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CS 677 Parallel Programming forCS 677: Parallel Programming for 
Many-core Processors y

Lecture 5

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E il Phili M d h i@ dE-mail: Philippos.Mordohai@stevens.edu



LogisticsLogistics

• Midterm: March 22Midterm: March 22

• Project proposal presentations: March 8
H t b d b b M h 3– Have to be approved by me by March 3

2



Project Proposalj p
• Problem description

– What is the computation and why is it important?p y p
– Abstraction of computation: equations, graphic or pseudo-

code, no more than 1 page
• Suitability for GPU accelerationy

– Amdahl’s Law: describe the inherent parallelism.  Argue that it 
is close to 100% of computation.  

– Synchronization and Communication: Discuss what data 
d b d b h i istructures may need to be protected by synchronization, or 

communication through host.
– Copy Overhead: Discuss the data footprint and anticipated 

cost of copying to/from host memorycost of copying to/from host memory.
• Intellectual Challenges

– Generally, what makes this computation worthy of a project?
P i t t diffi lti ti i t t t i hi i– Point to any difficulties you anticipate at present in achieving 
high speedup
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Some IdeasSome Ideas

• k-meansk means

• Perceptron

B i• Boosting 
– General

– Face detector (group of 2)

• Mean Shift

• Normal estimation for 3D point clouds
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More IdeasMore Ideas
• Look for parallelizable problems in:

– Image processing

– Cryptanalysis

– Graphics
• GPU Gems

– Nearest neighbor search
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Even MoreEven More…
• Particle simulations

• Financial analysis

• MCMCMCMC

• Games/puzzles
Mastermind example– Mastermind example

6



k-meansk means

• See alsoSee also 
http://www.cs.stevens.edu/~mordohai/clas
ses/cs559 f10 htmlses/cs559_f10.html
– Notes 13
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SSE Criterion FunctionSSE Criterion Function
• Let ni be the number of samples, then the 

mean is:

• The sum-of-squared errors criterion function 
(to minimize) is:(to minimize) is:

• Note that the number of clusters c is fixedNote that the number of clusters, c, is fixed
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K-means Clustering

1. Initialize
Pick k cluster centers arbitrarily– Pick k cluster centers arbitrarily

– Assign each example to closest center

2. Compute sample means for each 
cluster

3 Reassign all samples to the closest3. Reassign all samples to the closest 
mean

4. If clusters changed at step 3, go to 
step 2 9



K-means ClusteringK means Clustering
Consider steps 2 and 3 of the algorithm

2. compute sample means for each cluster

3. reassign all samples to the closest mean
If we represent clusters
by their old means, the
error has decreased
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K-means ClusteringK means Clustering

• We can prove that by repeating steps 2 p y p g p
and 3, the objective function is reduced

• Thus k-means converges after a finiteThus k means converges after a finite 
number of iterations of steps 2 and 3

• However k-means is not guaranteed to• However k-means is not guaranteed to 
find a global minimum
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K-means ClusteringK means Clustering

• Finding the optimum of JSSE is NP-hardFinding the optimum of JSSE is NP hard

• In practice, k-means clustering usually 
performs wellperforms well

• To avoid local minima, in practice we 
d l i i i li i l irandomly re-initialize it several times
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PerceptronPerceptron

• See alsoSee also 
http://www.cs.stevens.edu/~mordohai/clas
ses/cs559 f14 htmlses/cs559_f14.html
– Notes 13
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The ProblemThe Problem 

• Assume we have 2 classes
– Samples: y1,…, yn , some in class 1, some in class 2

• Use samples to determine weights a in the 
discriminant function g(y) = atydiscriminant function g(y)  a y

• We want to minimize the training error (the number 
of misclassified samples y1,…, yn)

• If: g(yi)>0 => yi classified as c1
g(yi)<0 => yi classified as c2

• Thus training error is 0 if

Pattern Classification, Chapter 5 14



“Normalization”

• Thus training error is 0 if:

• Equivalently, training error is 0 if:

• This suggests “normalization” (a.k.a. reflection):
1. Replace all examples from class 2 by:

2. Seek weight vector a such that

– If such a exists, it is called a separating or solution 
vector
Original samples x x can indeed be separated by– Original samples x1,…, xn can indeed be separated by 
a line

Pattern Classification, Chapter 5 15



NormalizationNormalization

• Seek a hyperplane • Seek hyperplane that 
that separates 
patterns from different 
categories

puts normalized 
patterns on the 
same(positive) sidecategories same(positive) side

Pattern Classification, Chapter 5 16



Perceptron Criterion FunctionPerceptron Criterion Function

• If y is misclassified, aty<0
Th J ( ) >0• Thus Jp(a) >0

• Jp(a) is ||a|| times the sum of 
distances of misclassifieddistances of misclassified 
examples to decision boundary

• Jp(a) is piecewise linear• Jp(a) is piecewise linear 
and thus suitable for 
gradient descentg

Pattern Classification, Chapter 5



Perceptron Batch Rulep

• Gradient of Jp(a) is: 
– YM are samples misclassified by a(k)

– It is not possible to solve                 analytically 
because of YM

• Update rule for gradient descent:• Update rule for gradient descent:

• Thus the gradient decent batch update rule for 
J (a) is:Jp(a) is:

• It is called batch rule because it is based on all• It is called batch rule because it is based on all 
misclassified examples

Pattern Classification, Chapter 5 18



BoostingBoosting

• See alsoSee also 
http://www.cs.stevens.edu/~mordohai/clas
ses/cs559 f14 htmlses/cs559_f14.html
– Notes 11
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BoostingBoosting

• Idea: given a set of weak learners, run themIdea: given a set of weak learners, run them 
multiple times on (reweighted) training data, 
then let learned classifiers vote

• At each iteration t:
– Weight each training example by how incorrectly 

it l ifi dit was classified
– Learn a hypothesis – ht

– Choose a strength for this hypothesis – α– Choose a strength for this hypothesis – αt

• Final classifier: weighted combination of 
weak learnersweak learners
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Learning from Weighted DataLearning from Weighted Data

• Sometimes not all data points are equalSometimes not all data points are equal
– Some data points are more equal than others

• Consider a weighted datasetg
– D(i) – weight of i th training example (xi,yi)
– Interpretations:

• i th training example counts as D(i) examples
• If I were to “resample” data, I would get more samples 

of “heavier” data pointsp

• Now, in all calculations the i th training 
example counts as D(i) “examples”
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Definition of BoostingDefinition of Boosting

• Given training set (x1,y1),…, (xm,ym)g ( 1,y1), , ( m,ym)
• yi ϵ{-1,+1} correct label of instance xiϵX
• For t=1,…,T

– construct distribution Dt on {1,…,m}
– find weak hypothesis 

h : X { 1 +1}– ht: X {-1,+1}
with small error εt on Dt

• Output final hypothesis Hfinal
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AdaBoostAdaBoost
• Constructing Dt

D 1/– D1=1/m

– Given Dt and ht:

where Z is a normalizationwhere Zt is a normalization
constant   

• Final hypothesis:Final hypothesis: 
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Face DetectionFace Detection

• I see this as a two person projectI see this as a two person project
– One implements boosting as before

One implements the face specific parts– One implements the face-specific parts

• See also 
http://www.cs.stevens.edu/~mordohai/clas
ses/cs559_f14.html
– Notes 11
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Classifier is Learned from Labeled Data

• Training Datag
– 5000 faces

• All frontal

– 108 non faces
– Faces are normalized

• Scale, translation

• Many variations
A i di id l– Across individuals

– Illumination
P ( t ti b th i l d t)– Pose (rotation both in plane and out)
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Boosted Face Detection: Image FeaturesBoosted Face Detection: Image Features

“R l fil ”“Rectangle filters”

Similar to Haar wavelets 
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Feature Selection

• For each round of boosting:
– Evaluate each rectangle filter on each 

example

– Sort examples by filter values

– Select best threshold for each filter

– Select best filter/threshold (= Feature) 

– Reweight examples

27



Feature Localization
• Learned features reflect the task
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Output of Face Detector on Test ImagesOutput of Face Detector on Test Images
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Mean ShiftMean Shift

• See alsoSee also 
http://www.cs.stevens.edu/~mordohai/clas
ses/cs559 f10 htmlses/cs559_f10.html
– Notes 13

30



Intuitive Description
Region of

interest

Center of
mass

Mean Shift
vector

Distribution of identical billiard balls

vector
Objective : Find the densest region
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Computing The Mean Shift

Simple Mean Shift procedure:
• Compute mean shift vector
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Segmentation
ExampleExample

33



Segmentation
ExampleExample
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Normal Estimation for 3D Point 
Cl dClouds
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Scatter MatrixScatter Matrix
• Compute the symmetric positive definite 

covariance matrix from N neighbors of a 3 Dcovariance matrix from N neighbors of a 3-D 
point
– {X } = {(x y z )T }– {Xi} = {(xi, yi, zi) }

• Then, the eigenvector that corresponds to the 
smallest eigenvalue is the normal to thesmallest eigenvalue is the normal to the 
surface at each point
– If each point belonged to a smooth surface
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ClassificationClassification

• Points can be classified according to g
eigenvalues into surfaces, foliage, ground 
plane etc.
– Images from Lalonde et al 2006– Images from Lalonde et al. 2006
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Markov Chain Monte CarloMarkov Chain Monte Carlo

• Randomized algorithms based onRandomized algorithms based on 
sampling from probability distributions to 
generate sequences of observationsgenerate sequences of observations

• Applications
A i t i t ti– Approximate integration

– Optimization of energy/cost functions in very 
large search spaceslarge search spaces

– Risk assessment in finance

38



Sample ProposalSample Proposal
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OverviewOverview

• TimersTimers
• Case Study – Advanced MRI Reconstruction

A l j t t UIUC lti i bli ti– A class project at UIUC resulting in a publication
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TimersTimers
• Any timer can be used

– Check resolution

• Important: many CUDA API functions are p y
asynchronous 
– They return control back to the calling CPUThey return control back to the calling CPU 

thread prior to completing their work

– All kernel launches are asynchronous y

– So are all memory copy functions with the 
Async suffix on the name
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SynchronizationSynchronization

• Synchronize the CPU thread with the GPUSynchronize the CPU thread with the GPU 
by calling cudaThreadSynchronize()
immediately before starting and stoppingimmediately before starting and stopping 
the CPU timer

• cudaThreadSynchronize()blocks the• cudaThreadSynchronize()blocks the 
calling CPU thread until all CUDA calls 
previously issued by the thread arepreviously issued by the thread are 
completed 
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SynchronizationSynchronization

• cudaEventSynchronize() blocks untilcudaEventSynchronize() blocks until 
a given event in a particular stream has 
been recorded by the GPUbeen recorded by the GPU
– Safe only in the default (0) stream

Fine for our purposes– Fine for our purposes
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CUDA TimerCUDA Timer
cudaEvent_t start, stop; 
float time; ;
cudaEventCreate(&start); 
cudaEventCreate(&stop); 
cudaEventRecord( start, 0 );cudaEventRecord( start, 0 ); 

kernel<<<grid,threads>>> ( d_odata, d_idata, 
size x, size y, NUM REPS); _ , _y, _ );

cudaEventRecord( stop, 0 );
cudaEventSynchronize( stop ); // after cudaEventRecordcudaEventSynchronize( stop ); // after cudaEventRecord
cudaEventElapsedTime( &time, start, stop ); 
cudaEventDestroy( start ); 
cudaEventDestroy( stop );cudaEventDestroy( stop ); 
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OutputOutput

• time is in millisecondstime is in milliseconds 

• Its resolution of approximately half a 
microsecondmicrosecond

• The timings are measured on the GPU 
l kclock 
– Operating system–independent
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Application Case StudyApplication Case Study –
Advanced MRI Reconstruction

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 46



ObjectiveObjective

• To learn about computational thinkingTo learn about computational thinking 
skills through a concrete example

Problem formulation– Problem formulation

– Designing implementations to steer around 
limitationslimitations

– Validating results

Understanding the impact of your– Understanding the impact of your 
improvements

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 47



AcknowledgementsAcknowledgements

Sam S. Stone§, Haoran Yi§, Justin P. Haldar†, Deepthi 
Nandakumar, Bradley P. Sutton†, 
Zhi-Pei Liang†, Keith Thulburin*

§C t f R li bl d † B k I tit t f§Center for Reliable and 
High-Performance Computing

† Beckman Institute for
Advanced Science and Technology

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 48

* University of Illinois, Chicago Medical Center

48



OverviewOverview

• Magnetic resonance imagingMagnetic resonance imaging
• Non-Cartesian Scanner Trajectory
• Least squares (LS) reconstruction• Least-squares (LS) reconstruction 

algorithm
• Optimizing the LS reconstruction on the• Optimizing the LS reconstruction on the 

G80
– Overcoming bottlenecksOvercoming bottlenecks
– Performance tuning

• Summary
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 49

Summary



Reconstructing MR Images
Cartesian Scan Data Spiral Scan Data

GriddingGridding

FFT LS

Cartesian scan data + FFT: 
Slow scan, fast reconstruction, images may be poor

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 50



Reconstructing MR Images
Cartesian Scan Data Spiral Scan Data

Gridding1Gridding

FFT LS

Spiral scan data + Gridding + FFT: 
Fast scan, fast reconstruction, better images

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

51

1 Based on Fig 1 of Lustig et al, Fast Spiral Fourier Transform for Iterative MR Image Reconstruction, IEEE Int’l Symp. 
on Biomedical Imaging, 2004



Reconstructing MR Images
Cartesian Scan Data Spiral Scan Data

GriddingGridding

FFT Least-Squares (LS)

Spiral scan data + LS
Superior images at expense of significantly more computation

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 52



An Exciting Revolution - Sodium Map of the 
BrainBrain

• Images of sodium in the brain
Very large number of samples for increased SNR– Very large number of samples for increased SNR

– Requires high-quality reconstruction

• Enables study of brain cell viability before anatomic• Enables study of brain-cell viability before anatomic 
changes occur in stroke and cancer treatment – within 
days!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago
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Least-Squares Reconstruction
dFWWFF HHH  )(

• FHF depends only on scanner
Compute Q for FHF

Acquire Data

• F F depends only on scanner 
configuration

• WHW incorporates prior information, 
such as anatomical constraintsAcquire Data

H

such as anatomical constraints
• FHd depends on scan data
• ρ vector containing voxel values of 

reconstructed image - found using 
Compute FHd

g g
linear solver
– 99.5% of the reconstruction time for 

a single image is devoted to 
computing FHd

Find ρ
computing F d

– computing Q is even more 
expensive, but depends only on the 
scanner configuration and can be 
amortized

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 54
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Least-Squares Reconstruction
• The solution is:

dFWWFF HHH 1)( 

• but for a relatively low-res reconstruction of 
1283 voxels, the inverted matrix contains 
well over four trillion complex-valued 
elements

• Use conjugate gradient to solve

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 55



Least-Squares Reconstruction

H

dFWWFF HHH  )(
• WHW is sparse 

• FHF has convolutional structure
– each descending diagonal from left to right is 

constant
• Efficient FFT-based matrix multiplication is 

possiblep
– Out of scope for CS 677

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 56



Least-Squares Reconstruction
• What has to be computed is the Q matrix 

which depends only on the scan trajectory, but p y j y,
not the scan data

M

where:





M

m

xki
mn

nmekxQ
1

)2(2|)(|)( 
• where: 

– km is the location of the mth sample
– xn is the nth voxelxn is the n voxel
– φ() is the Fourier transform of the voxel basis 

function

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 57



Least-Squares Reconstruction

• What also needs to be computed is the 
vector FHd which depends on the datavector FHd which depends on the data

 
M

xkiH nmkdkdF )2(* )()(][ 



m

mmn
nmekdkdF

1

)()()(][ 

• These two equations look similar but the 
computation of Q requires oversampling bycomputation of Q requires oversampling by 
a factor of 2 in each dimension

Q is O(8MN) and FHd is O(MN)– Q is O(8MN) and F d is O(MN)
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 58



Least-Squares Reconstruction 
Complexity- Complexity

• Q: 1-2 days on CPU

• FHd: 6-7 hours on CPU

• ρ: 1.5 minutes on CPU

• Therefore, accelerate Q and FHd
computationscomputations

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 59



for (m = 0; m < M; m++) {

phiMag[m] = rPhi[m]*rPhi[m] +
iPhi[m]*iPhi[m];

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +
iPhi[m]*iD[m];iPhi[m]*iPhi[m];

for (n = 0; n < N; n++) {
expQ = 2*PI*(kx[m]*x[n] +

iPhi[m]*iD[m];
iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

ky[m]*y[n] +
kz[m]*z[n]);

rQ[n] +=phiMag[m]*cos(expQ);

for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +
kz[m]*z[n]);rQ[n] +=phiMag[m]*cos(expQ);

iQ[n] +=phiMag[m]*sin(expQ);
}

}

kz[m]*z[n]);

cArg = cos(expFhD);
sArg = sin(expFhD);

(a) Q computation
rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;
iFhD[n] += iMu[m]*cArg +iFhD[n] +   iMu[m] cArg +

rMu[m]*sArg;
}

} (b) FHd computation

Q v.s. FHD

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 60 60



Algorithms to Accelerate
for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +
iPhi[m]*iD[m]

• Scan data

– M = # scan points
iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –
iPhi[m]*rD[m];

– kx, ky, kz = 3D scan data

• Voxel data

N = # voxels
for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +
kz[m]*z[n]);

– N = # voxels

– x, y, z = input 3D voxel data

– rFhD, iFhD= output voxel datakz[m]*z[n]);
cArg = cos(expFhD);
sArg = sin(expFhD);

p

• Complexity is O(MN)

• Inner loop
rFhD[n] +=  rMu[m]*cArg –

iMu[m]*sArg;
iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;

– 14 FP MUL or ADD ops

– 2 FP trig ops (12-13 FL OPs)

12 loads 2 stores

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 - ECE408, University of Illinois, Urbana-Champaign
61

rMu[m] sArg;
}

}

– 12 loads, 2 stores



From C to CUDA: Step 1
What unit of work is assigned to each thread?What unit of work is assigned to each thread?

1. Each thread executes an iteration of 
the outer loop 

P bl E h h d i i

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] + => Problem: Each thread is trying to 
accumulate a partial sum to rFhD
and iFhD (requires a reduction)

2 Each thread executes an iteration of

rMu[m]  rPhi[m] rD[m] +
iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –
iPhi[m]*rD[m];

2. Each thread executes an iteration of 
the inner loop. 

• Avoids the reduction problem 
• But now each thread is doing

for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] + But now each thread is doing 
very little work 

• We need one grid for each outer 
loop iteration. 

y[ ] y[ ]
kz[m]*z[n]);

cArg = cos(expFhD);
sArg = sin(expFhD); p

• Performance limited by 
overheads for launching M grids 
and writing 2N values to global 

rFhD[n] +=  rMu[m]*cArg –
iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +

62

memory for each gridrMu[m]*sArg;
}

}



One Possibility (Wrong)
__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

kx, ky, kz, x, y, z, rMu, iMu, int N) {

One Possibility (Wrong)

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD);  sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg – iMu[m]*sArg;
iFhD[n] +=  iMu[m]*cArg + rMu[m]*sArg;

}
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 63
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One Possibility (Wrong) - Improved
__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;
float rMu_reg, iMu_reg;

rMu reg rMu[m] rPhi[m]*rD[m] + iPhi[m]*iD[m];rMu_reg = rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
iMu_reg = iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD);  sArg = sin(expFhD);

rFhD[n] +=  rMu_reg*cArg – iMu_reg*sArg;
iFhD[n] +=  iMu_reg*cArg + rMu_reg*sArg;

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 64
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Back to the Drawing Board – Maybe map the n 
loop to threads?loop to threads?

for (m = 0; m < M; m++) {

M [ ] Phi[ ]* D[ ] iPhi[ ]*iD[ ]rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {( ; ; ) {
expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);
cArg = cos(expFhD);
sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg – iMu[m]*sArg;
iFhD[n] +=  iMu[m]*cArg + rMu[m]*sArg;

}
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 65



for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +
iPhi[m]*iD[m];

for (m = 0; m < M; m++) {
for (n = 0; n < N; n++) {

rMu[m] = rPhi[m]*rD[m] +iPhi[m]*iD[m];
iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

rMu[m] = rPhi[m]*rD[m] +
iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –
iPhi[m]*rD[m];

for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +
kz[m]*z[n]);

expFhD = 2*PI*(kx[m]*x[n] +
ky[m]*y[n] +
kz[m]*z[n]);

kz[m]*z[n]);

cArg = cos(expFhD);
sArg = sin(expFhD);

cArg = cos(expFhD);
sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –
iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rFhD[n] +=  rMu[m]*cArg –
iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +
rMu[m]*sArg;iFhD[n] +   iMu[m] cArg +

rMu[m]*sArg;
}

}
( ) FHd t ti

rMu[m] sArg;
}

} (b) after code motion
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for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +
iPhi[m]*iD[m];

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +
iPhi[m]*iD[m];iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –
iPhi[m]*rD[m];

iPhi[m]*iD[m];
iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];
}

for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +
kz[m]*z[n]);

for (m = 0; m < M; m++) {
for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +kz[m]*z[n]);

cArg = cos(expFhD);
sArg = sin(expFhD);

ky[m]*y[n] +
kz[m]*z[n]);

cArg = cos(expFhD);

rFhD[n] +=  rMu[m]*cArg –
iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –
iMu[m]*sArg;iFhD[n] +   iMu[m] cArg +

rMu[m]*sArg;
}

}
( ) FHd t ti

iMu[m] sArg;
iFhD[n] +=  iMu[m]*cArg +

rMu[m]*sArg;
}

} (b) ft l fi i
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(a) FHd computation } (b) after loop fission
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A Separate cmpMu KernelA Separate cmpMu Kernel

__global__ void cmpMu(float* rPhi, iPhi, rD, iD, rMu, iMu)
{ 
int m = blockIdx.x * MU_THREAEDS_PER_BLOCK + threadIdx.x;

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

}}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 68



A Second Option for the cmpFHd Kernel

__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 
kx ky kz x y z rMu iMu int N) {kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

for (n = 0; n < N; n++) {
float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);

float cArg = cos(expFhD);float cArg = cos(expFhD);  
float sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg – iMu[m]*sArg;

Problem: Each thread is trying to accumulate a partial sum to rFhD and iFhD

iFhD[n] +=  iMu[m]*cArg + rMu[m]*sArg;
}

}
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We do have another optionWe do have another option
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for (m = 0; m < M; m++) {
for (n = 0; n < N; n++) {

for (n = 0; n < N; n++) {
for (m = 0; m < M; m++) {

expFhD = 2*PI*(kx[m]*x[n] +
ky[m]*y[n] +
kz[m]*z[n]);

expFhD = 2*PI*(kx[m]*x[n] +
ky[m]*y[n] +
kz[m]*z[n]);

cArg = cos(expFhD);
sArg = sin(expFhD);

cArg = cos(expFhD);
sArg = sin(expFhD);

rFhD[n] +=  rMu[m]*cArg –
iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +
rMu[m]*sArg;

rFhD[n] +=  rMu[m]*cArg –
iMu[m]*sArg;

iFhD[n] +=  iMu[m]*cArg +
rMu[m]*sArg;rMu[m] sArg;

}
}  (a) before loop interchange

rMu[m] sArg;
}

}  (b) after loop interchange

Loop interchange of the FHD computation
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A Third Option for the FHd kernelA Third Option for the FHd kernel
__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

for (m = 0; m < M; m++) {
float rMu_reg = rMu[m]; 
float iMu_reg = iMu[m];

float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);float expFhD  2 PI (kx[m] x[n]+ky[m] y[n]+kz[m] z[n]);

float cArg = cos(expFhD);  
float sArg = sin(expFhD);

rFhD[n] +=  rMu_reg*cArg – iMu_reg*sArg;
iFhD[n] +=  iMu_reg*cArg + rMu_reg*sArg;

}
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From C to CUDA: Step 2 
G i d M B d id hGetting around Memory Bandwidth 

Limitations

• Using registers

• Using constant memory
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global void cmpFHd(float* rPhi, iPhi, phiMag,

Using Registers to Reduce Global Memory Traffic
__global__ void cmpFHd(float  rPhi, iPhi, phiMag, 

kx, ky, kz, x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {
float expFhD = 2*PI*(kx[m]*xn_r+ky[m]*yn_r+kz[m]*zn_r);

fl t A ( FhD)float cArg = cos(expFhD);  
float sArg = sin(expFhD);

rFhDn r +=  rMu[m]*cArg – iMu[m]*sArg;_ g g
iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;

}
rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Compute-to-memory 
access ratio 14:7 (inside 
the loop)
Was 14:14 before (approx.)
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Tiling of Scan Data
LS reconstruction uses 

multiple grids
– Each grid operates on all 

TB0 TB1 TBN
TB0 TB1 TBN

TB0 TB1 TBN g p
scan data

– Each grid operates on a 
distinct subset of voxels
E h h d i h id

SM 0 SM 15

– Each thread in the same grid 
operates on a distinct voxel

Instruction Unit

32KB Register File 8KB Constant Cache

SP0 SP7

for (m = 0; m < M/32; m++) {
exQ 2*PI*(kx[m]*x[n] +

Thread n operates on voxel n:SFU0 SFU1

x kx
Pixel Data Scan Data

exQ = 2*PI*(kx[m]*x[n] +
ky[m]*y[n] +
kz[m]*z[n])

rQ[n] += phi[m]*cos(exQ)

x
y
z

rQ
iQ

kx
ky
kz
phi
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iQ[n] += phi[m]*sin(exQ)
}

Off-Chip Memory (Global, Constant)



Using Constant MemoryUsing Constant Memory

• All threads access scan data (kx, ky, kz) inAll threads access scan data (kx, ky, kz) in 
the same order

• Threads don’t modify scan datay

Put scan data in constant memoryy
Limited to 64kB (larger than shared memory)
But cached, for every 32 accesses to constant 

31 (96%memory, at least 31 will be cached (96% 
reduction in time, no bank conflicts – broadcast 
mode to all threads in warp)p)
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Chunking k-space Data to Fit into Constant 
Memory

__constant__ float kx_c[CHUNK_SIZE],
ky_c[CHUNK_SIZE], kz_c[CHUNK_SIZE];

…

y

__void main() {

int i;
for (i = 0; i < M/CHUNK SIZE; i++);for (i  0; i < M/CHUNK_SIZE; i++);
cudaMemcpyToSymbol(kx_c,&kx[i*CHUNK_SIZE],4*CHUNK_SIZE, 

cudaMemCpyHostToDevice); 
cudaMemcpyToSymbol(ky_c,&ky[i*CHUNK_SIZE],4*CHUNK_SIZE, 

d i )cudaMemCpyHostToDevice);
cudaMemcpyToSymbol(kz_c,&kz[i*CHUNK_SIZE],4*CHUNK_SIZE, 

cudaMemCpyHostToDevice);
…
cmpFHD<<<FHD_THREADS_PER_BLOCK, N/FHD_THREADS_PER_BLOCK>>> 

(rPhi, iPhi, phiMag, x, y, z, rMu, iMu, int M);
}
/* Need to call kernel one more time if M is not */
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/* Need to call kernel one more time if M is not */
/* perfect multiple of CHUNK SIZE */

}



__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 

Revised Kernel for Constant Memory

x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

f ( 0 < M ++) {for (m = 0; m < M; m++) {
float expFhD = 2*PI*(kx_c[m]*xn_r

+ky_c[m]*yn_r+kz_c[m]*zn_r);

kx_c, ky_c and kz_c
are no longer 
arguments but global 

i blfloat cArg = cos(expFhD);  
float sArg = sin(expFhD);

rFhDn r += rMu[m]*cArg – iMu[m]*sArg;

variables

Compute-to-memory 
access ratio 14:4 (insiderFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;
}
rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

access ratio 14:4 (inside 
the loop)
Can be 14:2 if compiler 
stores rMu[m] and iMu[m] 
in temporary registers
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kx[i] ky[i] kz[i] phi[i]
Scan Data

kx
ky

kx[i]
ky[i]

Scan Data

C t t M

ky
kz
phi

ky[i]
ky[i]
phi[i]

C t t M Constant Memory

(a) k-space data stored in separate arrays. (b) k-space data stored in an array 
whose elements are structs.

Constant Memory

Effect of k-space data layout on constant cache efficiency.

• The previous implementations leads to bad (slow) p p ( )
performance

• Each constant cache entry is designed to store multiple 
consecutive words

• There are very few such entries – insufficient for all active 
warps in an SM

• Solution: use array of struct (contrary to last week’s advice)
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Solution: use array of struct (contrary to last week s advice)



struct kdata {
float x, float y, float z;

} k;}

__constant__ struct kdata k_c[CHUNK_SIZE];
…

__ void main() {

int i;

for (i = 0; i < M/CHUNK_SIZE; i++);
cudaMemcpyToSymbol(k_c,k,12*CHUNK_SIZE, 

cudaMemCpyHostToDevice);cudaMemCpyHostToDevice);

cmpFHD<<<FHD_THREADS_PER_BLOCK,N/FHD_THREADS_PER_BLOCK>>> 
();

}

Adjusting k-space data layout to improve cache efficiency
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__global__ void cmpFHd(float* rPhi, iPhi, phiMag, 
x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
float rFhDn r = rFhD[n]; float iFhDn r = iFhD[n];float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {
float expFhD = 2*PI*(k[m].x*xn_r+k[m].y*yn_r+k[m].z*zn_r);

float cArg = cos(expFhD);  
float sArg = sin(expFhD);

rFhDn_r +=  rMu[m]*cArg – iMu[m]*sArg;
iFhDn_r +=  iMu[m]*cArg + rMu[m]*sArg;

}
rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Adjusting the k-space data memory layout in the FHd kernel
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From C to CUDA: Step 3
Where are the potential bottlenecks?Where are the potential bottlenecks?

B ttl kBottlenecks

• Memory Bandwidth
– See previous slides

• Trig operationsg p

• Overhead (branches, address 
calculations)calculations)
– These are important due to short inner loop

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 82



Trigonometric OperationsTrigonometric Operations

• Use SFUs (Super Function Units)Use SFUs (Super Function Units)
– __sin and __cos are implemented as 

hardware instructionshardware instructions 
• Require 4 cycles (vs. 12 and 13 FLOP for software 

versions)

• Reduced accuracy

• Performance: from 22.8 GFLOPS to 92.2 
GFLOPSGFLOPS 
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Address CalculationsAddress Calculations

• Last bottleneck: Overhead of branches andLast bottleneck: Overhead of branches and 
address calculations

• Solution: Loop unrolling and experimental tuningp g p g
– Loop unrolling factors (1,2,4,8,16)

– Also experimentally tuned the number of threads per 
block and the number of scan points per grid (see 
following slides)

• Performance:179 GFLOPS (Q) 145 GFLOPS• Performance:179 GFLOPS (Q), 145 GFLOPS 
(FHd)
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Experimental Methodology
• Reconstruct a 3D image of a human brain1

– 3.2 M scan data points acquired via 3D spiral scan
256K voxels– 256K voxels

• Compare performance of several reconstructions
– Gridding + FFT reconstruction1 on CPU (Intel Core 2 

E t Q d )Extreme Quadro)
– LS reconstruction on CPU (double-precision, single-

precision)
LS reconstruction on GPU (NVIDIA GeForce 8800 GTX)– LS reconstruction on GPU (NVIDIA GeForce 8800 GTX)

• Metrics
– Reconstruction time: compute FHd and run linear solver

R ti t Q FHd– Run time: compute Q or FHd
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Effects of Approximations
• Avoid temptation to measure only absolute error (I0 – I)

– Can be deceptively large or small

• Metrics• Metrics
– PSNR: Peak signal-to-noise ratio
– SNR: Signal-to-noise ratio

• Avoid temptation to consider only the error in the computed value
– Some applications are resistant to approximations; others are very sensitive
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Experimental Tuning: Tradeoffs
• In the Q kernel, three parameters are natural candidates for 

experimental tuning
– Loop unrolling factor (1 2 4 8 16)Loop unrolling factor (1, 2, 4, 8, 16)
– Number of threads per block (32, 64, 128, 256, 512)
– Number of scan points per grid (32, 64, 128, 256, 512, 1024, 2048)

• Cannot optimize these parameters independently
– Resource sharing among threads (register file, shared memory)
– Optimizations that increase a thread’s performance often increase the p p

thread’s resource consumption, reducing the total number of threads that 
execute in parallel

• Optimization space is not linearOptimization space is not linear
– Threads are assigned to SMs in large thread blocks
– Causes discontinuity and non-linearity in the optimization space
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Experimental Tuning: Example

Increase in per thread performance but fewer threads:
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Lower overall performance



Experimental Tuning: Scan Points Per Grid
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Experimental Tuning: Scan Points 
P G idPer Grid

• Each line in previous plot represents a p p p
combination of loop unrolling factor and threads 
per block

• The y-axis represents runtime, so lower is betterThe y axis represents runtime, so lower is better

• Runtime tends to increase as the number of scan 
i t id ipoints per grid increases 

• That’s counter-intuitive. Why would performance 
get worse as the amount of data processed by g p y
each kernel increased?
Conflicts in the constant cache (across different 

blocks))
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Experimental Tuning: 
Scan Points Per Grid (Improved Data Layout)( p y )
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Experimental Tuning: Loop Unrolling 
FactorFactor
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Sidebar: Optimizing the CPU 
I l iImplementation

• Optimizing the CPU implementation of your application is very 
iimportant
– Often, the transformations that increase performance on CPU also increase 

performance on GPU (and vice-versa)
– The research community won’t take your results seriously if your baseline 

is crippled

• Useful optimizationsUseful optimizations
– Data tiling
– SIMD vectorization (SSE)

F t th lib i (AMD I t l)– Fast math libraries (AMD, Intel)
– Classical optimizations (loop unrolling, etc)

• Intel compiler (icc, icpc)
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Quantitative 
Evaluation
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Summary of Results
Q FHdQ d

Reconstruction Run  
Time (m)

GFLOP Run 
Time (m)

GFLOP Linear 
Solver (m)

Recon. 
Time (m)

Gridding + FFT N/A N/A N/A N/A N/A 0 39Gridding + FFT 
(CPU, DP)

N/A N/A N/A N/A N/A 0.39

LS (CPU, DP) 4009.0 0.3 518.0 0.4 1.59 519.59

LS (CPU, SP) 2678.7 0.5 342.3 0.7 1.61 343.91

LS (GPU, Naïve) 260.2 5.1 41.0 5.4 1.65 42.65

LS (GPU, 72.0 18.6 9.8 22.8 1.57 11.37S (G U,
CMem)

7 .0 8.6 9.8 .8 .57 .37

LS (GPU, 
CMem, 

13.6 98.2 2.4 92.2 1.60 4.00

SFU) 
LS (GPU, 
CMem, 

7.5 178.9 1.5 144.5 1.69 3.19

8X
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Summary of Results
Q FHd

Reconstruction Run  Time (m) GFLOP Run Time 
(m)

GFLOP Linear 
Solver (m)

Recon. Time 
(m)

Gridding + FFT 
(CPU, DP)

N/A N/A N/A N/A N/A 0.39

LS (CPU, DP) 4009.0 0.3 518.0 0.4 1.59 519.59

LS (CPU, SP) 2678.7 0.5 342.3 0.7 1.61 343.91

LS (GPU, Naïve) 260.2 5.1 41.0 5.4 1.65 42.65( , )

LS (GPU, CMem) 72.0 18.6 9.8 22.8 1.57 11.37

LS (GPU, CMem, 
SFU)

13.6 98.2 2.4 92.2 1.60 4.00
SFU) 

LS (GPU, CMem, 
SFU, Exp)

7.5 178.9 1.5 144.5 1.69 3.19

108X228X357X
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