
1

CS 677 Parallel Programming forCS 677: Parallel Programming for
Many-core Processors y

Lecture 6

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E il Phili M d h i@ dE-mail: Philippos.Mordohai@stevens.edu

OverviewOverview

• Parallel Patterns: ConvolutionParallel Patterns: Convolution
– Constant memory

Cache– Cache
• Parallel Patterns: Reduction Trees
• Parallel Patterns: Parallel Prefix Sum (Scan)

2

Convolution, Constant Memory and
Constant CachingConstant Caching

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2011 3

ConvolutionConvolution

• Array operation where each output is aArray operation where each output is a
weighted sum of a collection of
neighboring input elementsneighboring input elements

• Weights are defined in a mask array a.k.a.
convolution kernelconvolution kernel

4

1D Convolution1D Convolution

5

1D Convolution1D Convolution

6

1D Convolution – Boundary Condition1D Convolution Boundary Condition

7

Simple KernelSimple Kernel
__global__ void convolution_1d_basic(float *N, float *M,

float *P, int mask width, int width){, _ ,){

int i = blockIdx.x*blockDIm.x+threadIdx.x;

float Pvalue = 0;
int N_start = i-(mask_width/2);
for(int j=0; j< mask width; j++){o (t j 0; j as _ dt ; j){

if(N_start +j >=0 && N_start+j < width){
Pvalue += N[N_start+j]*M[j];

}}
}
P[i] = Pvalue;

}}

8

2D Convolution – Inside Cells
N P

3 4 5 6 7

2 3 4 5 6

1 2 3 4 5 235

N P

2 3 5 6 7

0 1 1 3 1

1 2 3 2 1

2 3 4 3 2

3 8 15 12 7

4 9 16 15 12
3 4 5 4 3

2 3 4 3 2

1 2 3 2 1

4 9 16 15 12

3 8 15 16 15

4 9 20 18 14

M

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2011

9 0 8

0 2 3 6 1

9

2D Convolution – Ghost Cells
0 0 0 0 0 N P
0 3 4 5 6

0 2 3 4 5

0 3 5 6 7 179

0 1 1 3 1

1 2 3 2 1

2 3 4 3 2

0 0 0 0 0

0 9 16 15 12 0 ghost cells2 3 4 3 2

3 4 5 4 3

2 3 4 3 2

1 2 3 2 1

0 8 15 16 15

0 9 20 18 14

g

M

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2011 10

0 2 3 6 1

Access Pattern for MAccess Pattern for M

• M is referred to as mask (a.k.a. kernel, filter, etc.)(, ,)
– Elements of M are called mask (kernel, filter)

coefficients

C l l ti f ll t t P l t d M• Calculation of all output P elements need M
• M is not changed during kernel

• Bonus - M elements are accessed in the same
order when calculating all P elementsg

• M is a good candidate for Constant Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2011 11

How to Use Constant MemoryHow to Use Constant Memory

• Host code allocates, initializes variables the same
way as any other variables that need to be copied
to the device

• Use cudaMemcpyToSymbol(dest,src,size)
to copy the variable into the device memory

D l t fl t M[MASK WIDTH]fi t– Declare __const__ float M[MASK_WIDTH]first

• This copy function tells the device that the variableThis copy function tells the device that the variable
will not be modified by the kernel and can be safely
cached

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2011 12

Kernel using Constant Memory
__const__ float Mc[MASK_WIDTH]

__global__ void convolution_1d_basic(float *N, __ __ _ _
float *P, int mask_width, int width){

int i = blockIdx.x*blockDIm.x+threadIdx.x;

float Pvalue = 0;
int N_start = i-(mask_width/2);
for(int j=0; j< mask width; j++){for(int j 0; j< mask_width; j++){

if(N_start +j >=0 && N_start+j < width){
Pvalue += N[N_start+j]*Mc[j];

}
}
P[i] = Pvalue;

}
…
cudaMemcpyToSymbol(Mc, M, mask_width *sizeof(float));

13

Using Shared MemoryUsing Shared Memory

• Elements of the input vector are used inElements of the input vector are used in
multiple computations

• Opportunity to use shared memory• Opportunity to use shared memory

• Shared memory tile must be larger than
mask!

14

Using Shared MemoryUsing Shared Memory
N_ds in shared memory contains 8 elements

6 7 8 9 10 11 16 17

Mask Width is 5

12 13 14 15

Mask_Width is 5

8 9 10 11 12 13 14 15

P

• For Mask Width = 5 we load 8+5-1 = 12For Mask_Width 5, we load 8+5 1 12
elements (12 memory loads)

15
© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

Each Output uses 5 Input ElementsEach Output uses 5 Input Elements

6 7 8 9 10 11 16 17

N_ds

12 13 14 156 7 8 9 10 11 16 17

Mask_Width is 5

12 13 14 15

P

• P[8] uses N[6], N[7], N[8], N[9], N[10]
P[9] N[7] N[8] N[9] N[10] N[11]

8 9 10 11 12 13 14 15

• P[9] uses N[7], N[8], N[9], N[10], N[11]
• P[10] uses N[8], N[9], N[10], N[11], N[12]
• …
• P[14] uses N[12], N[13], N[14], N[15],N[16]
• P[15] uses N[13], N[14], N[15], N[16], N[17]

16
© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

Benefits from TilingBenefits from Tiling

• (8+5-1)=12 elements loaded(8+5 1)=12 elements loaded

• 8*5 global memory accesses replaced by
shared memory accessesshared memory accesses

• This gives a bandwidth reduction of
40/12 3 340/12=3.3

17
© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

Benefits from TilingBenefits from Tiling

• Tile Width + Mask Width -1 elementsTile_Width + Mask_Width 1 elements
loaded

• Tile Width * Mask Width global memory• Tile_Width * Mask_Width global memory
accesses replaced by shared memory
accessaccess

• This gives a reduction of bandwidth by

(Tile_Width *Mask_Width)/(Tile_Width+Mask_Width-1)

18
© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

Another Way to Look at ReuseAnother Way to Look at Reuse

6 7 8 9 10 11 16 17

N_ds

12 13 14 156 7 8 9 10 11 16 17

Mask_Width is 5

12 13 14 15

P

• N[6] is used by P[8] (1X)
N[7] i d b P[8] P[9] (2X)

8 9 10 11 12 13 14 15

• N[7] is used by P[8], P[9] (2X)
• N[8] is used by P[8], P[9], P[10] (3X)
• N[9] is used by P[8], P[9], P[10], P[11] (4X)

N[10] i d b P[8] P[9] P[10] P[11] P[12] (5X)• N[10] is used by P[8], P[9], P[10], P[11], P[12] (5X)
• … (5X)
• N[14] is uses by P[12], P[13], P[14], P[15] (4X)
• N[15] is used by P[13], P[14], P[15] (3X)

19
© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

Another Way to Look at ReuseAnother Way to Look at Reuse

• The total number of global memory accessesThe total number of global memory accesses
(to the (8+5-1)=12 N elements) replaced by
shared memory accesses is

1 + 2 + 3 + 4 + 5 * (8-5+1) + 4 + 3 + 2 + 1
= 10 + 20 + 10= 10 + 20 + 10
= 40

So the reduction isSo the reduction is
40/12 = 3.3

20
© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

Ghost ElementsGhost Elements

• For a boundary tile, we load Tile Width +For a boundary tile, we load Tile_Width
(Mask_Width-1)/2 elements
– 10 in our example of Tile_Width =8 and

Mask_Width=5

C i b d l d• Computing boundary elements does not
access global memory for ghost cells

Total accesses is 3 + 4+ 6*5 = 37 accesses– Total accesses is 3 + 4+ 6*5 = 37 accesses

The reduction is 37/10 = 3 7The reduction is 37/10 = 3.7

21
© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

In General for 1DIn General for 1D

• The total number of global memory accesses to g y
the (Tile_Width+Mask_Width-1) N elements
replaced by shared memory accesses is

1 + 2 + … + Mask_Width-1+ Mask_Width *
(Tile_Width -Mask_Width+1) + Mask_Width-1+… + 2
+ 1+ 1
= (Mask_Width-1) *Mask_Width+
Mask_Width*(Tile_Width-Mask_Width+1)

= Mask_Width*(Tile_Width)

22
© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

Bandwidth Reduction in 1DBandwidth Reduction in 1D

• The reduction isThe reduction is
Mask_Width * (Tile_Width)/(Tile_Width+Mask_Size-1)
TileWidth

Tile Width 16 32 64 128 256Tile_Width 16 32 64 128 256
Reduction
Mask_Width = 5

4.0 4.4 4.7 4.9 4.9

Reduction
Mask_Width = 9

6.0 7.2 8.0 8.5 8.7

23
© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

2D Output Tiling and Indexing2D Output Tiling and Indexing
• Use a thread block to calculate a tile of P

Each output tile is of TILE SIZE for both x and y– Each output tile is of TILE_SIZE for both x and y
col_o = blockIdx.x * TILE_WIDTH + tx;

T
H

 +
 ty

;
L

E
_W

ID
T

kI
dx

.y
*T

IL
w

_o
=

bl
oc

k

24
© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

ro
w

Halo ElementsHalo Elements

3 4 5 6 7
2 3 4 5 6
1 2 3 4 5
2 3 5 6 7

I Til

Mask_Width = 5

0 1 1 3 1

Output Tile

Input Tile

3 4 5 6 7
2 3 4 6

Output Tile

2 3 4 5 6
1 2 3 4 5
2 3 5 6 7
0 1 1 3 1

25
© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

0 1 1 3 1

8x8 Output Tile8x8 Output Tile

• 12X12=144 N elements need to be loaded12X12=144 N elements need to be loaded
into shared memory

• The calculation of each P element needs• The calculation of each P element needs
to access 25 N elements

8X8X25 1600 l b l• 8X8X25 = 1600 global memory accesses
are converted into shared memory
accesses

• A reduction of 1600/144 = 11X

26
© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

In General for 2DIn General for 2D

• (Tile Width+Mask Width-1)2 N elements (_ _)
need to be loaded into shared memory

• The calculation of each P element needs to
access Mask Width2 N elementsaccess Mask_Width2 N elements

• Tile_Width2 * Mask_Width2 global memory
accesses are converted into shared memoryaccesses are converted into shared memory
accesses

• The reduction is
Tile_Width2 * Mask_Width2 /
(Tile_Width+Mask_Width-1)2

27
© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

Bandwidth Reduction in 2DBandwidth Reduction in 2D

• The reduction isThe reduction is

Tile_Width2 * Mask_Width2 /
(Tile Width+Mask Width 1)2(Tile_Width+Mask_Width-1)2

Tile_Width 8 16 32 64
Reduction
Mask_Width = 5

11.1 16 19.7 22.1

Reduction
Mask_Width = 9

20.3 36 51.8 64

28
© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

Programmer View of CUDA Memories
(R i)(Review)

• Each thread can: Grid
– Read/write per-thread

registers (~1 cycle)

– Read/write per-block shared
(~5 l)

Block (0, 0)

Shared Memory/L1 cache

Block (1, 0)

Shared Memory/L1 cachememory (~5 cycles)

– Read/write per-grid global
memory (~500 cycles)

t t

Shared Memory/L1 cache

Registers Registers

Shared Memory/L1 cache

Registers Registers

– Read/only per-grid constant
memory (~5 cycles
with caching) Global Memory

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

Hostg)

Constant Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2011 29

Memory HierarchiesMemory Hierarchies

• If every time we needed a piece of dataIf every time we needed a piece of data,
we had to go to main memory to get it,
computers would take a lot longer to docomputers would take a lot longer to do
anything

• On today’s processors main memory• On today s processors, main memory
accesses take hundreds of cycles

• One solution: Caches

© David Kirk/NVIDIA and Wen-mei Hwu, Barcelona, Spain,July 18-22 2011
30

Cache
• In order to keep cache fast, it needs to be

ll fi h i dsmall, so we cannot fit the entire data set
in it The chip

Processor

L1 Cache

regs

L1 Cache

L2 Cache

Main Memory

© David Kirk/NVIDIA and Wen-mei Hwu, Barcelona, Spain,July 18-22 2011
31

CacheCache

• Cache is unit of volatile memory storagey g

• A cache is an “array” of cache lines

• Cache line can usually hold data from several
ti ddconsecutive memory addresses

• When data is requested from memory an• When data is requested from memory, an
entire cache line is loaded into the cache, in
an attempt to reduce main memory requests

© David Kirk/NVIDIA and Wen-mei Hwu, Barcelona, Spain,July 18-22 2011
32

CachesCaches

Some definitions:Some definitions:
– Spatial locality: is when the data elements

stored in consecutive memory locations arestored in consecutive memory locations are
access consecutively

– Temporal locality: is when the same dataTemporal locality: is when the same data
element is accessed multiple times in short
period of time

• Both spatial locality and temporal locality
improve the performance of caches

© David Kirk/NVIDIA and Wen-mei Hwu, Barcelona, Spain,July 18-22 2011

p p

33

Scratchpad vs. Cachep
• Scratchpad (shared memory in CUDA) is

another type of temporary storage used toanother type of temporary storage used to
relieve main memory contention.

• In terms of distance from the processor• In terms of distance from the processor,
scratchpad is similar to L1 cache.

• Unlike cache scratchpad does notUnlike cache, scratchpad does not
necessarily hold a copy of data that is in
main memoryy

• It requires explicit data transfer instructions,
whereas cache does not

© David Kirk/NVIDIA and Wen-mei Hwu, Barcelona, Spain,July 18-22 2011
34

Cache Coherence Protocol

• A mechanism for caches to propagate updates by
their local processor to other caches (processors)their local processor to other caches (processors)

The chip
Processor

L1 Cache

regs
Processor

L1 Cache

regs
Processor

L1 Cache

regs…

L1 Cache L1 Cache L1 Cache

Main Memory

© David Kirk/NVIDIA and Wen-mei Hwu, Barcelona, Spain,July 18-22 2011
35

CPU and GPU have different
hi hil hcaching philosophy

• CPU L1 caches are usually coherenty
– L1 is also replicated for each core
– Even data that will be changed can be cached in

L1L1
– Updates to local cache copy invalidate (or less

commonly update) copies in other caches
– Expensive in terms of hardware and disruption of

services (cleaning bathrooms at airports..)

• GPU L1 caches are usually incoherent
– Avoid caching data that will be modified

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2011 36

GPU Cache CoherenceGPU Cache Coherence

• Current CUDA implementation:Current CUDA implementation:
– Provides coherence by disabling L1 cache

after writes
– There is room for improvement

• Custom implementationsp
– Temporal coherence: invalidates cache using

synchronized counters without message
ipassing

– Stall writes to cache blocks until they have
been invalidated in other cachesbeen invalidated in other caches

37

More on Constant CachingMore on Constant Caching
• Each SM has its own L1

cache Gridcache
– Low latency, high bandwidth

access by all threads

• However there is no

Block (0, 0)

Shared Memory/L1 cache

Block (1, 0)

Shared Memory/L1 cacheHowever, there is no
way for threads in
one SM to update the
L1 cache in other

Shared Memory/L1 cache

Registers Registers

Shared Memory/L1 cache

Registers Registers

L1 cache in other
SMs
– No L1 cache Global Memory

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

Host

coherence Constant Memory

This is not a problem if a variable is NOT modified by a kernel

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2011

This is not a problem if a variable is NOT modified by a kernel.

38

Reduction Trees

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 39

Partition and Summarize
• A commonly used strategy for processing

large input data setslarge input data sets
– There is no required order of processing elements

in a data set (associative and commutative)
Partition the data set into smaller ch nks– Partition the data set into smaller chunks

– Have each thread to process a chunk
– Use a reduction tree to summarize the results

from each chunk into the final answer
• We will focus on the reduction tree step for

nownow
• Google and Hadoop MapReduce frameworks

are examples of this patternp p

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 40

Reduction enables other
h itechniques

• Reduction is also needed to clean up afterReduction is also needed to clean up after
some commonly used parallelizing
transformations

• Privatization
– Multiple threads write into an output location
– Replicate the output location so that each thread

has a private output locationhas a private output location
– Use a reduction tree to combine the values of

private locations into the original output locationp g p

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 41

What is a reduction computationWhat is a reduction computation
• Summarize a set of input values into one

l i “ d ti ti ”value using a “reduction operation”
– Max

Mi– Min
– Sum

Product– Product
– Often with user defined reduction operation

function as long as the operationfunction as long as the operation
• Is associative and commutative
• Has a well-defined identity value (e.g., 0 for sum)

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 42

A sequential reduction algorithm
f N i O(N)performs N operations - O(N)

• Initialize the result as an identity value for theInitialize the result as an identity value for the
reduction operation
– Smallest possible value for max reduction
– Largest possible value for min reduction
– 0 for sum reduction

1 f d d i– 1 for product reduction

• Scan through the input and perform the• Scan through the input and perform the
reduction operation between the result value
and the current input valueand the current input value

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 43

A parallel reduction tree algorithm
performs N-1 Operations in log(N) stepsperforms N-1 Operations in log(N) steps

3 1 7 0 4 1 6 3

max maxmaxmax

3 7 4 6

maxmax

7 6

ma

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

max

7
44

A tournament is a reduction tree
i h “ ” iwith “max” operation

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 45

A Quick AnalysisA Quick Analysis

• For N input values, the reduction tree performs
– (1/2)N + (1/4)N + (1/8)N + … (1/N) = (1- (1/N))N = N-1

operations
– In Log (N) steps – 1 000 000 input values take 20 steps– In Log (N) steps – 1,000,000 input values take 20 steps

• Assuming that we have enough execution resources

– Average Parallelism (N-1)/Log(N))
F N 1 000 000 ll li i 50 000• For N = 1,000,000, average parallelism is 50,000

• However, peak resource requirement is 500,000!

• This is a work-efficient parallel algorithmp g
– The amount of work done is comparable to sequential
– Many parallel algorithms are not work efficient

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 46

A Sum Reduction ExampleA Sum Reduction Example
• Parallel implementation:

Recursively halve # of threads add two values per thread– Recursively halve # of threads, add two values per thread
in each step

– Takes log(n) steps for n elements, requires n/2 threads

• Assume an in-place reduction using shared memory
– The original vector is in device global memory

The shared memory is used to hold a partial sum vector– The shared memory is used to hold a partial sum vector
– Each step brings the partial sum vector closer to the sum
– The final sum will be in element 0

R d l b l t ffi d t ti l l– Reduces global memory traffic due to partial sum values

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 47

Some Observations
• In each iteration, two control flow paths will be sequentially

traversed for each warpp
– Threads that perform addition and threads that do not
– Threads that do not perform addition still consume execution

resources

• No more than half of threads will be executing after the
first stepfirst step
– All odd index threads are disabled after first step
– After the 5th step, entire warps in each block will fail the if test, poor

resource utilization but no divergence.resource utilization but no divergence.
• This can go on for a while, up to 5 more steps (1024/32=16= 25),

where each active warp only has one productive thread until all warps
in a block retire

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 48

Thread Index Usage MattersThread Index Usage Matters

• In some algorithms, one can shift the indexIn some algorithms, one can shift the index
usage to improve the divergence behavior
– Commutative and associative operators

• Example - given an array of values, “reduce”
them to a single value in parallel

– Sum reduction: sum of all values in the array
M d i i f ll l i h– Max reduction: maximum of all values in the
array

– …

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 49

A Better StrategyA Better Strategy

• Always compact the partial sums into theAlways compact the partial sums into the
first locations in the partialSum[] array

• Keep the active threads consecutive

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 50

An Example of 16 threads
Thread 0

An Example of 16 threads
Thread 1 Thread 2 Thread 14 Thread 15

0 1 2 3 … 13 1514 181716 19

0+16 15+31

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 51

A Better Reduction KernelA Better Reduction Kernel

f (i d i t t id bl kDi /2for (unsigned int stride = blockDim.x/2;
stride >= 1; stride >>= 1)

{{
__syncthreads();
if (t < stride)

partialSum[t] += partialSum[t+stride];
}

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 52

A Quick AnalysisA Quick Analysis

• For a 1024 thread blockFor a 1024 thread block
– No divergence in the first 5 steps

1024 512 256 128 64 32 consecutive– 1024, 512, 256, 128, 64, 32 consecutive
threads are active in each step

– The final 5 steps will still have divergence– The final 5 steps will still have divergence

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 53

Parallel Algorithm OverheadParallel Algorithm Overhead
__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;
unsigned int start = 2*blockIdx.x*blockDim.x;
partialSum[t] = input[start + t];partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start+ blockDim.x+t];
for (unsigned int stride = blockDim.x/2;

stride >= 1; stride >>= 1)stride >= 1; stride >>= 1)
{
__syncthreads();
if (t < t id)if (t < stride)

partialSum[t] += partialSum[t+stride];
}

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 54

Parallel Algorithm OverheadParallel Algorithm Overhead
__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;
unsigned int start = 2*blockIdx.x*blockDim.x;
partialSum[t] = input[start + t];partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start+ blockDim.x+t];
for (unsigned int stride = blockDim.x/2;

stride >= 1; stride >>= 1)stride >= 1; stride >>= 1)
{
__syncthreads();
if (t < t id)if (t < stride)

partialSum[t] += partialSum[t+stride];
}

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 55

Parallel Execution OverheadParallel Execution Overhead

• Although the number of “operations” is N,Although the number of operations is N,
each operation involves much more
complex address calculation and p
intermediate result manipulation

• If the parallel code is executed on a single-
thread hardware, it would be significantly g y
slower than the code based on the original
sequential algorithm

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 56

Parallel Prefix Sum (Scan)Parallel Prefix Sum (Scan)

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 57

Objective

• Prefix Sum (Scan) algorithms
– frequently used for parallel work assignment and

resource allocation

A key primitive in many parallel algorithms to covert– A key primitive in many parallel algorithms to covert
serial computation into parallel computation

– Based on reduction tree and reverse reduction treeBased on reduction tree and reverse reduction tree

• Additional reading –Mark Harris Parallel PrefixAdditional reading Mark Harris, Parallel Prefix
Sum with CUDA

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 58

(Inclusive) Prefix-Sum (Scan)
D fi itiDefinition

Definition: The all prefix sums operation takes a binaryDefinition: The all-prefix-sums operation takes a binary
associative operator , and an array of n elements

[x0, x1, …, xn-1],

and returns the array

[x0, (x0 x1), …, (x0 x1 … xn-1)].

Example: If is addition then the all prefix sums operationExample: If is addition, then the all-prefix-sums operation
on the array [3 1 7 0 4 1 6 3],
would return [3 4 11 11 15 16 22 25].

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 59

A Inclusive Scan Application
E lExample

• Assume that we have a 100-inch sausage to feed g
10 people

• We know how much each person wants in inches
– [3 5 2 7 28 4 3 0 8 1]– [3 5 2 7 28 4 3 0 8 1]

• How do we cut the sausage quickly?
• How much will be left

• Method 1: cut the sections sequentially: 3 inches
first 5 inches second 2 inches third etcfirst, 5 inches second, 2 inches third, etc.

• Method 2: calculate Prefix scan
– [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 60

A Inclusive Sequential Prefix-SumA Inclusive Sequential Prefix Sum

Given a sequence [x0, x1, x2, ...]Given a sequence [x0, x1, x2, ...]
Calculate output [y0, y1, y2, ...]

Such that y0 = x0

y1 = x0 + x1

y2 = x0 + x1+ x2

…

Using a recursive definition
yi = yi − 1 + xi

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 61

A Work Efficient C ImplementationA Work Efficient C Implementation

y[0] = x[0];y[0] x[0];
for (i = 1; i < Max_i; i++)

[i] [i 1] [i]y[i] = y [i-1] + x[i];

Computationally efficient:Computationally efficient:

N additions needed for N elements - O(N)

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 62

A Naïve Inclusive Parallel ScanA Naïve Inclusive Parallel Scan

• Assign one thread to calculate each yAssign one thread to calculate each y
element

• Have every thread to add up all x elements• Have every thread to add up all x elements
needed for the y element

y = xy0 = x0

y1 = x0 + x1

y2 = x0 + x1+ x2

• After the ith iteration yi contains its final value

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 63

Simple Inclusive Parallel Scan
__global__ void work_inefficient_scan_kernel(float

*X, float *Y, int InputSize)
{{

__shared__ float XY[SECTION_SIZE];

int i = blockIdx.x*blockdim.x + threadIdx.x;
if(i<Inputsize){

XY[threadIdx.x] = X[i];
}

for(int stride =1; stride <= threadIdx.x; stride *=2)
{

syncthreads();__syncthreads();
XY[threadIdx.x] += XY[threadIdx.x-stride];

}
}

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 64

}

Simple Inclusive Parallel Scan

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 65

Work Efficiency Considerations
• Total amount of work: (N-stride) for stride=1, 2,

4, … , N/2
T t l l N t– Total logN terms

• Total amount of work: NlogN - (N-1)

• Sequential code: N-1

• For 1024 elements, GPU code performs 9 times
more operations

“Parallel programming is easy as long as you do not
care about performance.”

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 66

Let’s Look at the Reduction Tree Again

3 1 7 0 4 1 6 3

+ +++

4 7 5 9

++

11 14

+

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

25

Work-Efficient Parallel Scans
• Reuse intermediate results
• Distribute them to different threadsDistribute them to different threads

• Reduction tree can generate sum of N• Reduction tree can generate sum of N
numbers in logN steps

• Also generates number of useful sub-sumsAlso generates number of useful sub sums

• Two step algorithmTwo step algorithm
– Reduction scan
– Partial sum distribution using reverse treeg

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 68

Reduction Scan Step
x x x x x xx xx0 x3 x4 x5 x6 x7x1 x2

+ + + +

∑x0..x1 ∑x2..x3 ∑x4..x5 ∑x6..x7Time

+ ++ +

∑x0..x3
∑x4..x7

+

∑
In place calculation

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

∑x0..x7Final value after reduce

Reduction Scan Stepp

• First step: modify
elements at odd

x0 x3 x4 x5 x6 x7x1 x2

elements at odd
indexes

• Second step:
+ + + +

∑x0..x1 ∑x2..x3 ∑x4..x5 ∑x6 x7Timep
modify elements
at 4n-1

• Third step: modify
+ +

4.. 5 ∑ 6.. 7

• Third step: modify
elements at 8n-1

• …
+

∑x0..x3
∑x4..x7

∑x0 x7
In place calculation …

• Total ops:
N/2+N/4+… = N-1

∑x0..x7Final value after reduce

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 70

Reduction Scan Step:
Simple KernelSimple Kernel

for(int stride =1; stride <= BlockDim.x; stride *=2)
{{

__syncthreads();
if((threadIdx.x+1)%(2*stride) ==0){

XY[threadIdx.x] += XY[threadIdx.x-stride];
}

}

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 71

Reduction Scan Step:
Less Di ergent KernelLess Divergent Kernel

for(int stride =1; stride <= BlockDim.x; stride *=2)
{{

__syncthreads();
int index = (threadIdx.x+1)*2*stride-1;
if(index < blockDim.x){

XY[index] += XY[index-stride];
}

}

Uses consecutive threads for computation

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 72

Inclusive Post Scan Step
x0 x4 x6x2∑x0..x1 ∑x4..x5∑x0..x3 ∑x0..x7

+

∑x0..x5

Move (add) a critical valu e to a
central location where it is

d dneeded

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 73

Inclusive Post Scan Step

• After reduction, XY[2n-1] contain final
lvalues

• Largest gap between middle and last
l t f i telements of input

– Assume N is power of 2

N d ddi i d fi l l• Need one addition to produce final value at
the midpoint of this gap
I h l b fi l• In the next step, largest gap between final
values is half the previous gap, etc.

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 74

Putting it Together

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

75

Putting it together

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Post Scan Step: Kernel

for(int stride=SECTION_SIZE/4; stride > 0;
t id / 2){

p

stride /=2){
__syncthreads();
int index = (threadIdx.x+1)*2*stride-1;
if(index+stride < SECTION SIZE){if(index+stride < SECTION_SIZE){

XY[index+stride] += XY[index];
}

}}
__syncthreads();

Y[i] = XY[threadIdx.x];
}

At each iteration, push the value from a position in XY that is a multiple of

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 77

stride -1 to a position that is stride away

Efficiency Analysis

• Total operations for post scan step:
N/2+N/4+…+4+2-1 < N-2

• Grand total: 2N-3

• Compared to:• Compared to:
– N-1 for sequential implementation

Nl N f ï ll l i l t ti– NlogN for naïve parallel implementation

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 78

(Exclusive) Prefix-Sum (Scan)
D fi itiDefinition

Definition: The all-prefix-sums operation takes a binary associativeDefinition: The all-prefix-sums operation takes a binary associative
operator , and an array of n elements

[a0, a1, …, an-1],

and returns the array

[0, a0, (a0 a1), …, (a0 a1 … an-2)].

Example: If is addition then the all-prefix-sums operation onExample: If is addition, then the all prefix sums operation on
the array [3 1 7 0 4 1 6 3],
would return [0 3 4 11 11 15 16 22].

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 79

Why Exclusive ScanWhy Exclusive Scan

• To find the beginning address of allocated buffers

• Inclusive and Exclusive scans can be easily
d i d f h th it i tt fderived from each other; it is a matter of
convenience

[3 1 7 0 4 1 6 3][3 1 7 0 4 1 6 3]

Exclusive [0 3 4 11 11 15 16 22]Exclusive [0 3 4 11 11 15 16 22]

Inclusive [3 4 11 11 15 16 22 25]

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 80

Applications of ScanApplications of Scan
• Scan is a simple and useful parallel building

block for many parallel algorithms:block for many parallel algorithms:

• Radix sort
•

• Polynomial evaluation
•• Quicksort

• String comparison
• Lexical analysis

• Solving recurrences
• Tree operations
• Histogramsy

• Stream compaction
• Run-length encoding

g
• Allocation
• Etc.

• Scan is unnecessary in sequential computing!

81

Other ApplicationsOther Applications

• Assigning camp slotsAssigning camp slots

• Assigning farmer market space

All i ll l h d• Allocating memory to parallel threads

• Allocating memory buffer for
communication channels

• …

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 82

