CS 677 Parallel Programming for
Many-core Processors
Lecture 5

Instructor: Philippos Mordohai

Webpage: www.cs.stevens.edu/” mordohai
E-mail: Philippos.Mordohai@stevens.edu




Logistics

e Midterm: March 22

* Project proposal presentations: March 8
— Have to be approved by me by March 3



Project Proposal

 Problem description
— What is the computation and why is it important?
— Abstraction of computation: equations, graphic or pseudo-
code, no more than 1 page
« Suitability for GPU acceleration

— Amdahl’s Law: describe the inherent parallelism. Argue that it
is close to 100% of computation.

— Synchronization and Communication: Discuss what data
structures may need to be protected by synchronization, or
communication through host.

— Copy Overhead: Discuss the data footprint and anticipated
cost of copying to/from host memory.
 [ntellectual Challenges
— Generally, what makes this computation worthy of a project?

— Point to any difficulties you anticipate at present in achieving
high speedup



Some ldeas

K-means
Perceptron

Boosting
— General
— Face detector (group of 2)

Mean Shift
Normal estimation for 3D point clouds



More ldeas

* Look for parallelizable problems in:
— Image processing
— Cryptanalysis
— Graphics
« GPU Gems
— Nearest neighbor search 12w
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FPS: 60.01.

Even More...

Particle simulations
Financial analysis
MCMC

Games/puzzles
— Mastermind example
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k-means

e See also
http://www.cs.stevens.edu/”mordohai/clas
ses/cs559 f10.html

— Notes 13



SSE Criterion Function

* Let n, be the number of samples, then the

mean IS:
_1
‘ n; xeD;

X

 The sum-of-squared errors criterion function
(to minimize) is: we =2 Tl X-p I

i=1 xe Dy

.
.
----------

a®
---------

 Note that the number of clusters, c, is fixed



K-means Clustering

1. Initialize
—  Pick kcluster centers arbitrarily
—  Assign each example to closest center

2. Compute sample means for each e
cluster .‘.Xﬁ"
. — @,
3. Reassign all samples to the closest .Q' ..... .- %oe
mean : : :.:'.‘ :;':
____________ | 0.

- -
-----
lllllllllllllllllllllllllllllllllllllllllllllll

4. If clusters changed at step 3, go to
step 2



K-means Clustering

Consider steps 2 and 3 of the algorithm
2. compute sample means for each cluster

Jsse = Z Z” X—p||?
i=1 Xe D, \ I
= sum of "‘"-7_]_

If we represent clusters
by their old means, the
error has decreased

N\ =~

/ I
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K-means Clustering

 We can prove that by repeating steps 2
and 3, the objective function is reduced

 Thus k-means converges after a finite
number of iterations of steps 2 and 3

 However k-means is not guaranteed to

find a global minimum

o I I
e T -

n
-------------------------------------

2-means gets stuck here

suuE
.............
. ",

.
- "
--------

global minimum of Jggg
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K-means Clustering

 Finding the optimum of Jgg- is NP-hard

* |In practice, k-means clustering usually
performs well

e To avoid local minima, in practice we
randomly re-initialize it several times



Perceptron

e See also
http://www.cs.stevens.edu/”mordohai/clas
ses/cs559 f14.html

— Notes 13



The Problem

Assume we have 2 classes
— Samples: y;,,..., ¥,,, some in class 1, some in class 2

Use samples to determine weights ain the
discriminant function g(y) = a'y

We want to minimize the training error (the number
of misclassified samples y,,..., ¥,)

¢.  9(y)>0=>y, classified as c,
g(y;)<0 =>y, classified as c,

o _ _ g(y;)>0 Vy,ec
Thus training error is O if {g(yf_) <0 Vy, e 012

Pattern Classification, Chapter 5



*Normalization”

a'y,>0 Vy.ec,

* Thus training error is 0 if: {a’yf <0 vyee,

. _ . : ... |a'y,>0 Vyec,
Equivalently, training error is O if: {a*(— y)>0 Vyec,

» This suggests “normalization” (a.k.a. reflection):
1. Replace all examples from class 2 by:
Yi—= Y, Vy,€ec,
2. Seek weight vector g such that
a'y;>0 Vy,

— If such gexists, it is called a separating or solution
vector

— Original samples x,,.., X, can indeed be separated by
a line

Pattern Classification, Chapter 5



Normalization

before normalization

yh

e Seek a hyperplane .

that separates

patterns from different

categories

Pattern Classification, Chapter 5

after “normalization”

y©h

Seek hyperplane that
puts normalized
patterns on the
same(positive) side

16



Perceptron Criterion Function
Jy(a)= Y (-a'y)

yeYy

If yis misclassified, a'y<0
Thus J (a) >0

J(a) is |[a]| times the sum of
distances of misclassified
examples to decision boundary

Jp(a) is piecewise linear

and thus suitable for Ja)
gradient descent

Pattern Classification, Chapter 5




Perceptron Batch Rule
J,(a)= Y (-a'y)

yeYy

Gradient of J (a) is: wp(a)=;m(_ y)
— Y,, are samples misclassified by ak
— Itis not possible to solve vJ,(a)=0 analytically
because of Y),
Update rule for gradient descent: x**"= x®-n ® vy(x)

Thus the gradient decent batch update rule for
Jp(@)Is: k) _ 400 +7®) Yy

yeYy
It is called batch rule because it is based on all
misclassified examples

Pattern Classification, Chapter 5



Boosting

e See also
http://www.cs.stevens.edu/”mordohai/clas
ses/cs559 f14.html

— Notes 11



Boosting

* |dea: given a set of weak learners, run them
multiple times on (reweighted) training data,
then let learned classifiers vote

* At each iteration £
— Weight each training example by how incorrectly
it was classified

— Learn a hypothesis - A,
— Choose a strength for this hypothesis - g,

* Final classifier: weighted combination of
weak learners



Learning from Weighted Data

e Sometimes not all data points are equal
— Some data points are more equal than others

o Consider a weighted dataset
— D(i) - weight of i t" training example (x,,y;)
— Interpretations:

e i "training example counts as D(i) examples

* If | were to “resample” data, | would get more samples
of “heavier” data points

« Now, in all calculations the /7 training
example counts as D(i) “examples”



Definition of Boosting

Given training set (X{,Y1)suy (X,Y i)

y. €{-1,+1} correct label of instance x.eX
Fort=1,.. T

— construct distribution D, on {1,...m}

— find weak hypothesis

— hg X-> {-1,+1}
with small error g, on D,

€ = ljl'-gw,f_:a,.- Vﬂs.(-’f’w‘.) 7‘i 3')"5._.
Output final hypothesis H;,_,



AdaBoost

» Constructing D,

— Dy=1/m
: . D,(i) e @ if gy = hy(a;)
— GivenD, and h; p, (i) — 2il e By )
' /f?t kr”'r lf‘.',ff,' - fif(_,.!‘f.'}
D, (i) . L
— ?:(! - expl( oy U fr?t(,r!-}}
/f?t ' '

. . . 1
where Z, is a normalization ; — 3 Di(i) exp(—aihe(a;))
constant i=1

* Final hypothesis: ar = Lln fl ""*‘"; -0
e \ f'f J

Heinal () = sign [ aghy ()
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Face Detection

* | see this as a two person project
— One implements boosting as before
— One implements the face-specific parts

e See also
http://www.cs.stevens.edu/”mordohai/clas

ses/cs559 14 .html
— Notes 11



Classifier is Learned from Labeled Data

e Training Data
— 5000 faces
o All frontal
— 108 non faces |
— Faces are normalized a4
e Scale, translation
 Many variations
— Across individuals
— [llumination
— Pose (rotation both in plane and out)

25



Boosted Face Detection: Image Features

“‘Rectangle filters”

Similar to Haar wavelets

N R A ORY
| B otherwise

C(x)= e(z h (X) + bj

60,000 x100 = 6,000,000

Unique Binary Features

26




Feature Selection

* For each round of boosting:

— Evaluate each rectangle filter on each
example

— Sort examples by filter values

— Select best threshold for each filter

— Select best filter/threshold (= Feature)
— Reweight examples



Feature Localization

e | earned features reflect the task

28



Output of Face Detector on Test Images

JUDYBATS

29



Mean Shift

e See also
http://www.cs.stevens.edu/”mordohai/clas
ses/cs559 f10.html

— Notes 13



Intuitive Description

Region of
° ® | interest
Jpep—— -7 e ~
‘ () Center of
Q;—-" o . mass )
7 ‘—_”/, ‘
o® o
° o
o o o
° o o
oo © ?
0 o
®
PY o
o
¢ ?
. @ o
__\\\ ‘
o ® o o .
® \
® ® o Mean Shift
@ @ -~
vector

J

Objective : Find the densest region
Distribution of identical billiard balls
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Computing The Mean Shift

Simple Mean Shift procedure:

» Compute mean shift vector ®

m(x) =

*Translate the Kernel window by m(x)

32



Segmentation

Example

33



Segmentation

34



Normal Estimation for 3D Poin
Clouds

35



Scatter Matrix

e Compute the symmetric positive definite
covariance matrix from N neighbors of a 3-D
point
— {X3={(x, vy, z)"}

-

l & -
~ 2 =) (X —X)"

 Then, the eigenvector that corresponds to the
smallest eigenvalue is the normal to the
surface at each point

— |f each point belonged to a smooth surface



Classification

y WAL

* Points can be classified according to
eigenvalues into surfaces, foliage, ground
plane etc.

— Images from Lalonde et al. 2006

37



Markov Chain Monte Carlo

 Randomized algorithms based on
sampling from probability distributions to
generate sequences of observations

* Applications
— Approximate integration

— Optimization of energy/cost functions in very
large search spaces

— Risk assessment in finance



Sample Proposal

3 Intellectual Challenges

The main challenge 1s going to be how to partition the work. As mentioned above, the
overall algorithm 1s finding the minimum across a set. However, there 1s also an internal
operation that mvolves a maximum operation. In terms of mapping this to CUDA. there
are going to need to be some testing to determine how heavy a thread should be. For
example, one configuration would be to make every thread calculate the worst-case scenario
for one element in the set. Another configuration would be to calculate that maximum on
the block-level, making the threads perform much less work.

The main obstacle for performance 1s going to be synchronization. Especially in a case
where every block produces one out of 32,768 results that need to be minimized. doing
atomic operations to a global memory location 1s bound to have consequences. A lot of
parameterization 1s gomng to be necessary so that different combinations of strategies can be
fully tested.

The Problem Description above focused on Knuth's algorithm for solving Mastermind
puzzles. There have been a few papers published since then which propose better solutions.
such as the often cited 1993 paper by Koyama and Lai? and a more recent 2005 paper by
Kooi?. In the course of the actual project, I plan to investigate those other algorithms and
if they are equally parallel-capable and seem to perform better. I will switch the algorithm.

I believe this project has a great chance to show how CUDA can be used to mmprove the
performance of existing algorithms. increasing their domain of effectiveness.

39



Overview

e Timers

e Case Study — Advanced MRI Reconstruction
— A class project at UIUC resulting in a publication



Timers

« Any timer can be used
— Check resolution

* Important: many CUDA API functions are
asynchronous

— They return control back to the calling CPU
thread prior to completing their work

— All kernel launches are asynchronous

— So are all memory copy functions with the
Async suffix on the name



Synchronization

* Synchronize the CPU thread with the GPU
by calling cudaThreadSynchronize()

immediately before starting and stopping
the CPU timer
 cudaThreadSynchronize()blocks the

calling CPU thread until all CUDA calls
previously issued by the thread are
completed



Synchronization

 cudakEventSynchronize() blocks until

a given event in a particular stream has
been recorded by the GPU

— Safe only in the default (0) stream
— Fine for our purposes



CUDA Timer

cudakEvent _t start, stop;
float time;
cudakEventCreate(&start);
cudakEventCreate(&stop);
cudaEventRecord( start, 0 );

kernel<<<grid, threads>>> ( d odata, d i1data,
size X, size y, NUM_REPS);

cudakEventRecord( stop, 0 );
cudakEventSynchronize( stop ); // after cudaEventRecord
cudakEventElapsedTime( &time, start, stop );
cudakEventDestroy( start );

cudakEventDestroy( stop );



Output

e time isin milliseconds

e lts resolution of approximately half a
microsecond

* The timings are measured on the GPU
clock

— Operating system-independent



Application Case Study -
Advanced MRI Reconstruction

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign



Objective

* To learn about computational thinking
skills through a concrete example
— Problem formulation

— Designing implementations to steer around
limitations

— Validating results

— Understanding the impact of your
Improvements

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign
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Overview

 Magnetic resonance imaging
 Non-Cartesian Scanner Trajectory

o Least-squares (LS) reconstruction
algorithm

e Optimizing the LS reconstruction on the
G380

— Overcoming bottlenecks
— Performance tuning

e Summary

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign



Reconstructing MR Images

Cartesian Scan Data Spiral Scan Data

Gridding

..;..

L

Cartesian scan data + FFT:
Slow scan, fast reconstruction, images may be poor

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign
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Reconstructing MR Images

Cartesian Scan Data Spiral Scan Data

Ay
/

Aky _____ > kX

o/

LI

pr I > kx

Gridding?!

Spiral scan data + Gridding + FFT:
Fast scan, fast reconstruction, better images

'Based on Fig 1 of Lustig et al, Fast Spiral Fourier Transform for Iterative MR Image Reconstruction, IEEE Int'l Symp.

on Biomedical Imaging, 2004

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 o1
ECE408, University of Illinois, Urbana-Champaign



Reconstructing MR Images

Cartesian Scan Data Spiral Scan Data

po

Gridding |
|
|

Least-Squares (LS)

Spiral scan data + LS
Superior images at expense of significantly more computation

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 52



An Exciting Revolution - Sodium Map of the
Brain

* Images of sodium in the brain
— Very large number of samples for increased SNR
— Requires high-quality reconstruction

« Enables study of brain-cell viability before anatomic
changes occur in stroke and cancer treatment - within

days!
Courtesy of Keith Thulborn and lan Atkinson, Center for MR Research, University of lllinois at Chicago

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 53



Least-Squares Reconstruction
(FFF+W"W)p=F"d

- F"F depends only on scanner
configuration

. WHW incorporates prior info_rmation,
such as anatomical constraints

» F"d depends on scan data

 p vector containing voxel values of
" reconstructed image - found using
Compute F"d linear solver

— 99.5% of the reconstruction time for
a single ima%e Is devoted to
computing F"d

— computing Q is even more
expensive, but depends only on the
scanner configuration and can be
amortized

Compute Q for F'F

Acquire Data

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign



Least-Squares Reconstruction

e The solution Is:
o=(F'F+W"W)*F"d

e but for a relatively low-res reconstruction of
1283 voxels, the inverted matrix contains
well over four trillion complex-valued
elements

 Use conjugate gradient to solve

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign



Least-Squares Reconstruction
(FFF+W"W)p=F"d
« WPW is sparse

« FM'F has convolutional structure

— each descending diagonal from left to right is
constant

o Efficient FFT-based matrix multiplication is
possible

— Out of scope for CS 677

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign



Least-Squares Reconstruction

 What has to be computed is the Q matrix
which depends only on the scan trajectory, but
not the scan data

Q(x,) =D ok, ) [ e

e where:
— k., is the location of the mth sample
— X, is the nt" voxel

— @() is the Fourier transform of the voxel basis
function

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign



Least-Squares Reconstruction

 What also needs to be computed is the
vector F'd which depends on the data

M .
[F"d], = 20" (kn)d (K, Je ™
m=1

 These two equations look similar but the
computation of Q requires oversampling by
a factor of 2 in each dimension
— Qs O(8MN) and F"d is O(MN)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign



Least-Squares Reconstruction
- Complexity

« Q: 1-2 days on CPU
« F"d: 6-7 hours on CPU
e p: 1.5 minutes on CPU

 Therefore, accelerate Q and F'd
computations

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign



for (m =0; m < M; m++) {

phiMag[m] = rPhi[m]*rPhi[m] +
IPhi[m]*1Phi[m];
for (n = 0; n < N; n++) {

2*PI*(kKxX[m]*X[n] +
Ky[m]*y[n] +
kKz[m]*z[n]);

expQ

rQ[n] +=phiMag[m]*cos(expQ);
10[n] +=phiMag[m]*sin(expQ);

}

+
(a) Q computation

Qv.s. FD

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

for (m =0; m < M; m++) {
rMu[m] = rPhi[m]*rD[m] +
iIPhi[m]*i1D[m];
IMufm] = rPhai[m]*iD[m] -
IPhi[m]*rD[m];
for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] +
Ky[m]*y[n] +
kz[m]*z[n]);
cArg = cos(expFhD);
sArg = sin(expFhD);
rFhD[n] += rMu[m]*cArg —
IMufm]*sArg;
IFhD[Nn] += 1Mu[m]*cArg +
rMu[m]*sArg;
}
} (b) Ffd computation




Algorithms to Accelerate

for (mn=0; m < M; mt+) {
rMu[m] = rPhi[m]*rD[m] +
iIPhi[m]*i1D[m];
IMufm] = rPhi[m]*iD[m] -
IPhi[m]*rD[m];
for (n = 0; n < N; nt+t) {
expFhD = 2*PI*(kx[m]*x[n] +
ky[m]*y[n] +
kz[m]*z[n]);
cArg = cos(expFhD);
sArg = sin(expFhD);
rFhD[Nn] += rMu[m]*cArg —
IMu[m]*sArg;
1IFhD[Nn] += i1Mu[m]*cArg +
rMu[m]*sArg;
+

}

 Scan data

— M = # scan points

— kx, ky, kz = 3D scan data
 Voxel data

— N = # voxels

— X, Y, z=input 3D voxel data

— rFhD, iIFhD= output voxel data
o Complexity is O(MN)
* Innerloop

— 14 FP MUL or ADD ops

— 2 FP trig ops (12-13 FL OPs)

— 12 loads, 2 stores

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 - ECE408, University of Illinois, Urbana-Champaign



From C to CUDA: Step 1
What unit of work is assigned to each thread?

for (m = O;

rMufm] =

iMu[m] =

for (n =
expFhD

CArg
SArg

m< M; m++) {

rPha[m]*rD[m] +
iIPhi[m]*i1D[m];
rPhi[m]*iD[m] —
IPhi[m]*rD[m];

O; n < N; nt+t) {

= 2*PI*(kx[m]*x[n] +
ky[m]*y[n] +
kz[m]*z[n]);

cos(expFhD);

sin(expFhD);

rFhD[N] += rMu[m]*cArg —

IMu[m]*sArg;

1IFhD[Nn] += 1Mu[m]*cArg +

rMu[m]*sArg;

1. Each thread executes an iteration of
the outer loop
=> Problem: Each thread is trying to
accumulate a partial sum to rFhD
and IFhD (requires a reduction)

2. Each thread executes an iteration of

the inner loop.

 Avoids the reduction problem

» But now each thread is doing
very little work

» \We need one grid for each outer
loop iteration.

» Performance limited by
overheads for launching M grids
and writing 2N values to global
memory for each grid



One Possibility (Wrong)

iIPhi1, phiMag,
int N) {

__global __ void cmpFHd(float* rPhi,
kx, ky, kz, X, y, z, rMu, IMu,

int m = blockldx.x * FHD THREADS PER BLOCK + threadldx.X;
rMu[m] = rPhi[m]*rD[m] + 1Phi[m]*iD[m];
IMufm] = rPha[m]*iD[m] — tPhi[m]*rD[m];
for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD);

sArg = sin(expFhD);

rEhD[n] +=
iIFhD[N] +=

rMu[m]*cArg — IMu[m]*sArg;
IMu[m]*cArg + rMu[m]*sArg;

}
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign




One Possibility (Wrong) - Improved

__global___ void cmpFHd(float* rPhi, 1Phi, phiMag,
kx, ky, kz, X, y, z, rMu, iMu, Int N) {

}

int m = blockldx.x * FHD THREADS PER BLOCK + threadldx.X;
reg, IMu_reg;

float rMu_

rMu_reg =

IMu_reg =

for (n =
expFhD

O;

rMu[m]
iMum]

rPhi[m]*rD[m] + iPhi[m]*iD[m];
rPhi[m]*iD[m] — iPhi[m]*rD[m];

n < N; nt+) {
2*PI*(kx[m]*x[n] + ky[ml*y[n] + kz[m]*z[n]);

cArg = cos(expFhD); sArg = sin(expFhD);

rEhD[n] +=
iIFhD[N] +=

}

rMu_reg*cArg — IMu_reg*sArg;
IMu_reg*cArg + rMu_reg*sArg;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign




Back to the Drawing Board - Maybe map the n
loop to threads?

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
IMu[m] = rPhi[m]*iD[m] — 1Phi[m]*rD[m];

for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);
cArg = cos(expFhD);
SArg sin(expFhD);

rEFnD[n] += rMu[m]*cArg — IMu[m]*sArg;
iIFhD[n] += 1Mu[m]*cArg + rMu[m]*sArg;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign



for (m =0; m < M; m++) { for (m =0; m < M; m++) {
for (n = 0; n < N; n++) {
rMu[m] = rPhi[m]*rD[m] +
iIPhi[m]*i1D[m]; rMu[m] = rPha[m]*rD[m] +
IMu[m] = rPhi[m]*iD[m] - iIPhi[m]*i1D[m];
IPhi[m]*rD[m]; IMufm] = rPha[m]*iD[m] -
iIPhi[m]*rD[m];
for (n = 0; n < N; n++) { expFhD = 2*PI*(kx[m]*xX[n] +
expFhD = 2*PI*(kx[m]*xX[n] + ky[m]*y[n] +
Ky[m]*y[n] + kz[m]*z[n]);
kz[m]*z[n]);
cArg = cos(expFhD);
cArg = cos(expFhD); sArg = sin(expFhD);
sArg = sin(expFhD);
rFhD[n] += rMu[m]*cArg —
rFhD[n] += rMu[m]*cArg — IMu[m]*sArg;
IMufm]*sArg; IFND[Nn] += 1Mu[m]*cArg +
IFND[Nn] += 1Mu[m]*cArg + rMu[m]*sArg;
rMu[m]*sArg; }
} } (b) after code motion
+
(a) F"d computation
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for (m

;o m< M; m++) {

rMu[m] = rPhi[m]*rD[m] +
iIPhi[m]*i1D[m];
IMufm] = rPha[m]*iD[m] -
IPhi[m]*rD[m];
for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] +
Ky[m]*y[n] +
kz[m]*z[n]);
cArg = cos(expFhD);
sArg = sin(expFhD);
rFhD[Nn] += rMu[m]*cArg —
IMufm]*sArg;
IFhD[Nn] += 1Mu[m]*cArg +
rMu[m]*sArg;
}

(a) F'd computation

for (m =0; m < M; m++) {
rMu[m] = rPhi[m]*rD[m] +
iIPhi[m]*i1D[m];
IMufm] = rPhai[m]*iD[m] -
IPhi[m]*rD[m];
+
for (m =0; m < M; m++) {
for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] +
Ky[m]*y[n] +
kz[m]*z[n]);
cArg = cos(expFhD);
sArg = sin(expFhD);
rFhD[n] += rMu[m]*cArg —
IMufm]*sArg;
IFhD[Nn] += 1Mu[m]*cArg +
rMu[m]*sArg;
}

} (b) after loop fission
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A Separate cmpMu Kernel

__global __ void cmpMu(float* rPhi, i1Phi, rD, 1D, rMu, iIMu)

{
int m = blockldx.x * MU_THREAEDS PER BLOCK + threadldx.X;

rMum]
IMu[m]

rPhi[m]*rD[m] + iPhi[m]*iD[m];
rPhi[m]*iD[m] — iPhi[m]*rD[m];
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A Second Option for the cmpFHd Kernel

__global ___ void cmpFHd(float* rPhi, 1Phi, phiMag,
kx, ky, kz, X, y, z, rMu, iMu, Int N) {

int m = blockldx.x * FHD THREADS PER BLOCK + threadldx.X;

for (n = 0; n < N; n++) {
float expFhD = 2*PI*(kx[m]*X[n]+ky[m]*y[n]+kz[m]*z[n]);

float cArg
float sArg

cos(expFhD);
sin(expFhD);

rFnD[n] += rMu[m]*cArg — IMu[m]*sArg;
IFhD[n] += 1Mu[m]*cArg + rMu[m]*sArg;

} Problem: Each thread is trying to accumulate a partial sum to rFhD and iFhD
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We do have another option
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for (m =0; m < M; m++) {
for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] +
Ky[m]*y[n] +

kz[m]*z[n]);
cArg = cos(expFhD);
sArg = sin(expFhD);
rFhD[Nn] += rMu[m]*cArg —
IMufm]*sArg;
IFND[Nn] += 1Mu[m]*cArg +
rMu[m]*sArg;

}

} (@) before loop iInterchange

for (n = 0; n < N; n++) {
for (m = 0; m < M; m++) {
expFhD = 2*PI*(kx[m]*x[n] +
Ky[m]*y[n] +

kz[m]*z[n]);
cArg = cos(expFhD);
sArg = sin(expFhD);
rFhD[n] += rMu[m]*cArg —
IMu[m]*sArg;
IFhD[Nn] += 1Mu[m]*cArg +
rMu[m]*sArg;

+
} (b) after loop interchange

Loop interchange of the F'D computation

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign




A Third Option for the FHd kernel

__global___ void cmpFHd(float* rPhi, 1Phi, phiMag,
kx, ky, kz, X, y, z, rMu, iMu, Int N) {

int n = blockldx.x * FHD THREADS PER BLOCK + threadldx.X;

for (m = 0; m < M; m++) {
float rMu_reg = rMu[m];
float ItMu_reg = 1Mu[m];

float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);

float cArg = cos(expFhD);
float sArg = sin(expFhD);

rFhD[Nn] += rMu_reg*cArg — iIMu_reg*sArg;
iIFhD[Nn] += 1IMu_reg*cArg + rMu_reg*sArg;
}
+
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From C to CUDA: Step 2
Getting around Memory Bandwidth
Limitations

» Using registers
e Using constant memory



Using Registers to Reduce Global Memory Traffic

__global___ void cmpFHd(float* rPhi, 1Phi, phiMag,
kx, ky, kz, X, y, z, rMu, iMu, Int M) {

int n = blockldx.x * FHD THREADS PER BLOCK + threadldx.X;

float xn_ r = x[n]; float yn r = y[n]; float zn_ r = z[n];
float rFhDn_r = rFhD[Nn]; float 1FhDn_r = 1FhD[N];

for (m = 0; m < M; m++) {
float expFhD = 2*PI*(kx[m]*xn_r+ky[m]*yn_r+kz[m]*zn_r);

float cArg
float sArg

= cos(expFhD);
= sin(expFhD);
rFhDn r += rMu[m]*cArg — 1Mu[m]*sArg;
iIFhDn_r += 1Mu[m]*cArg + rMu[m]*sArg; | Compute-to-memory
} access ratio 14:7 (inside

rFhD[N] = rFhD _r; iFhD[n] = iFhD r; the loop)
1 Was 14:14 before (approx.)
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Tiling of Scan Data

LS reconstruction uses
multiple grids

[ +an) (e
[ an) (tad)

[ D R - — Each grid operates on all
scan data
smo | ..SMArray — Each grid operates on a
- distinct subset of voxels
( Instruction Unit ) — Each thread in the same grid
(' 32KB Register File ) (8KB Constant Cache ) Operates on a distinct voxel
SPO)  eereneeeeneneeneninns <p7
s L st 1 Thread n operates on voxel n:
Scan Data for (m = 0; m < ; m++) {
EX exQ = 2*PI*(kx[m]*x[n] +
@ ky[m]*y[n] +
phi kz[m]*z[nD)
rQ[n] += phi[m]*cos(exQ)
Off-Chip Memory (Global, Constant) 10[n] += phi[m]*sin(exQ)

}
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Using Constant Memory

» All threads access scan data (kx, ky, kz) in
the same order

 Threads don’t modify scan data

» Put scan data in constant memory
» Limited to 64kB (larger than shared memory)

» But cached, for every 32 accesses to constant
memory, at least 31 will be cached (96%
reduction in time, no bank conflicts - broadcast
mode to all threads in warp)



Chunking k-space Data to Fit into Constant
Memory

constant _ float kx c[CHUNK_ SIZE],
ky c[CHUNK SIZE], kz_ c[CHUNK SIZE];

“ void main() {

}

int 1;
for (i = 0; 1 < M/CHUNK_SIZE; i++);
cudaMemcpyToSymbol (kx_c,&kx[ 1*CHUNK_SI1ZE] ,4*CHUNK SIZE,
cudaMemCpyHostToDevice);
cudaMemcpyToSymbol (ky c,&ky[ 1*CHUNK_SI1ZE],4*CHUNK SIZE,
cudaMemCpyHostToDevice);
cudaMemcpyToSymbol (kz_c,&kz[ 1*CHUNK_SI1ZE] ,4*CHUNK SIZE,
cudaMemCpyHostToDevice);

cmpFHD<<<FHD THREADS PER_BLOCK, N/FHD THREADS PER_BLOCK>>>
(rPhi, 1Phi1, phiMag, X, y, z, rMu, IMu, Int M);
+
/* Need to call kernel one more time 1¥ M 1s not */
/* perfect multiple of CHUNK SIZE */




Revised Kernel for Constant Memory

__global ___ void cmpFHd(float* rPhi, 1Phi, phiMag,
X, Y, Z, rMu, 1tMu, 1nt M) {

int n = blockldx.x * FHD THREADS PER BLOCK + threadldx.X;

float xn_ r = x[n]; float yn r = y[n]; float zn_ r = z[n];
float rFhDn_r = rFhD[Nn]; float 1FhDn_r = 1FhD[N];

for (m = 0; m < M; m++) {
float expFhD = 2*PI*(kx_c[m]*xn_r kx_c, ky_cand kz_c
+ky c[m]*yn_r+kz_c[m]*zn_r); are no longer
arguments but global
float cArg = cos(expFhD); variables
float sArg = sin(expFhD);

Compute-to-memory
rFhDn_r += rMu[m]*cArg — iMu[m]*sArg; |accessratio 14:4 (inside

iIFhDn_r += iMu[m]*cArg + rMu[m]*sArg; Egy%g?¢2nxmnmnm

} .
o _ _ stores rMu[m] and iMu[m]
rFhD[Nn] rFhD_r; 1FhD[n] = 1FhD _r; in temporary registers




Scan Data Scan Data

kx[i] ) kx kx(i] ky[i] kz[i] phi[i] )
ky[i] ky
kzli] ) kz
phi[i] ) phi
Constant Memory Constant Memory

(a) k-space data stored in separate arrays. (b) k-space data stored in an array
whose elements are structs.

Effect of k-space data layout on constant cache efficiency.

* The previous implementations leads to bad (slow)
performance

« Each constant cache entry is designed to store multiple
consecutive words

 There are very few such entries - insufficient for all active
warps in an SM

e Solution: use array of struct (contrary to last week’s advice)
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struct kdata {
float x, float y, float z;

¥ k;

__constant__ struct kdata k c[CHUNK SIZE];

__vord main() {
int 1;
for (i = 0; 1 < M/CHUNK_SIZE; 1++);
cudaMemcpyToSymbol (k_c,k,12*CHUNK SIZE,
cudaMemCpyHostToDevice);

cmpFHD<<<FHD THREADS_PER_BLOCK,N/FHD THREADS PER BLOCK>>>
O;

}

Adjusting k-space data layout to improve cache efficiency
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__global___ void cmpFHd(float* rPhi, 1Phi, phiMag,
X, Y, Z, rMu, tMu, 1Int M) {

int n = blockldx.x * FHD THREADS PER BLOCK + threadldx.X;

float xn_ r = x[n]; float yn r = y[n]; float zn_ r = z[n];
float rFhDn_r = rFhD[Nn]; float 1FhDn_r = 1FhD[N];

for (m = 0; m < M; m++) {
float expFhD = 2*PI*(Kk[m].x*Xn_r+k[m].y*yn_r+k[m].z*zn_r);

float cArg = cos(expFhD);
float sArg = sin(expFhD);

rFhDn_r += rMu[m]*cArg — iMu[m]*sArg;
IFNDN_r += 1IMu[m]*cArg + rMu[m]*sArg;

}
rFhD[n] = rFhD _r; 1FhD[n] = 1FhD _r;
+

Adjusting the k-space data memory layout in the FHd kernel
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From C to CUDA: Step 3
Where are the potential bottlenecks?

Bottlenecks

« Memory Bandwidth
— See previous slides

* Trig operations

 Overhead (branches, address
calculations)
— These are important due to short inner loop
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Trigonometric Operations

e Use SFUs (Super Function Units)

— _sinand ___cos are implemented as
hardware instructions

* Require 4 cycles (vs. 12 and 13 FLOP for software
versions)

 Reduced accuracy

e Performance: from 22.8 GFLOPS to 92.2
GFLOPS



Address Calculations

o |Last bottleneck: Overhead of branches and
address calculations

« Solution: Loop unrolling and experimental tuning
- Loop unrolling factors (1,2,4,8,16)

- Also experimentally tuned the number of threads per
block and the number of scan points per grid (see
following slides)

« Performance:179 GFLOPS (Q), 145 GFLOPS
(F"d)



Experimental Methodology

« Reconstruct a 3D image of a human brain’

— 3.2 M scan data points acquired via 3D spiral scan
— 256K voxels

 Compare performance of several reconstructions

— Gridding + FFT reconstruction' on CPU (Intel Core 2
Extreme Quadro)

— LS reconstruction on CPU (double-precision, single-
precision)
— LS reconstruction on GPU (NVIDIA GeForce 83800 GTX)
* Metrics
— Reconstruction time: compute F™d and run linear solver
— Run time: compute Q or Fd

! Courtesy of Keith Thulborn and lan Atkinson, Center for MR Research, University of lllinois at Chicago
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Effects of Approximations

« Avoid temptation to measure only absolute error (lIo — 1)
— Can be deceptively large or small

e Metrics
— PSNR: Peak signal-to-noise ratio
— SNR: Signal-to-noise ratio

* Avoid temptation to consider only the error in the computed value
— Some applications are resistant to approximations; others are very sensitive

1 N )2 _1 L2
MSE—mnzguo,n 1,3, ) As—mnzglo(u)

max(1, (i, j)) _ JA
TVSE ) SNR 20Ioglo(m)

A.N. Netravali and B.G. Haskell, Digital Pictures: Representation, Compression, and Standards (2nd Ed), Plenum Press, New York, NY (1995).

PSNR = 201l0g,, (
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Experimental Tuning: Tradeoffs

* Inthe Q kernel, three parameters are natural candidates for
experimental tuning
— Loop unrolling factor (1, 2, 4, 8, 16)
— Number of threads per block (32, 64, 128, 256, 512)
— Number of scan points per grid (32, 64, 128, 256, 512, 1024, 2048)

e Cannot optimize these parameters independently
— Resource sharing among threads (register file, shared memory)

— Optimizations that increase a thread’s performance often increase the
thread’s resource consumption, reducing the total number of threads that

execute in parallel

e Optimization space is not linear
— Threads are assigned to SMs in large thread blocks
— Causes discontinuity and non-linearity in the optimization space
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Experimental Tuning: Example

Area determines overall performance . . . Insufficient reaisters to
Core Computatio, SP Utilization TBO 1 TB1 ] TB2 allocate 3 glocks
e N
Thread Contexts
Y Y4
< SFUO ) SFUO SFU1
32KB Register File 32KB Register File
X
A A A
16KB Shared Memory 16KB Shared Memory
Y@ ) ) )
A A A
J N /
(a) Pre-“optimization” (b) Post-“optimization”
Increase in per-thread performance, but fewer threads:
Lower overall performance
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Experimental Tuning: Scan Points Per Grid

40

35

30 - /o

: s
. yd et
/‘__ ,

10 -

Time (s)

32 64 128 256 512 1024 2048

Scan points per grid
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Experimental Tuning: Scan Points
Per Grid

Each line in previous plot represents a
combination of loop unrolling factor and threads
per block

The y-axis represents runtime, so lower is better

Runtime tenc_:Js to iIncrease as the number of scan
points per grid increases

That’s counter-intuitive. Why would performance
get worse as the amount of data processed by
each kernel increased?

» Conflicts in the constant cache (across different
blocks)



Experimental Tuning:
Scan Points Per Grid (Improved Data Layout)

16

14 -

12

10

8,

Time (S)

|
l
I

32 64 128 256 512 1024 2048
Scan points per grid
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Experimental Tuning: Loop Unrolling
Factor

Loop unrolling factor
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Sidebar: Optimizing the CPU
Implementation

* Optimizing the CPU implementation of your application is very
Important

— Often, the transformations that increase performance on CPU also increase
performance on GPU (and vice-versa)

— The research community won’t take your results seriously if your baseline
IS crippled
o Useful optimizations
— Data tiling
— SIMD vectorization (SSE)
— Fast math libraries (AMD, Intel)
— Classical optimizations (loop unrolling, etc)

 Intel compiler (icc, icpc)
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(1) True (2) Gridded
41.7% error
PSNR = 16.8 dB

(4) CPU.SP (5) GPU.Base
12.0% error 12.1% error
PSNR =27.6 dB PSNR = 27.6 dB

(7) GPU.Coalesce (8) GPU.ConstMem
12.1% error 12.1% error
PSNR =27.6 dB PSNR =27.6 dB

(3) CPU.DP
12.1% error
PSNR =27.6 dB

(6) GPU.RegAlloc
12.1% error
PSNR =27.6 dB

(9) GPU.FastTrig
12.1% error
PSNR =27.5dB

Quantitative
Evaluation
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Summary of Results

Q Fd
Reconstruction Run GFLOP Run GFLOP Linear Recon.

Time (m) Time (m) Solver (m) | Time (m)
Gridding + FFT N/A N/A N/A N/A N/A ( 0.39
(CPU, DP)
LS (CPU, DP) 4009.0 0.3 518.0 0.4 1.59 519.59
LS (CPU, SP) 2678.7 0.5 342.3 0.7 1.61 343.91
LS (GPU, Naive) 260.2 5.1 41.0 54 1.65 42.65
LS (GPU, 72.0 18.6 9.8 22.8 1.57 11.37
CMem)
LS (GPU, 13.6 08.2 2.4 92.2 1.60 4.00
CMem,
SFU)

/\

LS (GPU, 7.5 178.9 1.5 144.5 1.69 3.19
CMem,
SFU, Exp) 38X

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010

ECE408, University of Illinois, Urbana-Champaign



Summary of Results

Q F™d
Reconstruction Run Time (m) | GFLOP | Run Time | GFLOP Linear Recon. Time
(m) Solver (m) (m)

Gridding + FFT N/A N/A N/A N/A N/A 0.39
(CPU, DP)
LS (CPU, DP) 4009.0 0.3 518.0 0.4 1.59 519.59
LS (CPU, SP) 2678.7 ) 05| ( 3423 0.7 1.61 C343.91j
LS (GPU, Naive) 260.2 5.1 41.0 5.4 1.65 42.65
LS (GPU, CMem) 72.0 18.6 9.8 22.8 1.57 11.37
LS (GPU, CMem, 13.6 08.2 2.4 92.2 1.60 4.00
SFU)
LS (GPU, CMem, 75| )178.9 15]) 1445 1.69 <:::::E>
SFU, EXxp)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

108X



