CS 677 Parallel Programming for
Many-core Processors
Lecture 6

Instructor: Philippos Mordohai

Webpage: www.cs.stevens.edu/” mordohai
E-mail: Philippos.Mordohai@stevens.edu

Overview

e Parallel Patterns: Convolution
— Constant memory
— Cache

« Parallel Patterns: Reduction Trees
« Parallel Patterns: Parallel Prefix Sum (Scan)

Convolution, Constant Memory and
Constant Caching

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2011

Convolution

* Array operation where each output is a
weighted sum of a collection of
neighboring input elements

 Weights are defined in a mask array a.k.a.
convolution kerne/

1D Convolution

W MU R W] W] N MY NE]

BA PRI MH] X ML B

——

F A0 Pl Fl2] F& PE) FIE FIE

1D Convolution

P Fi0l A1 F] PIE PR F[5] Fig]

MW MU HI1] NHIZ] N Ng] NHIE] HE

M K 1] A] w\

— DEEET]

1D Convolution - Boundary Condition

M W M) g2 N[E) NR N M P ppy P PR P PRI PR
" RN - [« |

Filed in
I¥ VRIINCT] LR TNEY Lgd]

-

Simple Kernel

__global ___ void convolution_1d basic(float *N, float *M,
float *P, i1int mask width, int width){

int 1 = blockldx.x*blockDIm.x+threadldx.x;

float Pvalue = O;
Int N_start = i1-(mask_width/2);
for(int jJ=0; j< mask width; j++){
IT(N_start +jJ >=0 && N_start+j < width){
Pvalue += N[N_start+j]*M[j];
+

+
P[1] = Pvalue;

N 2D Convolution - Ipside Cells

—>

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498a
University of Illinois, 2007-2011

2D Convolution - GFu)host Cells

ghost cells

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2011

10

Access Pattern for M

 Mis referred to as mask (a.k.a. kernel, filter, etc.)

— Elements of M are called mask (kernel, filter)
coefficients

Calculation of all output P elements need M
M is not changed during kernel

Bonus - M elements are accessed in the same
order when calculating all P elements

M is a good candidate for Constant Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2011

How to Use Constant Memory

 Host code allocates, initializes variables the same
way as any other variables that need to be copied
to the device

 Use cudaMemcpyToSymbol (dest,src,size)
to copy the variable into the device memory

— Declare _ _const __ float M[MASK_WIDTH Jfirst

* This copy function tells the device that the variable
will not be modified by the kernel and can be safely

cached

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2011

Kernel using Constant Memory

__const___ float Mc[MASK_WIDTH]

__global __ void convolution_1d basic(float *N,
float *P, int mask width, int width){

iInt 1 = blockldx.x*blockDIm.x+threadldx.x;

float Pvalue = 0O;
Int N_start = i1-(mask_width/2);
for(int J=0; j< mask width; j++){
IT(N_start +j >=0 && N _start+j < width){
Pvalue += N[N _start+j]*Mc[]];
T
ks
P[1] = Pvalue;
ks

cudaMemcpyToSymbol (Mc, M, mask width *sizeof(float));

Using Shared Memory

 Elements of the input vector are used in
multiple computations

e Opportunity to use shared memory

e Shared memory tile must be larger than
mask!

Using Shared Memory

N_ds in shared memory contains 8 elements

89101112131415]5

Mask_Width is 5

e For Mask Width = 5, we load 8+5-1 =12
elements (12 memory loads)

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012 15

Each Output uses 5 Input Elements

N_ds

12 | 13 | 14 | 15 l

Mask_Width is 5

8 191101112 | 13|14) 15

P[8] uses N[6], N[7], N[8], N[9], N[10]
P[9] uses N[7], N[8], N[9], N[10], N[11]
P[10] uses N[8], N[9], N[10], N[11], N[12]

.I5[14] uses N[12], N[13], N[14], N[15],N[16]
P[15] uses N[13], N[14], N[15], N[16], N[17]

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al 16
University of Illinois, 2007-2012

Benefits from Tiling

e (8+5-1)=12 elements loaded

* 8*5 global memory accesses replaced by
shared memory accesses

* This gives a bandwidth reduction of
40/12=3.3

David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
versity of Illinois, 2007-2012

c o
=3

Benefits from Tiling

e Tile Width + Mask Width -1 elements
loaded

e Tile_Width * Mask_Width global memory
accesses replaced by shared memory
access

e This gives a reduction of bandwidth by

(Tile_Width *Mask_Width)/(Tile_Width+Mask_Width-1)

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

Another Way to Look at Reuse

9

ZZZ.Z.Z

12

13

14

15

Mask Width is 5

10

11

12

13

14

15

6] is used by P[
/]
8] is used by P

Is used by P

Is used by PJ

23 0 &0 %0

(1X)

, P[9
, P[9],
' Plo

9]

9] (2X)

P[10] (3X)
, P[10], P[11] (4X)

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

10] is used by P[8], P[9], P[10], P[11], P[12] (5X)

. (5X)
N[14] is uses by P[12], P[13], P[14], P[15] (4X)
N[15] is used by P[13], P[14], P[15] (3X)

Another Way to Look at Reuse

* The total number of global memory accesses
(to the (8+5-1)=12 N elements) replaced by
shared memory accesses is

1+2+3+4+57(8-5+1)+4+3+2+ 1
=10+ 20+ 10

=40
So the reduction is

40/12 = 3.3

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

Ghost Elements

 For a boundary tile, we load Tile_Width +
(Mask_Width-1)/2 elements

— 10 in our example of Tile_Width =8 and
Mask Width=5

« Computing boundary elements does not
access global memory for ghost cells

— Total accesses is 3 + 4+ 6*5 = 37 accesses

The reduction is 37/10 = 3.7

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

In General for 1D

* The total number of global memory accesses to
the (Tile_Width+Mask_Width-1) N elements
replaced by shared memory accesses is

1+ 2+ ..+ Mask Width-1+ Mask_Width *
(Tile_Width -Mask_Width+1) + Mask_Width-1+... + 2

+1

= (Mask_Width-1) *Mask_Width+
Mask_Width*(Tile_Width-Mask_Width+1)

= Mask_Width*(Tile_Width)

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

Bandwidth Reduction in 1D

e The reduction iIs
Mask_Width * (Tile_Width)/(Tile_Width+Mask_Size-1)

T R T T

Reduction
Mask_ Width = 5

Reduction 6.0 7.2 8.0 8.5 8.7
Mask Width =9

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012 23

2D Output Tiling and Indexing

 Use a thread block to calculate a tile of P

— Each output tile is of TILE_SIZE for both x and y
col_o =Dblockldx.x * TILE_WIDTH + tx;

blockldx.y*TILE_WIDTH + ty;

row_o

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al

University of Illinois, 2007-2012 24

Halo Elements

Output Tile

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al

University of Illinois, 2007-2012

Mask_Width = 5

< |nput Tile

25

© Davi
U

8x8 Output Tile

12X12=144 N elements need to be loaded
into shared memory

The calculation of each P element needs
to access 25 N elements

8X8X25 = 1600 global memory accesses
are converted into shared memory
accesses

A reduction of 1600/144 = 11X

id Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al

niversity of Illinois, 2007-2012

In General for 2D

e (Tile_Width+Mask_Width-1)? N elements
need to be loaded into shared memory

 The calculation of each P element needs to
access Mask Width? N elements

« Tile_Width? * Mask_Width? global memory
accesses are converted into shared memory
accesses

e The reduction is

Tile_Width? * Mask_Width?/
(Tile_Width+Mask_Width-1)2

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

Bandwidth Reduction in 2D

e The reduction iIs

Tile_ Width2 * Mask_Width?/
(Tile_Width+Mask_Width-1)2

IR N R N

Reduction 19.7 22.1
Mask_Width = 5
Reduction 20.3 36 51.8 64

Mask_Width = 9

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2012

28

Programmer View of CUDA Memories

(Review)
e Each thread can: —
— Read/write per-thread
registers (1 cycle) Block (0, 0) Block (1, 0)

Read/write per-block shared
memory (T5 cycles)

Read/write per-grid global
memory (7500 cycles)

Read/only per-grid constant

memory (T5 cycles
with caching)

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2011

Host

>

¢ Constant Memory

|

Thread (0, 0)| Thread (1, 0)| | Thread (0, 0) | Thread (1, 0)

4 4 4 4

29

Memory Hierarchies

e If every time we needed a piece of data,
we had to go to main memory to get it,

computers would take a lot longer to do
anything

* On today’s processors, main memory
accesses take hundreds of cycles

e One solution: Caches

© David Kirk/NVIDIA and Wen-mei Hwu, Barcelona, Spain,July 18-22 2011

Cache

* In order to keep cache fast, it needs to be
small, so we cannot fit the entire data set
In it

The chip

L1 Cache

© David Kirk/NVIDIA and Wen-mei Hwu, Barcelona, Spain,July 18-22 2011

31

Cache

e Cache is unit of volatile memory storage
* A cache is an "array” of cache lines

 Cache line can usually hold data from several
consecutive memory addresses

 When data is requested from memory, an
entire cache line is loaded into the cache, In
an attempt to reduce main memory requests

© David Kirk/NVIDIA and Wen-mei Hwu, Barcelona, Spain,July 18-22 2011

Caches

Some definitions:

— Spatial locality: is when the data elements
stored in consecutive memory locations are
access consecutively

— Temporal locality: is when the same data
element is accessed multiple times in short
period of time

* Both spatial locality and temporal locality
improve the performance of caches

© David Kirk/NVIDIA and Wen-mei Hwu, Barcelona, Spain,July 18-22 2011

Scratchpad vs. Cache

o Scratchpad (shared memory in CUDA) is
another type of temporary storage used to
relieve main memory contention.

* |n terms of distance from the processor,
scratchpad is similar to L1 cache.

 Unlike cache, scratchpad does not
necessarily hold a copy of data that is In
main memory

* |t requires explicit data transfer instructions,
whereas cache does not

© David Kirk/NVIDIA and Wen-mei Hwu, Barcelona, Spain,July 18-22 2011

Cache Coherence Protocol

* A mechanism for caches to propagate updates by
their local processor to other caches (processors)

The chip

L1 Cache L1 Cache L1 Cache

S

© David Kirk/NVIDIA and Wen-mei Hwu, Barcelona, Spain,July 18-22 2011
35

CPU and GPU have different
caching philosophy

« CPU L1 caches are usually coherent
— L1 is also replicated for each core

— Even data that will be changed can be cached In
L1

— Updates to local cache copy invalidate (or less
commonly update) copies in other caches

— Expensive in terms of hardware and disruption of
services (cleaning bathrooms at airports..)

 GPU L1 caches are usually incoherent
— Avoid caching data that will be modified

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2011

GPU Cache Coherence

e Current CUDA implementation:

— Provides coherence by disabling L1 cache
after writes

— There is room for improvement

e Custom implementations

— Temporal coherence: invalidates cache using
synchronized counters without message
passing

— Stall writes to cache blocks until they have
been invalidated in other caches

More on Constant Caching

e Each SM has its own L1
cache

— Low latency, high bandwidth
access by all threads

e However, there is no ﬂ ﬂ
way for threads in
one SM to update the ’ ’ ’ ’

Grid

Block (0, 0) Block (1, 0)

L1 CaChe |n Other Thread (0, 0)| | Thread (1, 0)|| | Thread (0, 0)| | Thread (L, 0)
SMs 7S 7S 7S 7S
— No L1 cache e sty T

ohers - T

This is not a problem if a variable is NOT modified by a kernel.

© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al
University of Illinois, 2007-2011 38

Reduction Trees

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Partition and Summarize

A commonly used strategy for processing
large input data sets

— There is no required order of processing elements
In a data set (associative and commutative)

— Partition the data set into smaller chunks
— Have each thread to process a chunk

— Use a reduction tree to summarize the results
from each chunk into the final answer

* We will focus on the reduction tree step for
Now

e Google and Hadoop MapReduce frameworks
are examples of this pattern

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Reduction enables other
techniques

Reduction is also needed to clean up after
some commonly used parallelizing
transformations

* Privatization
— Multiple threads write into an output location
— Replicate the output location so that each thread
has a private output location

— Use a reduction tree to combine the values of
private locations into the original output location

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

What Is a reduction computation

e« Summarize a set of input values into one
value using a “reduction operation”
— Max
— Min
—Sum
— Product

— Often with user defined reduction operation
function as long as the operation
* Is associative and commutative
e Has a well-defined identity value (e.g., 0 for sum)

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

A sequential reduction algorithm
performs N operations - O(N)

* |nitialize the result as an identity value for the
reduction operation
— Smallest possible value for max reduction
— Largest possible value for min reduction
— 0 for sum reduction
— 1 for product reduction

o Scan through the input and perform the
reduction operation between the result value
and the current input value

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

A parallel reduction tree algorithm
performs N-1 Operations in log(N) steps

3 1 7 0 4 1 6 3

N_ N N __ N

‘)—
—> <«
© David Kirk/NVIDIA and Wen-mei W. Hwu 7
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 44

A tournament is a reduction tree
with “max” operation

QUARTER FINALS

SEMI FINALS

mm‘ QUARTER FINALS
; Q4 ‘

03 Jul (16:00 / 10:00)
Cape Town

06 Jul (20:30 / 14:30) 07 Jul {20:30 / 14:30)
Cape Town Durban

m | 11 Jul (20:30 / 14:30) ﬂ]

02 Jul (16:00 / 10:00)
Melson Mandela Bay/
Fort Elizabeth

Johannesburg
02 Jul (20:30 / 14:30) |_ —|

03 Jul (20:30 / 14:30)
Johannesburg

Johannesburg

© David Kirk/NVIDIA and Wen-mei W. Hwu

ECE408/CS483/ECE498al, University of Illinois, 2007-2011 45

A Quick Analysis

 For N input values, the reduction tree performs
— (1/2)N + (1/4)N + (1/8)N + ... (1/N) = (1- (1/N))N = N-1
operations
— In Log (N) steps - 1,000,000 input values take 20 steps

e Assuming that we have enough execution resources

— Average Parallelism (N-1)/Log(N))
 For N = 1,000,000, average parallelism is 50,000
 However, peak resource requirement is 500,000!

* This is a work-efficient parallel algorithm
— The amount of work done is comparable to sequential
— Many parallel algorithms are not work efficient

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

A Sum Reduction Example

o Parallel implementation:

— Recursively halve # of threads, add two values per thread
In each step

— Takes log(n) steps for n elements, requires n/2 threads

 Assume an in-place reduction using shared memory
— The original vector is in device global memory
— The shared memory is used to hold a partial sum vector
— Each step brings the partial sum vector closer to the sum
— The final sum will be in element O
— Reduces global memory traffic due to partial sum values

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Some Observations

* In each iteration, two control flow paths will be sequentially

traversed for each warp
— Threads that perform addition and threads that do not
— Threads that do not perform addition still consume execution
resources

 No more than half of threads will be executing after the

first step
— All odd index threads are disabled after first step
— After the 5™ step, entire warps in each block will fail the if test, poor

resource utilization but no divergence.

e This can go on for a while, up to 5 more steps (1024/32=16= 2°),
where each active warp only has one productive thread until all warps

in a block retire

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Thread Index Usage Matters

* |n some algorithms, one can shift the index
usage to improve the divergence behavior

— Commutative and associative operators

 Example - given an array of values, “reduce’
them to a single value in parallel
— Sum reduction: sum of all values in the array

— Max reduction: maximum of all values in the
array

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

A Better Strategy

* Always compact the partial sums into the
first locations in the partialSum|[] array

o Keep the active threads consecutive

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

An Example of 16 threads

Thread 0 Thread 1 Thread 2 Thread 14 Thread 15

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of lllinois, 2007-2011 51

A Better Reduction Kernel

for (unsigned Int stride = blockDim.x/2;
stride >= 1; stride >>= 1)
{
___syncthreads();
1T (t < stride)
partialSum[t] += partialSum[t+stride];

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011 52

A Quick Analysis

e Fora 1024 thread block

— No divergence in the first 5 steps

— 1024, 512, 256, 128, 64, 32 consecutive
threads are active in each step

— The final 5 steps will still have divergence

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Parallel Algorithm Overhead

__shared _ float partialSum|[2*BLOCK SIZE];

unsigned int t = threadldx.Xx:

unsigned Int start = 2*blockldx.x*blockDim.x;
partialSum[t] = 1nput[start + t];
partialSum[blockDim+t] = input[start+ blockDim.x+t];

Tor (unsigned 1nt stride = blTockDim.x/Z;
stride >= 1; stride >>= 1)
{
__syncthreads();
IT (t < stride)
partialSum[t] += partialSum[t+stride];

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Parallel Algorithm Overhead

__shared _ float partialSum|[2*BLOCK SIZE];

unsigned Int t = threadldx.X;

unsigned Int start = 2*blockldx.x*blockDim.x;
partialSum[t] = 1nput[start + t];
partialSum[blockDim+t] = input[start+ blockDim.x+t];

for (unsigned Int stride = blockDim.x/2;
stride >= 1; stride >>= 1)
{
__syncthreads();
IT (t < stride)
partialSum[t] += partialSum[t+stride];

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Parallel Execution Overhead

e Although the number of “operations” is N,
each operation involves much more
complex address calculation and
intermediate result manipulation

o If the parallel code is executed on a single-
thread hardware, it would be significantly
slower than the code based on the original
sequential algorithm

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Parallel Prefix Sum (Scan)

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Objective

* Prefix Sum (Scan) algorithms

— frequently used for parallel work assignment and
resource allocation

— A key primitive in many parallel algorithms to covert
serial computation into parallel computation

— Based on reduction tree and reverse reduction tree

 Additional reading -Mark Harris, Parallel Prefix
Sum with CUDA

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

(Inclusive) Prefix-Sum (Scan)
Definition

Definition: The all-prefix-sums operation takes a binary
associative operator @, and an array of n elements
[Xgs Xqs s X 4],

and returns the array
X, (X D Xq), s (gD Xy D ... D X 4)]

Example: If @ is addition, then the all-prefix-sums operation
on the array 317 04 1 6 3]
would return [3 411111516 22 23].

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

A Inclusive Scan Application

Example

Assume that we have a 100-inch sausage to feed
10 people

We know how much each person wants in inches
—-[35 2 7 284 30 8 1]

How do we cut the sausage quickly?

How much will be left

Method 1: cut the sections sequentially: 3 inches
first, 5 inches second, 2 inches third, etc.

Method 2: calculate Prefix scan
- [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

A Inclusive Sequential Prefix-Sum

Given a sequence [X,, Xq, Xp, ...]
Calculate output e, V1> Voo ---]

Such that o= X
V1= X T X
Vo =X T X1 X

Using a recursive definition
J//. = J// 1 +)(/ .

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

A Work Efficient C Implementation
y[0] = X[0];
for (1 =

yLi] = [i—l] + x[1];

Computationally efficient:
N additions needed for N elements - O(N)

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

A Naive Inclusive Parallel Scan

« Assign one thread to calculate each y
element

 Have every thread to add up all x elements
needed for the y element

Jo = X
1= X% T X
Vo =X T X4t X
 After the it" iteration y, contains its final value

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Simple Inclusive Parallel Scan

__global voild work _inefficient _scan_kernel(float
*X, Float *Y, i1Int InputSize)

{
__shared _ float XY[SECTION_SIZE];

INt 1 = blockldx.x*blockdim.x + threadldx.Xx;
1T(1<Inputsize){
XY[threadldx.x] = X[1];

by
for(int stride =1; stride <= threadldx.x; stride *=2)
{
__syncthreads();
XY[threadldx.x] += XY[threadldx.x-stride];
by

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

X3 : ¥a Xy Xg Xp

Simple Inclusive Parallel Scan

Hox X4 Rig

ng Ny
1

Hl;]’ljl
1

1."11 .l'l_'J

Xxyq Xy ";:"1'5. LT

+)-+++-|E:}

LKy Kya

|";:-:“:-e.1

23y Ny

El"l:g Fqe

!
i

Ko ¥ e Ko W Yo ¥

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

o
=3
o
—
o
o
—
—
=
b
o
—
Lt
-
i
-
=

65

Work Efficiency Considerations

. ;Il'otal arréount of work: 2.(N-stride) for stride=1, 2,
ey N/

— Total logN terms
 Total amount of work: NlogN - (N-1)

e Sequential code: N-1

 For 1024 elements, GPU code performs 9 times
more operations

“Parallel programming is easy as long as you do not
care about performance.”

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Let’'s Look at the Reduction Tree Again

3 1 7 0 4 1 6 3

P4

A%
25

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Work-Efficient Parallel Scans

e Reuse intermediate results
e Distribute them to different threads

 Reduction tree can generate sum of N
numbers in logN steps

* Also generates number of useful sub-sums

 Two step algorithm
— Reduction scan
— Partial sum distribution using reverse tree

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Time

Reduction Scan Step

X0 X1
2 X0 X1

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

x2 X3 X4 X5 x6

2 Xy X3 2 X4 Xsg

. ~—
O %)

2 X0.X3

In place calculation

Final value after reduce |

EARAR:

X7

> Xg X7

7

4.X7

L

I 2 X0 X7

Reduction Scan Step

* First step: modify

elements at odd [|
Indexes \J@ \J@ \J@ \4)

e Second step: Time S0t sl | (S S

modify elements
at 4n-1 ﬂ \\@ -

e

 Third step: modify T, Yo

elements at 8n-1 \\\é

PY In place calculation

2 X0 X7

Final value after reduce

e Total ops:
N/2+N/4+... = N-1

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Reduction Scan Step:
Simple Kernel

for(int stride =1; stride <= BlockDim.x; stride *=2)
{
__syncthreads();
1IT((threadldx.x+1)%(2*stride) ==0){
XY[threadldx.x] += XY[threadldx.x-stride];

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Reduction Scan Step:
Less Divergent Kernel

for(int stride =1; stride <= BlockDim.x; stride *=2)
{
__syncthreads();
Int Index = (threadldx.x+1)*2*stride-1;
1IT(index < blockDim.x){
XY[1ndex] += XY[i1ndex-stride];
by
+

Uses consecutive threads for computation

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Inclusive Post Scan Step

Xo [2X0.X1| X2 |2XoX3| Xg [DXgX5| Xe |2Xg X7

2X0. X5

Move (add) a critical value to a
central location where 1t is
neefl ed

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Inclusive Post Scan Step

After reduction, XY[2"-1] contain final
values

Largest gap between middle and last
elements of input

— Assume N is power of 2

Need one addition to produce final value at
the midpoint of this gap

In the next step, largest gap between final
values is half the previous gap, etc.

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Putting it Together

{+\@ +“ﬁ+>ﬁ +>\a.._+(
e P %

i

NEUNE ?\@
E@ 4}9 %ﬂ ® k@)EB

e
=

/

|

/

|

‘_,)

\

Putting it together

LI
\@

Post Scan Step: Kernel

for(int stride=SECTION_SIZE/4; stride > O;
stride /=2){
__syncthreads();
Int 1ndex = (threadldx.x+1)*2*stride-1;
1f(index+stride < SECTION_SIZE){
XY[1index+stride] += XY[index];
by

by
__syncthreads();

Y[1] = XY[threadldx.x];
+

At each iteration, push the value from a position in XY that is a multiple of
stride -1 to a position that is stride away

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Efficiency Analysis

» Total operations for post scan step:
N/2+N/4+. +4+2-1 < N-2

e GGrand total: 2N-3

 Compared to:
— N-1 for sequential implementation
— NlogN for naive parallel implementation

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

(Exclusive) Prefix-Sum (Scan)
Definition

Definition: The all-prefix-sums operation takes a binary associative
operator @, and an array of n elements

la, a,, ..., a,],
and returns the array
[0, ap, (ap D ay), ..., (ap D a;, @ ... D a,)]

Example: If @ is addition, then the all-prefix-sums operation on
the array 317 041 6 3]
would return [0 3 411 111516 22].

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Why Exclusive Scan

* To find the beginning address of allocated buffers

 Inclusive and Exclusive scans can be easily
derived from each other; it is a matter of
convenience

3170416 3]
Exclusive [0 3 411 1115 16 22]

Inclusive [3 411 1115 16 22 25]

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

Applications of Scan

e Scan is a simple and useful parallel building
block for many parallel algorithms:

® Radix sort ® Polynomial evaluation
® Quicksort ® Solving recurrences

® String comparison ® Tree operations

® Lexical analysis ® Histograms

® Stream compaction ® Allocation

® Run-length encoding ® Etc.

e Scan is unnecessary in sequential computing!

Other Applications

» Assigning camp slots
* Assigning farmer market space
* Allocating memory to parallel threads

 Allocating memory buffer for
communication channels

© David Kirk/NVIDIA and Wen-mei W. Hwu
ECE408/CS483/ECE498al, University of Illinois, 2007-2011

