
1

CS 677 Parallel Programming forCS 677: Parallel Programming for
Many-core Processors y

Lecture 5

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E il Phili M d h i@ dE-mail: Philippos.Mordohai@stevens.edu

LogisticsLogistics

• Midterm: March 22Midterm: March 22

• Project proposal presentations: March 8
H t b d b b M h 3– Have to be approved by me by March 3

2

Project Proposalj p
• Problem description

– What is the computation and why is it important?p y p
– Abstraction of computation: equations, graphic or pseudo-

code, no more than 1 page
• Suitability for GPU accelerationy

– Amdahl’s Law: describe the inherent parallelism. Argue that it
is close to 100% of computation.

– Synchronization and Communication: Discuss what data
d b d b h i istructures may need to be protected by synchronization, or

communication through host.
– Copy Overhead: Discuss the data footprint and anticipated

cost of copying to/from host memorycost of copying to/from host memory.
• Intellectual Challenges

– Generally, what makes this computation worthy of a project?
P i t t diffi lti ti i t t t i hi i– Point to any difficulties you anticipate at present in achieving
high speedup

3

Some IdeasSome Ideas

• k-meansk means

• Perceptron

B i• Boosting
– General

– Face detector (group of 2)

• Mean Shift

• Normal estimation for 3D point clouds

4

More IdeasMore Ideas
• Look for parallelizable problems in:

– Image processing

– Cryptanalysis

– Graphics
• GPU Gems

– Nearest neighbor search

5

Even MoreEven More…
• Particle simulations

• Financial analysis

• MCMCMCMC

• Games/puzzles
Mastermind example– Mastermind example

6

k-meansk means

• See alsoSee also
http://www.cs.stevens.edu/~mordohai/clas
ses/cs559 f10 htmlses/cs559_f10.html
– Notes 13

7

SSE Criterion FunctionSSE Criterion Function
• Let ni be the number of samples, then the

mean is:

• The sum-of-squared errors criterion function
(to minimize) is:(to minimize) is:

• Note that the number of clusters c is fixedNote that the number of clusters, c, is fixed

8

K-means Clustering

1. Initialize
Pick k cluster centers arbitrarily– Pick k cluster centers arbitrarily

– Assign each example to closest center

2. Compute sample means for each
cluster

3 Reassign all samples to the closest3. Reassign all samples to the closest
mean

4. If clusters changed at step 3, go to
step 2 9

K-means ClusteringK means Clustering
Consider steps 2 and 3 of the algorithm

2. compute sample means for each cluster

3. reassign all samples to the closest mean
If we represent clusters
by their old means, the
error has decreased

10

K-means ClusteringK means Clustering

• We can prove that by repeating steps 2 p y p g p
and 3, the objective function is reduced

• Thus k-means converges after a finiteThus k means converges after a finite
number of iterations of steps 2 and 3

• However k-means is not guaranteed to• However k-means is not guaranteed to
find a global minimum

11

K-means ClusteringK means Clustering

• Finding the optimum of JSSE is NP-hardFinding the optimum of JSSE is NP hard

• In practice, k-means clustering usually
performs wellperforms well

• To avoid local minima, in practice we
d l i i i li i l irandomly re-initialize it several times

12

PerceptronPerceptron

• See alsoSee also
http://www.cs.stevens.edu/~mordohai/clas
ses/cs559 f14 htmlses/cs559_f14.html
– Notes 13

13

The ProblemThe Problem

• Assume we have 2 classes
– Samples: y1,…, yn , some in class 1, some in class 2

• Use samples to determine weights a in the
discriminant function g(y) = atydiscriminant function g(y) a y

• We want to minimize the training error (the number
of misclassified samples y1,…, yn)

• If: g(yi)>0 => yi classified as c1
g(yi)<0 => yi classified as c2

• Thus training error is 0 if

Pattern Classification, Chapter 5 14

“Normalization”

• Thus training error is 0 if:

• Equivalently, training error is 0 if:

• This suggests “normalization” (a.k.a. reflection):
1. Replace all examples from class 2 by:

2. Seek weight vector a such that

– If such a exists, it is called a separating or solution
vector
Original samples x x can indeed be separated by– Original samples x1,…, xn can indeed be separated by
a line

Pattern Classification, Chapter 5 15

NormalizationNormalization

• Seek a hyperplane • Seek hyperplane that
that separates
patterns from different
categories

puts normalized
patterns on the
same(positive) sidecategories same(positive) side

Pattern Classification, Chapter 5 16

Perceptron Criterion FunctionPerceptron Criterion Function

• If y is misclassified, aty<0
Th J () >0• Thus Jp(a) >0

• Jp(a) is ||a|| times the sum of
distances of misclassifieddistances of misclassified
examples to decision boundary

• Jp(a) is piecewise linear• Jp(a) is piecewise linear
and thus suitable for
gradient descentg

Pattern Classification, Chapter 5

Perceptron Batch Rulep

• Gradient of Jp(a) is:
– YM are samples misclassified by a(k)

– It is not possible to solve analytically
because of YM

• Update rule for gradient descent:• Update rule for gradient descent:

• Thus the gradient decent batch update rule for
J (a) is:Jp(a) is:

• It is called batch rule because it is based on all• It is called batch rule because it is based on all
misclassified examples

Pattern Classification, Chapter 5 18

BoostingBoosting

• See alsoSee also
http://www.cs.stevens.edu/~mordohai/clas
ses/cs559 f14 htmlses/cs559_f14.html
– Notes 11

19

BoostingBoosting

• Idea: given a set of weak learners, run themIdea: given a set of weak learners, run them
multiple times on (reweighted) training data,
then let learned classifiers vote

• At each iteration t:
– Weight each training example by how incorrectly

it l ifi dit was classified
– Learn a hypothesis – ht

– Choose a strength for this hypothesis – α– Choose a strength for this hypothesis – αt

• Final classifier: weighted combination of
weak learnersweak learners

20

Learning from Weighted DataLearning from Weighted Data

• Sometimes not all data points are equalSometimes not all data points are equal
– Some data points are more equal than others

• Consider a weighted datasetg
– D(i) – weight of i th training example (xi,yi)
– Interpretations:

• i th training example counts as D(i) examples
• If I were to “resample” data, I would get more samples

of “heavier” data pointsp

• Now, in all calculations the i th training
example counts as D(i) “examples”

21

Definition of BoostingDefinition of Boosting

• Given training set (x1,y1),…, (xm,ym)g (1,y1), , (m,ym)
• yi ϵ{-1,+1} correct label of instance xiϵX
• For t=1,…,T

– construct distribution Dt on {1,…,m}
– find weak hypothesis

h : X { 1 +1}– ht: X {-1,+1}
with small error εt on Dt

• Output final hypothesis Hfinal

22

AdaBoostAdaBoost
• Constructing Dt

D 1/– D1=1/m

– Given Dt and ht:

where Z is a normalizationwhere Zt is a normalization
constant

• Final hypothesis:Final hypothesis:

23

Face DetectionFace Detection

• I see this as a two person projectI see this as a two person project
– One implements boosting as before

One implements the face specific parts– One implements the face-specific parts

• See also
http://www.cs.stevens.edu/~mordohai/clas
ses/cs559_f14.html
– Notes 11

24

Classifier is Learned from Labeled Data

• Training Datag
– 5000 faces

• All frontal

– 108 non faces
– Faces are normalized

• Scale, translation

• Many variations
A i di id l– Across individuals

– Illumination
P (t ti b th i l d t)– Pose (rotation both in plane and out)

25

Boosted Face Detection: Image FeaturesBoosted Face Detection: Image Features

“R l fil ”“Rectangle filters”

Similar to Haar wavelets

)(if f

otherwise

)(if
)(

t

titt
it

xf
xh

000,000,6100000,60
Unique Binary Features

 t bxhxC)()(

Unique Binary Features t

26

Feature Selection

• For each round of boosting:
– Evaluate each rectangle filter on each

example

– Sort examples by filter values

– Select best threshold for each filter

– Select best filter/threshold (= Feature)

– Reweight examples

27

Feature Localization
• Learned features reflect the task

28

Output of Face Detector on Test ImagesOutput of Face Detector on Test Images

29

Mean ShiftMean Shift

• See alsoSee also
http://www.cs.stevens.edu/~mordohai/clas
ses/cs559 f10 htmlses/cs559_f10.html
– Notes 13

30

Intuitive Description
Region of

interest

Center of
mass

Mean Shift
vector

Distribution of identical billiard balls

vector
Objective : Find the densest region

31

Computing The Mean Shift

Simple Mean Shift procedure:
• Compute mean shift vector

2

1
()

n
i

i
i

g
h

x - x

x

T l h K l i d b ()

2

1

()
n

i

i

g
h

m x x

x - x

•Translate the Kernel window by m(x)

32

Segmentation
ExampleExample

33

Segmentation
ExampleExample

34

Normal Estimation for 3D Point
Cl dClouds

35

Scatter MatrixScatter Matrix
• Compute the symmetric positive definite

covariance matrix from N neighbors of a 3 Dcovariance matrix from N neighbors of a 3-D
point
– {X } = {(x y z)T }– {Xi} = {(xi, yi, zi) }

• Then, the eigenvector that corresponds to the
smallest eigenvalue is the normal to thesmallest eigenvalue is the normal to the
surface at each point
– If each point belonged to a smooth surface

36

ClassificationClassification

• Points can be classified according to g
eigenvalues into surfaces, foliage, ground
plane etc.
– Images from Lalonde et al 2006– Images from Lalonde et al. 2006

37

Markov Chain Monte CarloMarkov Chain Monte Carlo

• Randomized algorithms based onRandomized algorithms based on
sampling from probability distributions to
generate sequences of observationsgenerate sequences of observations

• Applications
A i t i t ti– Approximate integration

– Optimization of energy/cost functions in very
large search spaceslarge search spaces

– Risk assessment in finance

38

Sample ProposalSample Proposal

39

OverviewOverview

• TimersTimers
• Case Study – Advanced MRI Reconstruction

A l j t t UIUC lti i bli ti– A class project at UIUC resulting in a publication

40

TimersTimers
• Any timer can be used

– Check resolution

• Important: many CUDA API functions are p y
asynchronous
– They return control back to the calling CPUThey return control back to the calling CPU

thread prior to completing their work

– All kernel launches are asynchronous y

– So are all memory copy functions with the
Async suffix on the name

41

SynchronizationSynchronization

• Synchronize the CPU thread with the GPUSynchronize the CPU thread with the GPU
by calling cudaThreadSynchronize()
immediately before starting and stoppingimmediately before starting and stopping
the CPU timer

• cudaThreadSynchronize()blocks the• cudaThreadSynchronize()blocks the
calling CPU thread until all CUDA calls
previously issued by the thread arepreviously issued by the thread are
completed

42

SynchronizationSynchronization

• cudaEventSynchronize() blocks untilcudaEventSynchronize() blocks until
a given event in a particular stream has
been recorded by the GPUbeen recorded by the GPU
– Safe only in the default (0) stream

Fine for our purposes– Fine for our purposes

43

CUDA TimerCUDA Timer
cudaEvent_t start, stop;
float time; ;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);cudaEventRecord(start, 0);

kernel<<<grid,threads>>> (d_odata, d_idata,
size x, size y, NUM REPS); _ , _y, _);

cudaEventRecord(stop, 0);
cudaEventSynchronize(stop); // after cudaEventRecordcudaEventSynchronize(stop); // after cudaEventRecord
cudaEventElapsedTime(&time, start, stop);
cudaEventDestroy(start);
cudaEventDestroy(stop);cudaEventDestroy(stop);

44

OutputOutput

• time is in millisecondstime is in milliseconds

• Its resolution of approximately half a
microsecondmicrosecond

• The timings are measured on the GPU
l kclock
– Operating system–independent

45

Application Case StudyApplication Case Study –
Advanced MRI Reconstruction

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 46

ObjectiveObjective

• To learn about computational thinkingTo learn about computational thinking
skills through a concrete example

Problem formulation– Problem formulation

– Designing implementations to steer around
limitationslimitations

– Validating results

Understanding the impact of your– Understanding the impact of your
improvements

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 47

AcknowledgementsAcknowledgements

Sam S. Stone§, Haoran Yi§, Justin P. Haldar†, Deepthi
Nandakumar, Bradley P. Sutton†,
Zhi-Pei Liang†, Keith Thulburin*

§C t f R li bl d † B k I tit t f§Center for Reliable and
High-Performance Computing

† Beckman Institute for
Advanced Science and Technology

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 48

* University of Illinois, Chicago Medical Center

48

OverviewOverview

• Magnetic resonance imagingMagnetic resonance imaging
• Non-Cartesian Scanner Trajectory
• Least squares (LS) reconstruction• Least-squares (LS) reconstruction

algorithm
• Optimizing the LS reconstruction on the• Optimizing the LS reconstruction on the

G80
– Overcoming bottlenecksOvercoming bottlenecks
– Performance tuning

• Summary
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 49

Summary

Reconstructing MR Images
Cartesian Scan Data Spiral Scan Data

GriddingGridding

FFT LS

Cartesian scan data + FFT:
Slow scan, fast reconstruction, images may be poor

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 50

Reconstructing MR Images
Cartesian Scan Data Spiral Scan Data

Gridding1Gridding

FFT LS

Spiral scan data + Gridding + FFT:
Fast scan, fast reconstruction, better images

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

51

1 Based on Fig 1 of Lustig et al, Fast Spiral Fourier Transform for Iterative MR Image Reconstruction, IEEE Int’l Symp.
on Biomedical Imaging, 2004

Reconstructing MR Images
Cartesian Scan Data Spiral Scan Data

GriddingGridding

FFT Least-Squares (LS)

Spiral scan data + LS
Superior images at expense of significantly more computation

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 52

An Exciting Revolution - Sodium Map of the
BrainBrain

• Images of sodium in the brain
Very large number of samples for increased SNR– Very large number of samples for increased SNR

– Requires high-quality reconstruction

• Enables study of brain cell viability before anatomic• Enables study of brain-cell viability before anatomic
changes occur in stroke and cancer treatment – within
days!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago

53

Least-Squares Reconstruction
dFWWFF HHH)(

• FHF depends only on scanner
Compute Q for FHF

Acquire Data

• F F depends only on scanner
configuration

• WHW incorporates prior information,
such as anatomical constraintsAcquire Data

H

such as anatomical constraints
• FHd depends on scan data
• ρ vector containing voxel values of

reconstructed image - found using
Compute FHd

g g
linear solver
– 99.5% of the reconstruction time for

a single image is devoted to
computing FHd

Find ρ
computing F d

– computing Q is even more
expensive, but depends only on the
scanner configuration and can be
amortized

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 54

amortized

Least-Squares Reconstruction
• The solution is:

dFWWFF HHH 1)(

• but for a relatively low-res reconstruction of
1283 voxels, the inverted matrix contains
well over four trillion complex-valued
elements

• Use conjugate gradient to solve

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 55

Least-Squares Reconstruction

H

dFWWFF HHH)(
• WHW is sparse

• FHF has convolutional structure
– each descending diagonal from left to right is

constant
• Efficient FFT-based matrix multiplication is

possiblep
– Out of scope for CS 677

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 56

Least-Squares Reconstruction
• What has to be computed is the Q matrix

which depends only on the scan trajectory, but p y j y,
not the scan data

M

where:

M

m

xki
mn

nmekxQ
1

)2(2|)(|)(
• where:

– km is the location of the mth sample
– xn is the nth voxelxn is the n voxel
– φ() is the Fourier transform of the voxel basis

function

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 57

Least-Squares Reconstruction

• What also needs to be computed is the
vector FHd which depends on the datavector FHd which depends on the data

M

xkiH nmkdkdF)2(*)()(][

m

mmn
nmekdkdF

1

)()()(][

• These two equations look similar but the
computation of Q requires oversampling bycomputation of Q requires oversampling by
a factor of 2 in each dimension

Q is O(8MN) and FHd is O(MN)– Q is O(8MN) and F d is O(MN)
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 58

Least-Squares Reconstruction
Complexity- Complexity

• Q: 1-2 days on CPU

• FHd: 6-7 hours on CPU

• ρ: 1.5 minutes on CPU

• Therefore, accelerate Q and FHd
computationscomputations

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 59

for (m = 0; m < M; m++) {

phiMag[m] = rPhi[m]*rPhi[m] +
iPhi[m]*iPhi[m];

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +
iPhi[m]*iD[m];iPhi[m]*iPhi[m];

for (n = 0; n < N; n++) {
expQ = 2*PI*(kx[m]*x[n] +

iPhi[m]*iD[m];
iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

ky[m]*y[n] +
kz[m]*z[n]);

rQ[n] +=phiMag[m]*cos(expQ);

for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +
kz[m]*z[n]);rQ[n] +=phiMag[m]*cos(expQ);

iQ[n] +=phiMag[m]*sin(expQ);
}

}

kz[m]*z[n]);

cArg = cos(expFhD);
sArg = sin(expFhD);

(a) Q computation
rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;
iFhD[n] += iMu[m]*cArg +iFhD[n] + iMu[m] cArg +

rMu[m]*sArg;
}

} (b) FHd computation

Q v.s. FHD

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 60 60

Algorithms to Accelerate
for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +
iPhi[m]*iD[m]

• Scan data

– M = # scan points
iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –
iPhi[m]*rD[m];

– kx, ky, kz = 3D scan data

• Voxel data

N = # voxels
for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +
kz[m]*z[n]);

– N = # voxels

– x, y, z = input 3D voxel data

– rFhD, iFhD= output voxel datakz[m]*z[n]);
cArg = cos(expFhD);
sArg = sin(expFhD);

p

• Complexity is O(MN)

• Inner loop
rFhD[n] += rMu[m]*cArg –

iMu[m]*sArg;
iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;

– 14 FP MUL or ADD ops

– 2 FP trig ops (12-13 FL OPs)

12 loads 2 stores

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010 - ECE408, University of Illinois, Urbana-Champaign
61

rMu[m] sArg;
}

}

– 12 loads, 2 stores

From C to CUDA: Step 1
What unit of work is assigned to each thread?What unit of work is assigned to each thread?

1. Each thread executes an iteration of
the outer loop

P bl E h h d i i

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] + => Problem: Each thread is trying to
accumulate a partial sum to rFhD
and iFhD (requires a reduction)

2 Each thread executes an iteration of

rMu[m] rPhi[m] rD[m] +
iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –
iPhi[m]*rD[m];

2. Each thread executes an iteration of
the inner loop.

• Avoids the reduction problem
• But now each thread is doing

for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] + But now each thread is doing
very little work

• We need one grid for each outer
loop iteration.

y[] y[]
kz[m]*z[n]);

cArg = cos(expFhD);
sArg = sin(expFhD); p

• Performance limited by
overheads for launching M grids
and writing 2N values to global

rFhD[n] += rMu[m]*cArg –
iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

62

memory for each gridrMu[m]*sArg;
}

}

One Possibility (Wrong)
__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

kx, ky, kz, x, y, z, rMu, iMu, int N) {

One Possibility (Wrong)

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD); sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg – iMu[m]*sArg;
iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;

}
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 63

}

One Possibility (Wrong) - Improved
__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;
float rMu_reg, iMu_reg;

rMu reg rMu[m] rPhi[m]*rD[m] + iPhi[m]*iD[m];rMu_reg = rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
iMu_reg = iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);

cArg = cos(expFhD); sArg = sin(expFhD);

rFhD[n] += rMu_reg*cArg – iMu_reg*sArg;
iFhD[n] += iMu_reg*cArg + rMu_reg*sArg;

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 64

}

Back to the Drawing Board – Maybe map the n
loop to threads?loop to threads?

for (m = 0; m < M; m++) {

M [] Phi[]* D[] iPhi[]*iD[]rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

for (n = 0; n < N; n++) {(; ;) {
expFhD = 2*PI*(kx[m]*x[n] + ky[m]*y[n] + kz[m]*z[n]);
cArg = cos(expFhD);
sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg – iMu[m]*sArg;
iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;

}
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 65

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +
iPhi[m]*iD[m];

for (m = 0; m < M; m++) {
for (n = 0; n < N; n++) {

rMu[m] = rPhi[m]*rD[m] +iPhi[m]*iD[m];
iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];

rMu[m] = rPhi[m]*rD[m] +
iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –
iPhi[m]*rD[m];

for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +
kz[m]*z[n]);

expFhD = 2*PI*(kx[m]*x[n] +
ky[m]*y[n] +
kz[m]*z[n]);

kz[m]*z[n]);

cArg = cos(expFhD);
sArg = sin(expFhD);

cArg = cos(expFhD);
sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –
iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

rFhD[n] += rMu[m]*cArg –
iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +
rMu[m]*sArg;iFhD[n] + iMu[m] cArg +

rMu[m]*sArg;
}

}
() FHd t ti

rMu[m] sArg;
}

} (b) after code motion

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

(a) FHd computation

66

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +
iPhi[m]*iD[m];

for (m = 0; m < M; m++) {

rMu[m] = rPhi[m]*rD[m] +
iPhi[m]*iD[m];iPhi[m]*iD[m];

iMu[m] = rPhi[m]*iD[m] –
iPhi[m]*rD[m];

iPhi[m]*iD[m];
iMu[m] = rPhi[m]*iD[m] –

iPhi[m]*rD[m];
}

for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +
kz[m]*z[n]);

for (m = 0; m < M; m++) {
for (n = 0; n < N; n++) {
expFhD = 2*PI*(kx[m]*x[n] +

ky[m]*y[n] +kz[m]*z[n]);

cArg = cos(expFhD);
sArg = sin(expFhD);

ky[m]*y[n] +
kz[m]*z[n]);

cArg = cos(expFhD);

rFhD[n] += rMu[m]*cArg –
iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +

sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –
iMu[m]*sArg;iFhD[n] + iMu[m] cArg +

rMu[m]*sArg;
}

}
() FHd t ti

iMu[m] sArg;
iFhD[n] += iMu[m]*cArg +

rMu[m]*sArg;
}

} (b) ft l fi i

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

(a) FHd computation } (b) after loop fission

67

A Separate cmpMu KernelA Separate cmpMu Kernel

__global__ void cmpMu(float* rPhi, iPhi, rD, iD, rMu, iMu)
{
int m = blockIdx.x * MU_THREAEDS_PER_BLOCK + threadIdx.x;

rMu[m] = rPhi[m]*rD[m] + iPhi[m]*iD[m];
iMu[m] = rPhi[m]*iD[m] – iPhi[m]*rD[m];

}}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 68

A Second Option for the cmpFHd Kernel

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,
kx ky kz x y z rMu iMu int N) {kx, ky, kz, x, y, z, rMu, iMu, int N) {

int m = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

for (n = 0; n < N; n++) {
float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);

float cArg = cos(expFhD);float cArg = cos(expFhD);
float sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg – iMu[m]*sArg;

Problem: Each thread is trying to accumulate a partial sum to rFhD and iFhD

iFhD[n] += iMu[m]*cArg + rMu[m]*sArg;
}

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 69

We do have another optionWe do have another option

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 70

for (m = 0; m < M; m++) {
for (n = 0; n < N; n++) {

for (n = 0; n < N; n++) {
for (m = 0; m < M; m++) {

expFhD = 2*PI*(kx[m]*x[n] +
ky[m]*y[n] +
kz[m]*z[n]);

expFhD = 2*PI*(kx[m]*x[n] +
ky[m]*y[n] +
kz[m]*z[n]);

cArg = cos(expFhD);
sArg = sin(expFhD);

cArg = cos(expFhD);
sArg = sin(expFhD);

rFhD[n] += rMu[m]*cArg –
iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +
rMu[m]*sArg;

rFhD[n] += rMu[m]*cArg –
iMu[m]*sArg;

iFhD[n] += iMu[m]*cArg +
rMu[m]*sArg;rMu[m] sArg;

}
} (a) before loop interchange

rMu[m] sArg;
}

} (b) after loop interchange

Loop interchange of the FHD computation

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 71

A Third Option for the FHd kernelA Third Option for the FHd kernel
__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

kx, ky, kz, x, y, z, rMu, iMu, int N) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

for (m = 0; m < M; m++) {
float rMu_reg = rMu[m];
float iMu_reg = iMu[m];

float expFhD = 2*PI*(kx[m]*x[n]+ky[m]*y[n]+kz[m]*z[n]);float expFhD 2 PI (kx[m] x[n]+ky[m] y[n]+kz[m] z[n]);

float cArg = cos(expFhD);
float sArg = sin(expFhD);

rFhD[n] += rMu_reg*cArg – iMu_reg*sArg;
iFhD[n] += iMu_reg*cArg + rMu_reg*sArg;

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 72

}
}

From C to CUDA: Step 2
G i d M B d id hGetting around Memory Bandwidth

Limitations

• Using registers

• Using constant memory

73

global void cmpFHd(float* rPhi, iPhi, phiMag,

Using Registers to Reduce Global Memory Traffic
__global__ void cmpFHd(float rPhi, iPhi, phiMag,

kx, ky, kz, x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {
float expFhD = 2*PI*(kx[m]*xn_r+ky[m]*yn_r+kz[m]*zn_r);

fl t A (FhD)float cArg = cos(expFhD);
float sArg = sin(expFhD);

rFhDn r += rMu[m]*cArg – iMu[m]*sArg;_ g g
iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;

}
rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Compute-to-memory
access ratio 14:7 (inside
the loop)
Was 14:14 before (approx.)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 74

} (pp)

Tiling of Scan Data
LS reconstruction uses

multiple grids
– Each grid operates on all

TB0 TB1 TBN
TB0 TB1 TBN

TB0 TB1 TBN g p
scan data

– Each grid operates on a
distinct subset of voxels
E h h d i h id

SM 0 SM 15

– Each thread in the same grid
operates on a distinct voxel

Instruction Unit

32KB Register File 8KB Constant Cache

SP0 SP7

for (m = 0; m < M/32; m++) {
exQ 2*PI*(kx[m]*x[n] +

Thread n operates on voxel n:SFU0 SFU1

x kx
Pixel Data Scan Data

exQ = 2*PI*(kx[m]*x[n] +
ky[m]*y[n] +
kz[m]*z[n])

rQ[n] += phi[m]*cos(exQ)

x
y
z

rQ
iQ

kx
ky
kz
phi

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 75

iQ[n] += phi[m]*sin(exQ)
}

Off-Chip Memory (Global, Constant)

Using Constant MemoryUsing Constant Memory

• All threads access scan data (kx, ky, kz) inAll threads access scan data (kx, ky, kz) in
the same order

• Threads don’t modify scan datay

Put scan data in constant memoryy
Limited to 64kB (larger than shared memory)
But cached, for every 32 accesses to constant

31 (96%memory, at least 31 will be cached (96%
reduction in time, no bank conflicts – broadcast
mode to all threads in warp)p)

76

Chunking k-space Data to Fit into Constant
Memory

__constant__ float kx_c[CHUNK_SIZE],
ky_c[CHUNK_SIZE], kz_c[CHUNK_SIZE];

…

y

__void main() {

int i;
for (i = 0; i < M/CHUNK SIZE; i++);for (i 0; i < M/CHUNK_SIZE; i++);
cudaMemcpyToSymbol(kx_c,&kx[i*CHUNK_SIZE],4*CHUNK_SIZE,

cudaMemCpyHostToDevice);
cudaMemcpyToSymbol(ky_c,&ky[i*CHUNK_SIZE],4*CHUNK_SIZE,

d i)cudaMemCpyHostToDevice);
cudaMemcpyToSymbol(kz_c,&kz[i*CHUNK_SIZE],4*CHUNK_SIZE,

cudaMemCpyHostToDevice);
…
cmpFHD<<<FHD_THREADS_PER_BLOCK, N/FHD_THREADS_PER_BLOCK>>>

(rPhi, iPhi, phiMag, x, y, z, rMu, iMu, int M);
}
/* Need to call kernel one more time if M is not */

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 77

/* Need to call kernel one more time if M is not */
/* perfect multiple of CHUNK SIZE */

}

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,

Revised Kernel for Constant Memory

x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

f (0 < M ++) {for (m = 0; m < M; m++) {
float expFhD = 2*PI*(kx_c[m]*xn_r

+ky_c[m]*yn_r+kz_c[m]*zn_r);

kx_c, ky_c and kz_c
are no longer
arguments but global

i blfloat cArg = cos(expFhD);
float sArg = sin(expFhD);

rFhDn r += rMu[m]*cArg – iMu[m]*sArg;

variables

Compute-to-memory
access ratio 14:4 (insiderFhDn_r += rMu[m]*cArg – iMu[m]*sArg;

iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;
}
rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

access ratio 14:4 (inside
the loop)
Can be 14:2 if compiler
stores rMu[m] and iMu[m]
in temporary registers

78

}
in temporary registers

kx[i] ky[i] kz[i] phi[i]
Scan Data

kx
ky

kx[i]
ky[i]

Scan Data

C t t M

ky
kz
phi

ky[i]
ky[i]
phi[i]

C t t M Constant Memory

(a) k-space data stored in separate arrays. (b) k-space data stored in an array
whose elements are structs.

Constant Memory

Effect of k-space data layout on constant cache efficiency.

• The previous implementations leads to bad (slow) p p ()
performance

• Each constant cache entry is designed to store multiple
consecutive words

• There are very few such entries – insufficient for all active
warps in an SM

• Solution: use array of struct (contrary to last week’s advice)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 79

Solution: use array of struct (contrary to last week s advice)

struct kdata {
float x, float y, float z;

} k;}

__constant__ struct kdata k_c[CHUNK_SIZE];
…

__ void main() {

int i;

for (i = 0; i < M/CHUNK_SIZE; i++);
cudaMemcpyToSymbol(k_c,k,12*CHUNK_SIZE,

cudaMemCpyHostToDevice);cudaMemCpyHostToDevice);

cmpFHD<<<FHD_THREADS_PER_BLOCK,N/FHD_THREADS_PER_BLOCK>>>
();

}

Adjusting k-space data layout to improve cache efficiency

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 80

__global__ void cmpFHd(float* rPhi, iPhi, phiMag,
x, y, z, rMu, iMu, int M) {

int n = blockIdx.x * FHD_THREADS_PER_BLOCK + threadIdx.x;

float xn_r = x[n]; float yn_r = y[n]; float zn_r = z[n];
float rFhDn r = rFhD[n]; float iFhDn r = iFhD[n];float rFhDn_r = rFhD[n]; float iFhDn_r = iFhD[n];

for (m = 0; m < M; m++) {
float expFhD = 2*PI*(k[m].x*xn_r+k[m].y*yn_r+k[m].z*zn_r);

float cArg = cos(expFhD);
float sArg = sin(expFhD);

rFhDn_r += rMu[m]*cArg – iMu[m]*sArg;
iFhDn_r += iMu[m]*cArg + rMu[m]*sArg;

}
rFhD[n] = rFhD_r; iFhD[n] = iFhD_r;

}

Adjusting the k-space data memory layout in the FHd kernel

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 81

j g p y y

From C to CUDA: Step 3
Where are the potential bottlenecks?Where are the potential bottlenecks?

B ttl kBottlenecks

• Memory Bandwidth
– See previous slides

• Trig operationsg p

• Overhead (branches, address
calculations)calculations)
– These are important due to short inner loop

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 82

Trigonometric OperationsTrigonometric Operations

• Use SFUs (Super Function Units)Use SFUs (Super Function Units)
– __sin and __cos are implemented as

hardware instructionshardware instructions
• Require 4 cycles (vs. 12 and 13 FLOP for software

versions)

• Reduced accuracy

• Performance: from 22.8 GFLOPS to 92.2
GFLOPSGFLOPS

83

Address CalculationsAddress Calculations

• Last bottleneck: Overhead of branches andLast bottleneck: Overhead of branches and
address calculations

• Solution: Loop unrolling and experimental tuningp g p g
– Loop unrolling factors (1,2,4,8,16)

– Also experimentally tuned the number of threads per
block and the number of scan points per grid (see
following slides)

• Performance:179 GFLOPS (Q) 145 GFLOPS• Performance:179 GFLOPS (Q), 145 GFLOPS
(FHd)

84

Experimental Methodology
• Reconstruct a 3D image of a human brain1

– 3.2 M scan data points acquired via 3D spiral scan
256K voxels– 256K voxels

• Compare performance of several reconstructions
– Gridding + FFT reconstruction1 on CPU (Intel Core 2

E t Q d)Extreme Quadro)
– LS reconstruction on CPU (double-precision, single-

precision)
LS reconstruction on GPU (NVIDIA GeForce 8800 GTX)– LS reconstruction on GPU (NVIDIA GeForce 8800 GTX)

• Metrics
– Reconstruction time: compute FHd and run linear solver

R ti t Q FHd– Run time: compute Q or FHd

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 85

1 Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago

Effects of Approximations
• Avoid temptation to measure only absolute error (I0 – I)

– Can be deceptively large or small

• Metrics• Metrics
– PSNR: Peak signal-to-noise ratio
– SNR: Signal-to-noise ratio

• Avoid temptation to consider only the error in the computed value
– Some applications are resistant to approximations; others are very sensitive

i j

jiIjiI
mn

MSE 2
0)),(),((1

))((

i j

s jiI
mn

A 2
0),(1

A
)

)),(max(
(log20 0

10 MSE
jiI

PSNR)(log20 10 MSE
A

SNR s

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 86

A.N. Netravali and B.G. Haskell, Digital Pictures: Representation, Compression, and Standards (2nd Ed), Plenum Press, New York, NY (1995).

Experimental Tuning: Tradeoffs
• In the Q kernel, three parameters are natural candidates for

experimental tuning
– Loop unrolling factor (1 2 4 8 16)Loop unrolling factor (1, 2, 4, 8, 16)
– Number of threads per block (32, 64, 128, 256, 512)
– Number of scan points per grid (32, 64, 128, 256, 512, 1024, 2048)

• Cannot optimize these parameters independently
– Resource sharing among threads (register file, shared memory)
– Optimizations that increase a thread’s performance often increase the p p

thread’s resource consumption, reducing the total number of threads that
execute in parallel

• Optimization space is not linearOptimization space is not linear
– Threads are assigned to SMs in large thread blocks
– Causes discontinuity and non-linearity in the optimization space

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 87

Experimental Tuning: Example

Increase in per thread performance but fewer threads:

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

88

Increase in per-thread performance, but fewer threads:
Lower overall performance

Experimental Tuning: Scan Points Per Grid

35

40

25

30

35

20

25

Ti
m

e
(s

)

10

15

0

5

32 64 128 256 512 1024 2048

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 89

Scan points per grid

Experimental Tuning: Scan Points
P G idPer Grid

• Each line in previous plot represents a p p p
combination of loop unrolling factor and threads
per block

• The y-axis represents runtime, so lower is betterThe y axis represents runtime, so lower is better

• Runtime tends to increase as the number of scan
i t id ipoints per grid increases

• That’s counter-intuitive. Why would performance
get worse as the amount of data processed by g p y
each kernel increased?
Conflicts in the constant cache (across different

blocks))

90

Experimental Tuning:
Scan Points Per Grid (Improved Data Layout)(p y)

14

16

10

12

14

6

8

10

Ti
m

e
(s

)

4

6

0

2

32 64 128 256 512 1024 2048

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 91

Scan points per grid

Experimental Tuning: Loop Unrolling
FactorFactor

12

14

10

)

6

8

Ti
m

e
(s

)

4

6

2
1 2 4 8 16

L lli f t

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 92

Loop unrolling factor

Sidebar: Optimizing the CPU
I l iImplementation

• Optimizing the CPU implementation of your application is very
iimportant
– Often, the transformations that increase performance on CPU also increase

performance on GPU (and vice-versa)
– The research community won’t take your results seriously if your baseline

is crippled

• Useful optimizationsUseful optimizations
– Data tiling
– SIMD vectorization (SSE)

F t th lib i (AMD I t l)– Fast math libraries (AMD, Intel)
– Classical optimizations (loop unrolling, etc)

• Intel compiler (icc, icpc)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 93

p (, p)

Quantitative
Evaluation

94
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

Summary of Results
Q FHdQ d

Reconstruction Run
Time (m)

GFLOP Run
Time (m)

GFLOP Linear
Solver (m)

Recon.
Time (m)

Gridding + FFT N/A N/A N/A N/A N/A 0 39Gridding + FFT
(CPU, DP)

N/A N/A N/A N/A N/A 0.39

LS (CPU, DP) 4009.0 0.3 518.0 0.4 1.59 519.59

LS (CPU, SP) 2678.7 0.5 342.3 0.7 1.61 343.91

LS (GPU, Naïve) 260.2 5.1 41.0 5.4 1.65 42.65

LS (GPU, 72.0 18.6 9.8 22.8 1.57 11.37S (G U,
CMem)

7 .0 8.6 9.8 .8 .57 .37

LS (GPU,
CMem,

13.6 98.2 2.4 92.2 1.60 4.00

SFU)
LS (GPU,
CMem,

7.5 178.9 1.5 144.5 1.69 3.19

8X
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 95

SFU, Exp) 8X

Summary of Results
Q FHd

Reconstruction Run Time (m) GFLOP Run Time
(m)

GFLOP Linear
Solver (m)

Recon. Time
(m)

Gridding + FFT
(CPU, DP)

N/A N/A N/A N/A N/A 0.39

LS (CPU, DP) 4009.0 0.3 518.0 0.4 1.59 519.59

LS (CPU, SP) 2678.7 0.5 342.3 0.7 1.61 343.91

LS (GPU, Naïve) 260.2 5.1 41.0 5.4 1.65 42.65(,)

LS (GPU, CMem) 72.0 18.6 9.8 22.8 1.57 11.37

LS (GPU, CMem,
SFU)

13.6 98.2 2.4 92.2 1.60 4.00
SFU)

LS (GPU, CMem,
SFU, Exp)

7.5 178.9 1.5 144.5 1.69 3.19

108X228X357X
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 96

108X228X357X

