, Proc. Supercomputing '09, November 2009

Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms
Samuel Williams et al., Supercomputing 2007.

71

Performance Comparison

16

18

GTX 285 Cell Core i7

12

14

8

10

G
FL
O
P/
s

2

4

6

0

2

72

ELL kernel
__global__ void ell_spmv(const int num_rows, const int num_cols,

const int num_cols_per_row, const int stride,

const double * Aj, const double * Ax,

const double * x, double * y)const double x, double y)
{

const int thread_id = blockDim.x * blockIdx.x + threadIdx.x;
const int grid_size = gridDim.x * blockDim.x;

f (i t th d id id i) {for (int row = thread_id; row < num_rows; row += grid_size) {
double sum = y[row];

int offset = row;

for (int n = 0; n < num_cols_per_row; n++) {
const int col = Aj[offset];

if (col != -1)
 A [ff t] * [l]sum += Ax[offset] * x[col];

offset += stride;
}

y[row] = sum;
}

}
73

#include <cusp/hyb_matrix.h>

#include <cusp/io/matrix_market.h>

#include <cusp/krylov/cg.h>

int main(void)

{
// create an empty sparse matrix structure (HYB format)// create an empty sparse matrix structure (HYB format)
cusp::hyb_matrix<int, double, cusp::device_memory> A;

// load a matrix stored in MatrixMarket format
cusp::io::read_matrix_market_file(A, "5pt_10x10.mtx");

// allocate storage for solution (x) and right hand side (b)
cusp::array1d<double, cusp::device_memory> x(A.num_rows, 0);
cusp::array1d<double, cusp::device_memory> b(A.num_rows, 1);

// solve linear system with the Conjugate Gradient method// solve linear system with the Conjugate Gradient method

cusp::krylov::cg(A, x, b);

return 0;

}

cusplibrary.github.com

74A library for sparse linear algebra and graph computations on CUDA

Summed Area TablesSummed Area Tables

Patrick Cozzi
University of Pennsylvaniay y

CIS 565 - Spring 2011

75

Summed Area TableSummed Area Table

• Summed Area Table (SAT): 2D table where
each element stores the sum of all elements
in an input image between the lower left
corner and the entry location.y

76

Summed Area TableSummed Area Table

 Example:

2 1 0 0

Input image

4 9 12 14

SAT

1 2 1 0

0 1 2 0

2 5 6 8

2 6 9 11

1 1 0 2 1 2 2 4

(1 + 1 + 0) + (1 + 2 + 1) + (0 + 1 + 2) = 9
77

Summed Area TableSummed Area Table

• Benefit
– Used to compute different width filters at everyUsed to compute different width filters at every

pixel in the image in constant time per pixel

– Just sample four pixels in SAT:p p

78

Summed Area TableSummed Area Table

• Uses
– GlossyGlossy

environment
reflections and
refractions

– Approximate depth
of field

Image from http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html
79

Summed Area TableSummed Area Table

Input image SAT

0 1 2 0

2 1 0 0

1 1 0 2

1 2 1 0

0

80

Summed Area TableSummed Area Table

Input image SAT

0 1 2 0

2 1 0 0

1 1 0 2

1 2 1 0

10

81

Summed Area TableSummed Area Table

Input image SAT

0 1 2 0

2 1 0 0

1 1 0 2

1 2 1 0

1 20

82

Summed Area TableSummed Area Table

Input image SAT

0 1 2 0

2 1 0 0

1 1 0 2

1 2 1 0

1 2 20

83

Summed Area TableSummed Area Table

Input image SAT

0 1 2 0

2 1 0 0

1 1 0 2

1 2 1 0

1 2 2 40

84

Summed Area TableSummed Area Table

Input image SAT

0 1 2 0

2 1 0 0

1 1 0 2

1 2 1 0

1 2 2 4

2

0

85

Summed Area TableSummed Area Table

Input image SAT

0 1 2 0

2 1 0 0

1 1 0 2

1 2 1 0

1 2 2 4

2 5

0

86

Summed Area TableSummed Area Table

Input image SAT

0 1 2 0

2 1 0 0

2 6 9 11

4 9

1 1 0 2

1 2 1 0

1 2 2 4

2 5 6 8

0

87

Summed Area TableSummed Area Table

Input image SAT

0 1 2 0

2 1 0 0

2 6 9 11

4 9 12

1 1 0 2

1 2 1 0

1 2 2 4

2 5 6 8

0

88

Summed Area TableSummed Area Table

Input image SAT

0 1 2 0

2 1 0 0

2 6 9 11

4 9 12 14

1 1 0 2

1 2 1 0

1 2 2 4

2 5 6 8

0

89

Summed Area TableSummed Area Table

ld i lHow would you implement
hi h GPU?this on the GPU?

90

Summed Area TableSummed Area Table

• Recall Inclusive Scan:

0 1 52 3 4 6 7

0 1 153 6 10 21 28

91

Summed Area TableSummed Area Table

 Step 1 of 2:

2 1 0 0

Input image

2 3 3 3

Partial SAT

1 2 1 0

0 1 2 0

1 3 4 4

0 1 3 3

1 1 0 2 1 2 2 4

One inclusive scan for each row
92

Summed Area TableSummed Area Table

 Step 2 of 2:

2 3 3 3

Partial SAT

4 9 12 14

Final SAT

1 3 4 4

0 1 3 3

2 5 6 8

2 6 9 11

1 2 2 4 1 2 2 4

One inclusive scan for each
Column, bottom to top

93

