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OverviewOverview

• Parallel Patterns: ConvolutionParallel Patterns: Convolution
– Constant memory

Cache– Cache
• Parallel Patterns: Reduction Trees
• Parallel Patterns: Parallel Prefix Sum (Scan)
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Convolution, Constant Memory and 
Constant CachingConstant Caching
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ConvolutionConvolution

• Array operation where each output is aArray operation where each output is a 
weighted sum of a collection of 
neighboring input elementsneighboring input elements

• Weights are defined in a mask array a.k.a. 
convolution kernelconvolution kernel
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1D Convolution1D Convolution
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1D Convolution1D Convolution
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1D Convolution – Boundary Condition1D Convolution Boundary Condition
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Simple KernelSimple Kernel 
__global__ void convolution_1d_basic(float *N, float *M, 

float *P, int mask width, int width){, _ , ){

int i = blockIdx.x*blockDIm.x+threadIdx.x;

float Pvalue = 0;
int N_start = i-(mask_width/2);
for( int j=0; j< mask width; j++){o ( t j 0; j as _ dt ; j ){

if(N_start +j >=0 && N_start+j < width){
Pvalue += N[N_start+j]*M[j];

}}
}
P[i] = Pvalue;

}}
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2D Convolution – Inside Cells
N P
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2D Convolution – Ghost Cells
0 0 0 0 0 N P
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Access Pattern for MAccess Pattern for M

• M is referred to as mask (a.k.a. kernel, filter, etc.)( , , )
– Elements of M are called mask (kernel, filter) 

coefficients

C l l ti f ll t t P l t d M• Calculation of all output P elements need M
• M is not changed during kernel

• Bonus - M elements are accessed in the same 
order when calculating all P  elementsg

• M is a good candidate for Constant Memory
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How to Use Constant MemoryHow to Use Constant Memory

• Host code allocates, initializes variables the same 
way as any other variables that need to be copied 
to the device

• Use cudaMemcpyToSymbol(dest,src,size) 
to copy the variable into the device memory

D l t fl t M[MASK WIDTH]fi t– Declare __const__ float M[MASK_WIDTH]first

• This copy function tells the device that the variableThis copy function tells the device that the variable 
will not be modified by the kernel and can be safely 
cached
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Kernel using Constant Memory
__const__ float Mc[MASK_WIDTH]

__global__ void convolution_1d_basic(float *N, __ __ _ _
float *P, int mask_width, int width){

int i = blockIdx.x*blockDIm.x+threadIdx.x;

float Pvalue = 0;
int N_start = i-(mask_width/2);
for( int j=0; j< mask width; j++){for( int j 0; j< mask_width; j++){

if(N_start +j >=0 && N_start+j < width){
Pvalue += N[N_start+j]*Mc[j];

}
}
P[i] = Pvalue;

}
…
cudaMemcpyToSymbol(Mc, M, mask_width *sizeof(float));
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Using Shared MemoryUsing Shared Memory

• Elements of the input vector are used inElements of the input vector are used in 
multiple computations

• Opportunity to use shared memory• Opportunity to use shared memory

• Shared memory tile must be larger than 
mask!
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Using Shared MemoryUsing Shared Memory
N_ds in shared memory contains 8 elements

6 7 8 9 10 11 16 17

Mask Width is 5

12 13 14 15

Mask_Width is 5 

8 9 10 11 12 13 14 15

P

• For Mask Width = 5 we load 8+5-1 = 12For Mask_Width  5, we load 8+5 1  12 
elements (12 memory loads)

15
© David Kirk/NVIDIA and Wen-mei W. Hwu       ECE408/CS483/ECE498al 
University of Illinois, 2007-2012



Each Output uses 5 Input ElementsEach Output uses 5 Input Elements

6 7 8 9 10 11 16 17

N_ds

12 13 14 156 7 8 9 10 11 16 17

Mask_Width is 5 

12 13 14 15

P

• P[8] uses N[6], N[7], N[8], N[9], N[10]
P[9] N[7] N[8] N[9] N[10] N[11]

8 9 10 11 12 13 14 15

• P[9] uses N[7], N[8], N[9], N[10], N[11]
• P[10] uses N[8], N[9], N[10], N[11], N[12]
• …
• P[14] uses N[12], N[13], N[14], N[15],N[16]
• P[15] uses N[13], N[14], N[15], N[16], N[17]
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Benefits from TilingBenefits from Tiling

• (8+5-1)=12 elements loaded(8+5 1)=12 elements loaded

• 8*5 global memory accesses  replaced by 
shared memory accessesshared memory accesses

• This gives a bandwidth reduction of 
40/12 3 340/12=3.3
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Benefits from TilingBenefits from Tiling

• Tile Width + Mask Width -1 elementsTile_Width + Mask_Width 1 elements 
loaded

• Tile Width * Mask Width global memory• Tile_Width * Mask_Width global memory 
accesses replaced by shared memory 
accessaccess

• This gives a reduction of bandwidth by  

(Tile_Width *Mask_Width)/(Tile_Width+Mask_Width-1)

18
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Another Way to Look at ReuseAnother Way to Look at Reuse

6 7 8 9 10 11 16 17

N_ds

12 13 14 156 7 8 9 10 11 16 17

Mask_Width is 5 

12 13 14 15

P

• N[6] is used by P[8] (1X)
N[7] i d b P[8] P[9] (2X)

8 9 10 11 12 13 14 15

• N[7] is used by P[8], P[9] (2X)
• N[8] is used by P[8], P[9], P[10] (3X)
• N[9] is used by P[8], P[9], P[10], P[11] (4X)

N[10] i d b P[8] P[9] P[10] P[11] P[12] (5X)• N[10] is used by P[8], P[9], P[10], P[11], P[12] (5X)
• … (5X)
• N[14] is uses by P[12], P[13], P[14], P[15] (4X)
• N[15] is used by P[13], P[14], P[15] (3X)
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Another Way to Look at ReuseAnother Way to Look at Reuse

• The total number of global memory accessesThe total number of global memory accesses  
(to the (8+5-1)=12 N elements) replaced by 
shared memory accesses is

1 + 2 + 3 + 4 + 5 * (8-5+1) + 4 + 3 + 2 + 1
= 10 + 20 + 10= 10 + 20 + 10
= 40

So the reduction isSo the reduction is
40/12 = 3.3
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Ghost ElementsGhost Elements

• For a boundary tile, we load Tile Width +For a boundary tile, we load Tile_Width  
(Mask_Width-1)/2 elements
– 10 in our example of Tile_Width =8 and 

Mask_Width=5

C i b d l d• Computing boundary elements does not 
access global memory for ghost cells

Total accesses is 3 + 4+ 6*5 = 37 accesses– Total accesses is 3 + 4+ 6*5 = 37 accesses

The reduction is 37/10 = 3 7The reduction is 37/10 = 3.7
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In General for 1DIn General for 1D

• The total number of global memory accesses to g y
the (Tile_Width+Mask_Width-1)  N elements 
replaced by shared memory accesses is

1 + 2 + … + Mask_Width-1+ Mask_Width * 
(Tile_Width -Mask_Width+1) + Mask_Width-1+… + 2 
+ 1+ 1
= (Mask_Width-1) *Mask_Width+ 
Mask_Width*(Tile_Width-Mask_Width+1)

= Mask_Width*(Tile_Width)

22
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Bandwidth Reduction in 1DBandwidth Reduction in 1D

• The reduction isThe reduction is
Mask_Width * (Tile_Width)/(Tile_Width+Mask_Size-1)
TileWidth

Tile Width 16 32 64 128 256Tile_Width 16 32 64 128 256
Reduction
Mask_Width = 5

4.0 4.4 4.7 4.9 4.9

Reduction
Mask_Width = 9

6.0 7.2 8.0 8.5 8.7
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2D Output Tiling and Indexing2D Output Tiling and Indexing
• Use a thread block to calculate a tile of P

Each output tile is of TILE SIZE for both x and y– Each output tile is of TILE_SIZE for both x and y 
col_o = blockIdx.x * TILE_WIDTH + tx;

T
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Halo ElementsHalo Elements
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8x8 Output Tile8x8 Output Tile

• 12X12=144 N elements need to be loaded12X12=144 N elements need to be loaded 
into shared memory

• The calculation of each P element needs• The calculation of each P element needs 
to access 25 N elements

8X8X25 1600 l b l• 8X8X25 = 1600 global memory accesses 
are converted into shared memory 
accesses

• A reduction of 1600/144 = 11X
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In General for 2DIn General for 2D

• (Tile Width+Mask Width-1)2 N elements ( _ _ )
need to be loaded into shared memory

• The calculation of each P element needs to 
access Mask Width2 N elementsaccess Mask_Width2 N elements

• Tile_Width2 * Mask_Width2 global memory 
accesses are converted into shared memoryaccesses are converted into shared memory 
accesses

• The reduction is
Tile_Width2 * Mask_Width2 /
(Tile_Width+Mask_Width-1)2
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Bandwidth Reduction in 2DBandwidth Reduction in 2D

• The reduction isThe reduction is

Tile_Width2 * Mask_Width2 /
(Tile Width+Mask Width 1)2(Tile_Width+Mask_Width-1)2

Tile_Width 8 16 32 64
Reduction
Mask_Width = 5

11.1 16 19.7 22.1

Reduction
Mask_Width = 9

20.3 36 51.8 64
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Programmer View of  CUDA Memories
(R i )(Review)

• Each thread can: Grid
– Read/write per-thread 

registers (~1 cycle)

– Read/write per-block shared 
(~5 l )

Block (0, 0)

Shared Memory/L1 cache

Block (1, 0)

Shared Memory/L1 cachememory (~5 cycles)

– Read/write per-grid global 
memory (~500 cycles)

t t

Shared Memory/L1 cache

Registers Registers

Shared Memory/L1 cache

Registers Registers

– Read/only per-grid constant 
memory (~5 cycles 
with caching) Global Memory

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

Hostg)

Constant Memory
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Memory HierarchiesMemory Hierarchies

• If every time we needed a piece of dataIf every time we needed a piece of data, 
we had to go to main memory to get it, 
computers would take a lot longer to docomputers would take a lot longer to do 
anything

• On today’s processors main memory• On today s processors, main memory 
accesses take hundreds of cycles

• One solution: Caches

© David Kirk/NVIDIA and Wen-mei Hwu, Barcelona, Spain,July 18-22 2011
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Cache
• In order to keep cache fast, it needs to be 

ll fi h i dsmall, so we cannot fit the entire data set 
in it The chip

Processor

L1 Cache

regs

L1 Cache

L2 Cache

Main Memory
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CacheCache

• Cache is unit of volatile memory storagey g

• A cache is an “array” of cache lines

• Cache line can usually hold data from several 
ti ddconsecutive memory addresses

• When data is requested from memory an• When data is requested from memory, an 
entire cache line is loaded into the cache, in 
an attempt to reduce main memory requests

© David Kirk/NVIDIA and Wen-mei Hwu, Barcelona, Spain,July 18-22 2011
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CachesCaches

Some definitions:Some definitions:
– Spatial locality: is when the data elements 

stored in consecutive memory locations arestored in consecutive memory locations are 
access consecutively

– Temporal locality: is when the same dataTemporal locality: is when the same data 
element is accessed multiple times in short 
period of time

• Both spatial locality and temporal locality 
improve the performance of caches

© David Kirk/NVIDIA and Wen-mei Hwu, Barcelona, Spain,July 18-22 2011
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Scratchpad vs. Cachep
• Scratchpad (shared memory in CUDA) is 

another type of temporary storage used toanother type of temporary storage used to 
relieve main memory contention.

• In terms of distance from the processor• In terms of distance from the processor, 
scratchpad is similar to L1 cache.

• Unlike cache scratchpad does notUnlike cache, scratchpad does not 
necessarily hold a copy of data that is in 
main memoryy

• It requires explicit data transfer instructions, 
whereas cache does not
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Cache Coherence Protocol

• A mechanism for caches to propagate updates by 
their local processor to other caches (processors)their local processor to other caches (processors)

The chip
Processor

L1 Cache

regs
Processor

L1 Cache

regs
Processor

L1 Cache

regs…

L1 Cache L1 Cache L1 Cache

Main Memory
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CPU and GPU have different 
hi hil hcaching philosophy

• CPU L1 caches are usually coherenty
– L1 is also replicated for each core
– Even data that will be changed can be cached in 

L1L1
– Updates to local cache copy invalidate (or less 

commonly update) copies in other caches
– Expensive in terms of hardware and disruption of 

services (cleaning bathrooms at airports..)

• GPU L1 caches are usually incoherent
– Avoid caching data that will be modified
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GPU Cache CoherenceGPU Cache Coherence

• Current CUDA implementation:Current CUDA implementation:
– Provides coherence by disabling L1 cache 

after writes
– There is room for improvement

• Custom implementationsp
– Temporal coherence: invalidates cache using 

synchronized counters without message 
ipassing

– Stall writes to cache blocks until they have 
been invalidated in other cachesbeen invalidated in other caches
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More on Constant CachingMore on Constant Caching
• Each SM has its own L1 

cache Gridcache
– Low latency, high bandwidth 

access by all threads

• However there is no

Block (0, 0)

Shared Memory/L1 cache

Block (1, 0)

Shared Memory/L1 cacheHowever, there is no 
way for threads in 
one SM to update the 
L1 cache in other

Shared Memory/L1 cache

Registers Registers

Shared Memory/L1 cache

Registers Registers

L1 cache in other 
SMs
– No L1 cache Global Memory

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

Host

coherence Constant Memory

This is not a problem if a variable is NOT modified by a kernel
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Reduction Trees 
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Partition and Summarize
• A commonly used strategy for processing 

large input data setslarge input data sets
– There is no required order of processing elements 

in a data set  (associative and commutative)
Partition the data set into smaller ch nks– Partition the data set into smaller chunks

– Have each thread to process a chunk
– Use a reduction tree to summarize the results 

from each chunk into the final answer
• We will focus on the reduction tree step for 

nownow
• Google and Hadoop MapReduce frameworks 

are examples of this patternp p
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Reduction enables other 
h itechniques

• Reduction is also needed to clean up afterReduction is also needed to clean up after 
some commonly used parallelizing 
transformations

• Privatization
– Multiple threads write into an output location
– Replicate the output location so that each thread 

has a private output locationhas a private output location
– Use a reduction tree to combine the values of 

private locations into the original output locationp g p
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What is a reduction computationWhat is a reduction computation
• Summarize a set of input values into one 

l i “ d ti ti ”value using a “reduction operation”
– Max

Mi– Min
– Sum

Product– Product
– Often with user defined reduction operation 

function as long as the operationfunction as long as the operation
• Is associative and commutative
• Has a well-defined identity value (e.g., 0 for sum)
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A sequential reduction algorithm 
f N i O(N)performs N operations - O(N)

• Initialize the result as an identity value for theInitialize the result as an identity value for the 
reduction operation
– Smallest possible value for max reduction
– Largest possible value for min reduction
– 0 for sum reduction

1 f d d i– 1 for product reduction

• Scan through the input and perform the• Scan through the input and perform the 
reduction operation between the result value 
and the current input valueand the current input value
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A parallel reduction tree algorithm 
performs N-1 Operations in log(N) stepsperforms N-1 Operations in log(N) steps

3 1 7 0 4 1 6 3

max maxmaxmax

3 7 4 6

maxmax

7 6

ma
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A tournament is a reduction tree 
i h “ ” iwith “max” operation 
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A Quick AnalysisA Quick Analysis

• For N input values, the reduction tree performs
– (1/2)N + (1/4)N + (1/8)N + … (1/N) = (1- (1/N))N = N-1 

operations
– In Log (N) steps – 1 000 000 input values take 20 steps– In Log (N) steps – 1,000,000 input values take 20 steps

• Assuming that we have enough execution resources

– Average Parallelism (N-1)/Log(N))
F N 1 000 000 ll li i 50 000• For N = 1,000,000, average parallelism is 50,000

• However, peak resource requirement is 500,000!

• This is a work-efficient parallel algorithmp g
– The amount of work done is comparable to sequential
– Many parallel algorithms are not work efficient
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A Sum Reduction ExampleA Sum Reduction Example
• Parallel implementation:

Recursively halve # of threads add two values per thread– Recursively halve # of threads, add two values per thread 
in each step

– Takes log(n) steps for n elements, requires n/2 threads

• Assume an in-place reduction using shared memory
– The original vector is in device global memory

The shared memory is used to hold a partial sum vector– The shared memory is used to hold a partial sum vector
– Each step brings the partial sum vector closer to the sum
– The final sum will be in element 0

R d l b l t ffi d t ti l l– Reduces global memory traffic due to partial sum values
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Some Observations
• In each iteration, two control flow paths will be sequentially 

traversed for each warpp
– Threads that perform addition and threads that do not
– Threads that do not perform addition still consume execution 

resources

• No more than half of threads will be executing after the 
first stepfirst step
– All odd index threads are disabled after first step
– After the 5th step, entire warps in each block will fail the if test, poor 

resource utilization but no divergence.resource utilization but no divergence.
• This can go on for a while, up to 5 more steps (1024/32=16= 25), 

where each active warp only has one productive thread until all warps 
in a block retire 
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Thread Index Usage MattersThread Index Usage Matters

• In some algorithms, one can shift the indexIn some algorithms, one can shift the index 
usage to improve the divergence behavior
– Commutative and associative operators

• Example - given an array of values, “reduce” 
them to a single value in parallel

– Sum reduction: sum of all values in the array
M d i i f ll l i h– Max reduction: maximum of all values in the 
array

– …
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A Better StrategyA Better Strategy

• Always compact the partial sums into theAlways compact the partial sums into the 
first locations in the partialSum[] array

• Keep the active threads consecutive
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An Example of 16 threads
Thread 0

An Example of 16 threads
Thread 1 Thread 2 Thread 14 Thread 15

0 1 2 3 … 13 1514 181716 19

0+16 15+31
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A Better Reduction KernelA Better Reduction Kernel

f ( i d i t t id bl kDi /2for (unsigned int stride = blockDim.x/2; 
stride >= 1;  stride >>= 1) 

{{
__syncthreads();
if (t < stride)

partialSum[t] += partialSum[t+stride];
}
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A Quick AnalysisA Quick Analysis

• For a 1024 thread blockFor a 1024 thread block
– No divergence in the first 5 steps

1024 512 256 128 64 32 consecutive– 1024, 512, 256, 128, 64, 32 consecutive 
threads are active in each step

– The final 5 steps will still have divergence– The final 5 steps will still have divergence 
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Parallel Algorithm OverheadParallel Algorithm Overhead
__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;
unsigned int start = 2*blockIdx.x*blockDim.x;
partialSum[t] = input[start + t];partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start+ blockDim.x+t];
for (unsigned int stride = blockDim.x/2; 

stride >= 1; stride >>= 1)stride >= 1;  stride >>= 1) 
{
__syncthreads();
if (t < t id )if (t < stride)

partialSum[t] += partialSum[t+stride];
}
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Parallel Algorithm OverheadParallel Algorithm Overhead
__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;
unsigned int start = 2*blockIdx.x*blockDim.x;
partialSum[t] = input[start + t];partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start+ blockDim.x+t];
for (unsigned int stride = blockDim.x/2; 

stride >= 1; stride >>= 1)stride >= 1;  stride >>= 1) 
{
__syncthreads();
if (t < t id )if (t < stride)

partialSum[t] += partialSum[t+stride];
}
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Parallel Execution OverheadParallel Execution Overhead

• Although the number of “operations” is N,Although the number of operations  is N, 
each operation involves much more 
complex address calculation and p
intermediate result manipulation

• If the parallel code is executed on a single-
thread hardware, it would be significantly g y
slower than the code based on the original 
sequential algorithm
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Parallel Prefix Sum (Scan)Parallel Prefix Sum (Scan)
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Objective

• Prefix Sum (Scan) algorithms
– frequently used for parallel work assignment and 

resource allocation

A key primitive in many parallel algorithms to covert– A key primitive in many parallel algorithms to covert 
serial computation into parallel computation

– Based on reduction tree and reverse reduction treeBased on reduction tree and reverse reduction tree

• Additional reading –Mark Harris Parallel PrefixAdditional reading Mark Harris, Parallel Prefix 
Sum with CUDA
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(Inclusive) Prefix-Sum (Scan) 
D fi itiDefinition

Definition: The all prefix sums operation takes a binaryDefinition: The all-prefix-sums operation takes a binary 
associative operator , and an array of n elements

[x0, x1, …, xn-1],

and returns the array

[x0, (x0 x1), …, (x0 x1 … xn-1)].

Example: If is addition then the all prefix sums operationExample: If is addition, then the all-prefix-sums operation 
on the array [3  1  7   0   4    1   6   3],
would return [3  4 11 11 15 16 22 25].
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A Inclusive Scan Application 
E lExample

• Assume that we have a 100-inch sausage to feed g
10 people

• We know how much each person wants in inches
– [3 5 2 7 28 4 3 0 8 1]– [3  5   2   7   28 4  3 0  8  1]

• How do we cut the sausage quickly? 
• How much will be left

• Method 1: cut the sections sequentially: 3 inches 
first 5 inches second 2 inches third etcfirst, 5 inches second, 2 inches third, etc. 

• Method 2: calculate Prefix scan
– [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)
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A Inclusive Sequential Prefix-SumA Inclusive Sequential Prefix Sum

Given a sequence [x0, x1, x2, ... ]Given a sequence [x0, x1, x2, ... ]
Calculate output [y0, y1, y2, ... ]

Such that y0 = x0

y1 = x0 + x1

y2 = x0 + x1+ x2

…

Using a recursive definition 
yi = yi − 1 + xi
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A Work Efficient C ImplementationA Work Efficient C Implementation

y[0] = x[0];y[0]  x[0];
for (i = 1; i < Max_i; i++) 

[i] [i 1] [i]y[i] = y [i-1] + x[i];

Computationally efficient:Computationally efficient:

N additions needed for N elements - O(N)
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A Naïve Inclusive Parallel ScanA Naïve Inclusive Parallel Scan

• Assign one thread to calculate each yAssign one thread to calculate each y 
element

• Have every thread to add up all x elements• Have every thread to add up all x elements 
needed for the y element

y = xy0 = x0

y1 = x0 + x1

y2 = x0 + x1+ x2

• After the ith iteration yi contains its final value
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Simple Inclusive Parallel Scan
__global__ void work_inefficient_scan_kernel(float 

*X, float *Y, int InputSize)
{{

__shared__ float XY[SECTION_SIZE];

int i = blockIdx.x*blockdim.x + threadIdx.x;
if( i<Inputsize ){

XY[threadIdx.x] = X[i];
}

for(int stride =1; stride <= threadIdx.x; stride *=2)   
{

syncthreads();__syncthreads();     
XY[threadIdx.x] += XY[threadIdx.x-stride];

}
}
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Simple Inclusive Parallel Scan
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Work Efficiency Considerations
• Total amount of work: (N-stride) for stride=1, 2, 

4, … , N/2 
T t l l N t– Total logN terms

• Total amount of work: NlogN - (N-1)

• Sequential code: N-1

• For 1024 elements, GPU code performs 9 times 
more operations

“Parallel programming is easy as long as you do not 
care about performance.”
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Let’s Look at the Reduction Tree Again

3 1 7 0 4 1 6 3

+ +++

4 7 5 9

++

11 14

+
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Work-Efficient Parallel Scans
• Reuse intermediate results
• Distribute them to different threadsDistribute them to different threads

• Reduction tree can generate sum of N• Reduction tree can generate sum of N 
numbers in logN steps

• Also generates number of useful sub-sumsAlso generates number of useful sub sums

• Two step algorithmTwo step algorithm
– Reduction scan
– Partial sum distribution using reverse treeg
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Reduction Scan Step
x x x x x xx xx0 x3 x4 x5 x6 x7x1 x2

+ + + +

∑x0..x1 ∑x2..x3 ∑x4..x5 ∑x6..x7Time

+ ++ +

∑x0..x3
∑x4..x7

+

∑
In place calculation 
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Reduction Scan Stepp

• First step: modify 
elements at odd

x0 x3 x4 x5 x6 x7x1 x2

elements at odd 
indexes

• Second step: 
+ + + +

∑x0..x1 ∑x2..x3 ∑x4..x5 ∑x6 x7Timep
modify elements
at 4n-1

• Third step: modify
+ +

4.. 5 ∑ 6.. 7

• Third step: modify 
elements at 8n-1

• …
+

∑x0..x3
∑x4..x7

∑x0 x7
In place calculation … 

• Total ops: 
N/2+N/4+… = N-1

∑x0..x7Final value after reduce
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Reduction Scan Step: 
Simple KernelSimple Kernel

for(int stride =1; stride <= BlockDim.x; stride *=2)   
{{

__syncthreads();     
if((threadIdx.x+1)%(2*stride) ==0){       

XY[threadIdx.x] += XY[threadIdx.x-stride];
}

}
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Reduction Scan Step: 
Less Di ergent KernelLess Divergent Kernel

for(int stride =1; stride <= BlockDim.x; stride *=2)   
{{

__syncthreads();
int index = (threadIdx.x+1)*2*stride-1;   
if(index < blockDim.x){       

XY[index] += XY[index-stride];
}

}

Uses consecutive threads for computation
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Inclusive Post Scan Step
x0 x4 x6x2∑x0..x1 ∑x4..x5∑x0..x3 ∑x0..x7

+

∑x0..x5

Move (add) a critical valu e  to a 
central location where it is 

d dneeded
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Inclusive Post Scan Step

• After reduction, XY[2n-1] contain final 
lvalues

• Largest gap between middle and last 
l t f i telements of input

– Assume N is power of 2 

N d ddi i d fi l l• Need one addition to produce final value at 
the midpoint of this gap
I h l b fi l• In the next step, largest gap between final 
values is half the previous gap, etc.
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Putting it Together
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Putting it together
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Post Scan Step: Kernel

for(int stride=SECTION_SIZE/4; stride > 0; 
t id / 2){

p

stride /=2){
__syncthreads();
int index = (threadIdx.x+1)*2*stride-1;   
if(index+stride < SECTION SIZE){if(index+stride < SECTION_SIZE){       

XY[index+stride] += XY[index];
}

}}
__syncthreads();

Y[i] = XY[threadIdx.x];
}

At each iteration, push the value from a position in XY that is a multiple of 
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Efficiency Analysis

• Total operations for post scan step: 
N/2+N/4+…+4+2-1 < N-2

• Grand total: 2N-3

• Compared to:• Compared to:
– N-1 for sequential implementation

Nl N f ï ll l i l t ti– NlogN for naïve parallel implementation
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(Exclusive) Prefix-Sum (Scan) 
D fi itiDefinition

Definition: The all-prefix-sums operation takes a binary associativeDefinition: The all-prefix-sums operation takes a binary associative 
operator , and an array of n elements

[a0, a1, …, an-1],

and returns the array

[0, a0, (a0 a1), …, (a0 a1 … an-2)].

Example: If is addition then the all-prefix-sums operation onExample: If is addition, then the all prefix sums operation on 
the array [3  1  7   0   4   1   6    3],
would return [0  3  4 11  11 15 16 22].
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Why Exclusive ScanWhy Exclusive Scan

• To find the beginning address of allocated buffers

• Inclusive and Exclusive scans can be easily 
d i d f h th it i tt fderived from each other; it is a matter of 
convenience

[3 1 7 0 4 1 6 3][3  1  7   0   4   1   6    3]

Exclusive [0 3 4 11 11 15 16 22]Exclusive [0  3  4 11  11 15 16 22]

Inclusive [3  4 11  11 15 16 22 25]
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Applications of ScanApplications of Scan
• Scan is a simple and useful parallel building 

block for many parallel algorithms:block for many parallel algorithms:

• Radix sort
•

• Polynomial evaluation
•• Quicksort

• String comparison
• Lexical analysis

• Solving recurrences
• Tree operations
• Histogramsy

• Stream compaction
• Run-length encoding

g
• Allocation
• Etc.

• Scan is unnecessary in sequential computing!
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Other ApplicationsOther Applications

• Assigning camp slotsAssigning camp slots

• Assigning farmer market space

All i ll l h d• Allocating memory to parallel threads

• Allocating memory buffer for 
communication channels

• …
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