
1

CS 677 Parallel Programming forCS 677: Parallel Programming for
Many-core Processors y

Lecture 4

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E il Phili M d h i@ dE-mail: Philippos.Mordohai@stevens.edu

LogisticsLogistics

• Midterm: March 22Midterm: March 22

• Project proposal presentations: March 8
H t b d b b M h 3– Have to be approved by me by March 3

2

Project Proposalj p
• Problem description

– What is the computation and why is it important?p y p
– Abstraction of computation: equations, graphic or pseudo-

code, no more than 1 page
• Suitability for GPU accelerationy

– Amdahl’s Law: describe the inherent parallelism. Argue that it
is close to 100% of computation.

– Synchronization and Communication: Discuss what data
d b d b h i istructures may need to be protected by synchronization, or

communication through host.
– Copy Overhead: Discuss the data footprint and anticipated

cost of copying to/from host memorycost of copying to/from host memory.
• Intellectual Challenges

– Generally, what makes this computation worthy of a project?
P i t t diffi lti ti i t t t i hi i– Point to any difficulties you anticipate at present in achieving
high speedup

3

OverviewOverview

• More Performance ConsiderationsMore Performance Considerations
– Memory Coalescing
– Occupancy
– Kernel Launch Overhead
– Instruction Performance

• Summary of Performance Considerations
– Lectures 3 and 4

• Floating-Point Considerations

4

Memory Coalescing (Part 2)Memory Coalescing (Part 2)

slides by

Jared Hoberock and David TarjanJared Hoberock and David Tarjan

(Stanford CS 193G)

5

Consider the stride of your accesses
__global__ void foo(int* input,

float3* input2)p
{
int i = blockDim.x * blockIdx.x

+ threadIdx.x;
// Stride 1
i t i t[i]int a = input[i];
// Stride 2, half the bandwidth is wasted
int b = input[2*i];int b = input[2*i];
// Stride 3, 2/3 of the bandwidth wasted
float c = input2[i].x;p [] ;

}
6

Example: Array of Structures (AoS)
struct record
{{
int key;
int value;;
int flag;

};

record *d_records;
cudaMalloc((void**)&d_records,
...);

7

Example: Structure of Arrays (SoA)
struct SoA
{
int * keys;
int * values;
int * flags;

};

SoA d_SoA_data;
cudaMalloc((void**)&d_SoA_data.keys, ...);
cudaMalloc((void**)&d_SoA_data.values, ...);
cudaMalloc((void**)&d SoA data flags);cudaMalloc((void)&d_SoA_data.flags, ...);

8

Example: SoA vs. AoS
__global__ void bar(record
*AoS_data, SoA SoA_data)

{
int i = blockDim.x * blockIdx.x

+ threadIdx.x;
// AoS wastes bandwidth// AoS wastes bandwidth
int key = AoS_data[i].key;
// SoA efficient use of bandwidth// SoA efficient use of bandwidth
int key_better = SoA_data.keys[i];

}
9

Memory CoalescingMemory Coalescing

• Structure of arrays is often better than y
array of structures
– Very clear win on regular, stride 1 access

patterns
– Unpredictable or irregular access patterns

are case by caseare case-by-case

10

OccupancyOccupancy

slides (mostly) byslides (mostly) by
Jared Hoberock and David Tarjan
(Stanford CS 193G)(Stanford CS 193G)
and Joseph T. Kider Jr. (UPenn)

11

Reminder: Thread Scheduling

• SM implements zero-overhead warp scheduling
– At any time only one of the warps is executed by SMAt any time, only one of the warps is executed by SM
– Warps whose next instruction has its inputs ready for

consumption are eligible for execution
Eligible Warps are selected for execution on a– Eligible Warps are selected for execution on a
prioritized scheduling policy

– All threads in a warp execute the same instruction
h l t dwhen selected

12

Thread Scheduling

• What happens if all warps are stalled?What happens if all warps are stalled?
– No instruction issued  performance lost

• Most common reason for stalling?
– Waiting on global memoryg g y

• If your code reads global memory every coupleIf your code reads global memory every couple
of instructions
– You should try to maximize occupancy

13

Occupancy

• Thread instructions are executed
sequentially so executing other warps is thesequentially, so executing other warps is the
only way to hide latencies and keep cores
busy

• Occupancy = number of warps running
concurrently on a multiprocessor divided by

i b f th tmaximum number of warps that can run
concurrently

• Limited by resource usage:• Limited by resource usage:
– Registers
– Shared memory– Shared memory

14

Resource Limits (1)
Registers Shared Memory

TB 2

Registers Shared Memory

TB 2

TB 1

TB 1

TB 2
TB 1

TB 0

TB 0

TB 1

TB 2

TB 0

TB 0

• Pool of registers and shared memory per SM
• Each thread block grabs registers & shared memory
• If one or the other is fully utilized > no more thread• If one or the other is fully utilized -> no more thread

blocks
15

Resource Limits (2)Resource Limits (2)
• Can only have N thread blocks per SM

• If they’re too small, can’t fill up the SM
• Need 128 threads / block (GT200), 192 threads/

block (GF100)block (GF100)

• Higher occupancy has diminishing returns for
hiding latency

16

Grid/Block Size HeuristicsGrid/Block Size Heuristics

• # of blocks > # of multiprocessorsp
– So all multiprocessors have at least one block to

execute
• # of blocks / # of multiprocessors > 2• # of blocks / # of multiprocessors > 2

– Multiple blocks can run concurrently on a
multiprocessor

– Blocks not waiting at a __syncthreads() keep
hardware busy

– Subject to resource availability – registers sharedSubject to resource availability registers, shared
memory

• # of blocks > 100 to scale to future devices

17

Register DependencyRegister Dependency

• Read-after-write register dependencyRead after write register dependency
– Instruction’s result can be read approximately

24 cycles later24 cycles later

• To completely hide latency:
Run at least 192 threads (6 warps) per– Run at least 192 threads (6 warps) per
multiprocessor

• At least 25% occupancy for compute capability 1 0• At least 25% occupancy for compute capability 1.0
and 1.1

• Threads do not have to belong to the same block

18

Register PressureRegister Pressure

• Hide latency by using more threads perHide latency by using more threads per
SM

• Limiting factors:• Limiting factors:
– Number of registers per thread

8k/16k/ SM titi d t• 8k/16k/… per SM, partitioned among concurrent
threads

– Amount of shared memoryAmount of shared memory
• 16kB/… per SM, partitioned among concurrent

blocks

19

How do you know what you’re using?How do you know what you re using?
• Use nvcc –Xptxas –v to get register and shared

memory usagey g

nvcc -Xptxas -v acos.cu
ptxas info : Compiling entry function 'acos_main'
ptxas info : Used 4 registers, 60+56 bytes lmem, 44+40 bytes

smem, 20 bytes cmem[1], 12 bytes cmem[14]

– The first number represents the total size of all the variables
declared in that memory segment and the second numberdeclared in that memory segment and the second number
represents the amount of system allocated data.

– Constant memory numbers include which memory banks have
been used

• Plug those numbers into CUDA Occupancy Calculator

20

How to influence how many registers
you use

• Pass option –maxrregcount=X to nvccPass option maxrregcount X to nvcc

Thi i ’ i ’ f• This isn’t magic, won’t get occupancy for
free

• Use this very carefully when you are right y y y g
on the edge

25

Optimizing Threads per BlockOptimizing Threads per Block

• Choose threads per block as multiple of warp sizep p p
– Avoid wasting computation on under-populated warps

• Run as many warps as possible per SM
Hide latency– Hide latency

• SMs can run up to N blocks at a time

• Heuristics
– Minimum: 64 threads per block

• Only if multiple concurrent blocks• Only if multiple concurrent blocks
– 192 or 256 threads are a better choice

• Usually, still enough registers to compile and invoke
successfullysuccessfully

– This all depends on computation
26

Occupancy != PerformanceOccupancy ! Performance

• Increasing occupancy does notIncreasing occupancy does not
necessarily increase performance

• BUT…

• Low-occupancy SMs cannot adequately p y q y
hide latency

27

Parameterize your ApplicationParameterize your Application
• Parameterization helps adaptation to different

GGPUs
• GPUs vary in many ways

– # of SMs
– Memory bandwidth

Shared memory size– Shared memory size
– Register file size
– Max threads per blockMax threads per block

 Avoid local minima
– Try widely varying configurationsy y y g g

28

Kernel Launch OverheadKernel Launch Overhead

slides by

Jared Hoberock and David TarjanJared Hoberock and David Tarjan

(Stanford CS 193G)

29

Kernel Launch Overhead

• Kernel launches aren’t free
– A null kernel launch will take non-trivial time– A null kernel launch will take non-trivial time
– Actual time changes with HW generations

and driver software…
• Independent kernel launches are cheaper

than dependent kernel launches
– Dependent launch: Some readback to the

CPU

L hi l t f ll id ith• Launching lots of small grids comes with
substantial performance loss

30

Kernel Launch Overheads

• If you are reading back data to the CPUIf you are reading back data to the CPU
for control decisions, consider doing it on
the GPUthe GPU

• Even though the GPU is slow at serial• Even though the GPU is slow at serial
tasks, it can do surprising amounts of
work before you used up kernel launchwork before you used up kernel launch
overhead

31

Instruction PerformanceInstruction Performance

slides by

Joseph T. Kider Jr. (Upenn)Joseph T. Kider Jr. (Upenn)

32

Instruction PerformanceInstruction Performance

• Instruction cycles (per warp) is the sum ofInstruction cycles (per warp) is the sum of
– Operand read cycles

– Instruction execution cyclesInstruction execution cycles

– Result update cycles

• Therefore instruction throughput depends onTherefore instruction throughput depends on
– Nominal instruction throughput

– Memory latencyMemory latency

– Memory bandwidth

• Cycle refers to the multiprocessor clock rate• Cycle refers to the multiprocessor clock rate

33

Maximizing Instruction ThroughputMaximizing Instruction Throughput

• Maximize use of high-bandwidth memoryMaximize use of high bandwidth memory
– Maximize use of shared memory

Minimize accesses to global memory– Minimize accesses to global memory
– Maximize coalescing of global memory accesses

• Optimize performance by overlapping• Optimize performance by overlapping
memory accesses with computation

High arithmetic intensity programs– High arithmetic intensity programs

– Many concurrent threads

34

Arithmetic Instruction ThroughputArithmetic Instruction Throughput

• int and float add, shift, min, max and float mul,
mad: 4 cycles per warp
– int mulitply is by default 32-bit

• requires multiple cycles/warpq p y p
– use __mul24() and __umul24() intrinsics for 4-cycle

24-bit int multiplication
• Integer division and modulo operations are costlyInteger division and modulo operations are costly

– The compiler will convert literal power-of-2 divides to
shifts

• But it may missBut it may miss
– Be explicit in cases where the compiler cannot tell

that the divisor is a power of 2
• Trick: foo % n == foo & (n-1) if n is a power of 2Trick: foo % n foo & (n 1) if n is a power of 2

35

Loop TransformationsLoop Transformations

Mary Hall
CS6963 University of Utahy

36

Reordering TransformationsReordering Transformations

• Analyze reuse in computationAnalyze reuse in computation
• Apply loop reordering transformations to

improve locality based on reuseimprove locality based on reuse
• With any loop reordering transformation,

always askalways ask
– Safety? (doesn’t reverse dependences)
– Profitablity? (improves locality)o tab ty (p o es oca ty)

37CS6963

Loop Permutation:
A Reordering TransformationA Reordering Transformation

f (j 0 j<6 j++)f (i 0 i<3 i++)

Permute the order of the loops to modify the traversal order

for (j=0; j<6; j++)
for (i= 0; i<3; i++)

A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)
for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j];

i new traversal order!i

j jj j
Which one is better for row-major storage?

CS6963 38

Safety of Permutation
• Intuition: Cannot permute two loops i and j in a loop nest if

doing so reverses the direction of any dependence.

for (i= 0; i<3; i++)
for (j=0; j<6; j++)

for (i= 0; i<3; i++)
for (j=1; j<6; j++)(j ; j ; j)

A[i][j+1]=A[i][j]+B[j]; A[i+1][j-1]=A[i][j]+B[j];

• Ok to permute?

CS6963 39

Tiling (Blocking):
Another Loop ReorderingAnother Loop Reordering

Transformation
• Blocking reorders loop iterations to bring

iterations that reuse data closer in time

I I

J JJ J

CS6963 40

Tiling Example

for (j=1; j<M; j++)
for (i=1; i<N; i++)(; ;)

D[i] = D[i] + B[j][i];

f (j 1 j M j)for (j=1; j<M; j++)
for (ii=1; ii<N; ii+=s)

for (i=ii; i<min(ii+s,N); i++)

Strip
mine

D[i] = D[i] +B[j][i];

for (ii=1; ii<N; ii+=s)(; ;)
for (j=1; j<M; j++)

for (i=ii; i<min(ii+s,N); i++)
D[i] = D[i] +B[j][i];

Permute

D[i] = D[i] +B[j][i];

CS6963 41

Legality of TilingLegality of Tiling

• Tiling = strip-mine and permutationg
– Strip-mine does not reorder iterations

– Permutation must be legal– Permutation must be legal

OR

– strip size less than dependence
distance

CS6963 42

A Few Words On TilingA Few Words On Tiling

• Tiling can be used hierarchically to compute partialTiling can be used hierarchically to compute partial
results on a block of data wherever there are
capacity limitations
– Between grids if total data exceeds global memory

capacity

– Across thread blocks if shared data exceeds shared
memory capacity (also to partition computation across
blocks and threads)

Within threads if data in constant cache exceeds cache– Within threads if data in constant cache exceeds cache
capacity or data in registers exceeds register capacity or
(as in example) data in shared memory for block still
exceeds shared memory capacityexceeds shared memory capacity

CS6963 43

Summary of Performance
Considerations

44

Summary of Performance
C id iConsiderations

• Thread Execution and Divergence
• Communication Through Memory
• Instruction Level Parallelism and Thread Level

ParallelismParallelism
• Memory Coalescing
• Shared Memory Bank Conflicts

P ll l R d ti• Parallel Reduction
• Prefetching
• Loop Unrolling and Transformationsp g
• Occupancy
• Kernel Launch Overhead
• Instruction Performance• Instruction Performance

45

Thread Execution and DivergenceThread Execution and Divergence

• Instructions are issued per 32 threadsInstructions are issued per 32 threads
(warp)

• Divergent branches:Divergent branches:
– Threads within a single warp take different

paths
• if-else, ...

– Different execution paths within a warp are
i li dserialized

• Different warps can execute different code
with no impact on performancewith no impact on performance

46

An ExampleAn Example
// is this barrier divergent?
for(int offset = blockDim.x / 2;

offset > 0;offset 0;
offset >>= 1)

{{
...
__syncthreads();

}}

47

A Second ExampleA Second Example
// what about this one?

l b l id d i h lt(i t *i t)__global__ void do_i_halt(int *input)
{

int i =int i = ...
if(input[i])
{{

...
syncthreads();// a divergent barrier__ y ()

}
}

// g
// hangs the machine

48

Communication Through Memory

• Carefully partition data according to access

Co u cat o oug e o y

y p g
patterns

• Read-only  __constant__ memory (fast)
R/W & h d i hi bl k• R/W & shared within block  __shared__
memory (fast)

• R/W within each thread registers (fast)• R/W within each thread  registers (fast)
• Indexed R/W within each thread  local

memory (slow)y ()
• R/W inputs/results  cudaMalloc‘ed global

memory (slow)

49
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

Communication Through MemoryCommunication Through Memory

• Question:

__global__ void race(void)
{{

__shared__ int my_shared_variable;
my shared variable = threadIdx.x;my_shared_variable threadIdx.x;

// what is the value of
// my_shared_variable?

}

50
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

Instruction Level Parallelism and
Th d L l P ll liThread Level Parallelism

• Dynamic partitioning gives more flexibility toDynamic partitioning gives more flexibility to
compilers/programmers
– One can run a smaller number of threads thatOne can run a smaller number of threads that

require many registers each or a large number of
threads that require few registers each

• This allows for finer grain threading than traditional
CPU threading models

– The compiler can tradeoff between instruction-The compiler can tradeoff between instruction-
level parallelism and thread level parallelism

51
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

Memory CoalescingMemory Coalescing
• When accessing global memory, peak

f ili i h llperformance utilization occurs when all
threads in a half warp access continuous

l imemory locations
Not coalesced coalesced

Md Nd

HThread 1

W
ID

T
H

WIDTH

Thread 2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 52

Memory Layout of a Matrix in C
M2,0M1,0M0,0 M3,0

Memory Layout of a Matrix in C
Access
direction in M1,1M0,1 M2,1 M3,1

M1,2M0,2 M2,2 M3,2

MM M M

direction in
Kernel code

M1,3M0,3 M2,3 M3,3

Time Period 1 Time Period 2

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2 …

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2 M1,3M0,3 M2,3 M3,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 53

Memory Layout of a Matrix in C
M2,0M1,0M0,0 M3,0

Memory Layout of a Matrix in C
Access
direction in M1,1M0,1 M2,1 M3,1

M1,2M0,2 M2,2 M3,2

MM M M

direction in
Kernel code

M1,3M0,3 M2,3 M3,3

T1 T2 T3 T4

Time Period 2
…

T1 T2 T3 T4

Time Period 1

1 2 3 4

M

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 54

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2 M1,3M0,3 M2,3 M3,3

Example: SoA vs. AoS
__global__ void bar(record
*AoS_data, SoA SoA_data)

{{
int i = blockDim.x * blockIdx.x

+ threadIdx.x;
// AoS wastes bandwidth
int key = AoS_data[i].key;
// SoA efficient use of bandwidth
int key_better =
SoA_data.keys[i];

}}
55

Shared Memory Bank ConflictsShared Memory Bank Conflicts
• Shared memory is as fast as registers if there are no

b k flibank conflicts

• Bank conflicts are less of an issue in newer versions of
CUDACUDA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 56

Parallel Reduction:
No Divergence until <= 16 sub-sums

Thread 0

g
Thread 1 Thread 2 Thread 14 Thread 15

0 1 2 3 … 13 1514 181716 19

0+16 15+31
1

3

4

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 57

Prefetching
• One could double buffer the computation, getting

better instruction mix within each thread
– This is classic software pipelining in ILP compilers

Loop { Load next tile from global memory

Load current tile to shared memory

syncthreads()

Loop {
Deposit current tile to shared memory
syncthreads()syncthreads()

Compute current tile

syncthreads()

Load next tile from global memory

syncthreads()
}

Compute current tile

syncthreads()

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

y ()
}

58

Instruction Mix Considerations:
L U lliLoop Unrolling

for (int k = 0; k < BLOCK_SIZE; ++k)
Pvalue += Ms[ty][k] * Ns[k][tx];Pvalue += Ms[ty][k] * Ns[k][tx];

There are very few mul/add between branches and
dd l l iaddress calculation

Loop unrolling can help (Beware that any local arraysLoop unrolling can help. (Beware that any local arrays
used after unrolling will be dumped into Local Memory)

Pvalue += Ms[ty][k] * Ns[k][tx] + …
Ms[ty][k+15] * Ns[k+15][tx];

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 59

Occupancy

• Thread instructions are executed
sequentially so executing other warps is thesequentially, so executing other warps is the
only way to hide latencies and keep memory
busy

• Occupancy = number of warps running
concurrently on a multiprocessor divided by

i b f th tmaximum number of warps that can run
concurrently

• Limited by resource usage:• Limited by resource usage:
– Registers
– Shared memory– Shared memory

60

Optimizing Threads per BlockOptimizing Threads per Block

• Choose threads per block as multiple of warp sizep p p
– Avoid wasting computation on under-populated warps

• Run as many warps as possible per SM
Hide latency– Hide latency

• SMs can run up to N blocks at a time

• Heuristics
– Minimum: 64 threads per block

• Only if multiple concurrent blocks• Only if multiple concurrent blocks
– 192 or 256 threads are a better choice

• Usually, still enough registers to compile and invoke
successfullysuccessfully

– This all depends on computation
61

Kernel Launch Overhead

• Kernel launches aren’t free
– A null kernel launch will take non-trivial time– A null kernel launch will take non-trivial time
– Actual time changes with HW generations

and driver software…
• Independent kernel launches are cheaper

than dependent kernel launches
– Dependent launch: Some readback to the

cpu

L hi l t f ll id ith• Launching lots of small grids comes with
substantial performance loss

62

Compute CapabilitiesCompute Capabilities

• Reminder: do not take various constantsReminder: do not take various constants,
such as size of shared memory etc., for
granted since they continuously changegranted since they continuously change

• Check CUDA programming guide for the
features of the compute capability of yourfeatures of the compute capability of your
GPU

63

Floating-Point Considerations

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 64

ObjectiveObjective

• To understand the fundamentals of floating-o u de s a d e u da e a s o oa g
point representation

• To know the IEEE-754 Floating Point
St d dStandard

• GeForce 8800 CUDA Floating-point speed,
accuracy and precisionaccuracy and precision
– Deviations from IEEE-754
– Accuracy of device runtime functions
– -fastmath compiler option
– Future performance considerations

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 65

What is IEEE floating-point format?What is IEEE floating point format?

• A floating point binary number consists of three parts: g p y p
– sign (S), exponent (E), and mantissa (M).

– Each (S, E, M) pattern uniquely identifies a floating point number.

• For each bit pattern, its IEEE floating-point value is
derived as:

– value = (-1)S * M * {2E}, where 1.0 ≤ M < 10.0B

• The interpretation of S is simple: S=0 results in a positive
number and S=1 a negative number.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 66

Normalized RepresentationNormalized Representation
• Specifying that 1.0B ≤ M < 10.0B makes the mantissa

value for each floating point number unique.
– For example, the only one mantissa value allowed for

0 5 is M =1 00.5D is M =1.0
• 0.5D = 1.0B * 2-1

– Neither 10.0B * 2 -2 nor 0.1B * 20 qualifies

• Because all mantissa values are of the form 1.XX…,
one can omit the “1.” part in the representation.
– The mantissa value of 0.5D in a 2-bit mantissa is 00,

which is derived by omitting “1 ” from 1 00
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 67

which is derived by omitting “1.” from 1.00.

Note: Two’s ComplementNote: Two s Complement

• The negative value of a number can be g
derived by:
• Complementing every bit
• Adding 1

• Example: -3
• 3 = 011B

• Complement every bit: 100
• Add 1: 101

68

Exponent RepresentationExponent Representation
• In an n-bits exponent

representation 2n-1 1 is
2’s complement Actual decimal Excess-3

representation, 2n 1-1 is
added to its 2's
complement
representation to form its

000 0 011

001 1 100
representation to form its
excess representation.
– See Table for a 3-bit

exponent representation

010 2 101

011 3 110

• A simple unsigned integer
comparator can be used
to compare the magnitude
of two FP numbers

100 (reserved
pattern)

111

101 -3 000of two FP numbers
• Symmetric range for +/-

exponents (111 reserved)
110 -2 001

111 -1 010

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 69

111 1 010

A simple, hypothetical 6-bit FP
f tformat

• Assume 1-bit S, 3-bit E, 2’s complement Actual decimal Excess-3

and 2-bit M
– 0.5D = 1.00B * 2-1

– 0 5D = 0 010 00 where S =

000 0 011

001 1 100
0.5D 0 010 00, where S
0, E = 010, and M = (1.)00 010 2 101

011 3 110

100 (reserved
pattern)

111

101 -3 000

110 -2 001

111 -1 010

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 70

111 1 010

Representable NumbersRepresentable Numbers

• The representable
numbers of a given format
is the set of all numbers
that can be exactly

000 0

001 1
that can be exactly
represented in the format.

• See Table for
f

010 2

011 3

representable numbers of
an unsigned 3-bit integer
format

100 4

101 5

110 6

111 7
0 71 42 3 5 6-1 98

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 71

Representable Numbers of a 5-bit
H th ti l IEEE F tHypothetical IEEE Format

No-zero Abrupt underflow Gradual underflow

E M S 0 S 1 S 0 S 1 S 0 S 1E M S=0 S=1 S=0 S=1 S=0 S=1

00 00 2-1 -(2-1) 0 0 0 0

01 2-1+1*2-3 -(2-1+1*2-3) 0 0 1*2-2 -1*2-2

10 2-1+2*2-3 (2-1+2*2-3) 0 0 2*2-2 -2*2-210 2 1+2*2 3 -(2 1+2*2 3) 0 0 2 2 -2 2

11 2-1+3*2-3 -(2-1+3*2-3) 0 0 3*2-2 -3*2-2

01 00 20 -(20) 20 -(20) 20 -(20)

01 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2)2 +1 2 (2 +1 2) () ()

10 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2)

11 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2)

10 00 21 (21) 21 (21) 21 (21)10 00 21 -(21) 21 -(21) 21 -(21)

01 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1)

10 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1)

11 21+3*2-1 (21+3*2-1) 21+3*2-1 (21+3*2-1) 21+3*2-1 (21+3*2-1)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

72

11 21+3*2-1 -(21+3*2-1) 21+3*2 1 -(21+3*2 1) 21+3*2 1 -(21+3*2 1)

11 Reserved pattern

Representable Numbers of a 5-bit
H th ti l IEEE F t

Cannot represent
Hypothetical IEEE Format

No-zero Abrupt underflow Gradual underflow

E M S 0 S 1 S 0 S 1 S 0 S 1

Zero!

E M S=0 S=1 S=0 S=1 S=0 S=1

00 00 2-1 -(2-1) 0 0 0 0

01 2-1+1*2-3 -(2-1+1*2-3) 0 0 1*2-2 -1*2-2

10 2-1+2*2-3 (2-1+2*2-3) 0 0 2*2-2 -2*2-210 2 1+2*2 3 -(2 1+2*2 3) 0 0 2 2 -2 2

11 2-1+3*2-3 -(2-1+3*2-3) 0 0 3*2-2 -3*2-2

01 00 20 -(20) 20 -(20) 20 -(20)

01 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2)2 +1 2 (2 +1 2) () ()

10 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2)

11 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2)

10 00 21 (21) 21 (21) 21 (21)10 00 21 -(21) 21 -(21) 21 -(21)

01 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1)

10 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1)

11 21+3*2-1 (21+3*2-1) 21+3*2-1 (21+3*2-1) 21+3*2-1 (21+3*2-1)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

73

11 21+3*2-1 -(21+3*2-1) 21+3*2 1 -(21+3*2 1) 21+3*2 1 -(21+3*2 1)

11 Reserved pattern

Representable Numbers of a 5-bit
H h i l IEEE FHypothetical IEEE Format

• Exponent bits define major intervals of representable
bnumbers

• Mantissa bits define the number of representable numbers
in each interval
– With N mantissa bits, 2N representable numbers per interval

• Representable numbers come closer to each other in the
neighborhood of 0g
– Desirable property

• There is a gap around 0
– Significantly larger error between 0 and 0 5 than 0 5 and 1Significantly larger error between 0 and 0.5 than 0.5 and 1

74
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

Flush to Zero (Abrupt Underflow)Flush to Zero (Abrupt Underflow)

• Treat all bit patterns with E=0 as 0 0Treat all bit patterns with E=0 as 0.0
– This takes away several representable

numbers near zero and lumps them all into 0 0numbers near zero and lumps them all into 0.0

– For a representation with large M, a large
number of representable numbers will benumber of representable numbers will be
removed

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 75

Flush to Zero
No-zero Flush to Zero Denormalized

E M S=0 S=1 S=0 S=1 S=0 S=1

1 100 00 2-1 -(2-1) 0 0 0 0

01 2-1+1*2-3 -(2-1+1*2-3) 0 0 1*2-2 -1*2-2

10 2-1+2*2-3 -(2-1+2*2-3) 0 0 2*2-2 -2*2-2

11 2-1+3*2-3 -(2-1+3*2-3) 0 0 3*2-2 -3*2-2

01 00 20 -(20) 20 -(20) 20 -(20)

01 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2)

10 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2)

11 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2)

10 00 21 -(21) 21 -(21) 21 -(21)

01 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1)

10 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1)

11 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

76

2 3 2 (2 3 2)
11 Reserved pattern

Denormalized Numbers
• The actual method adopted by the IEEE

standard is called denormalized numbers orstandard is called denormalized numbers or
gradual underflow.
– The method relaxes the normalization

requirement for numbers very close to 0
– whenever E=0, the mantissa is no longer

d t b f th f 1 XX R th it iassumed to be of the form 1.XX. Rather, it is
assumed to be 0.XX. In general, if the n-bit
exponent is 0, the value isexponent is 0, the value is

• 0.M * 2 - 2 ^(n-1) + 2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 77

Denormalization
No-zero Flush to Zero Denormalized

E M S=0 S=1 S=0 S=1 S=0 S=1
00 00 2-1 -(2-1) 0 0 0 000 00 2 -(2) 0 0 0 0

01 2-1+1*2-3 -(2-1+1*2-3) 0 0 1*2-2 -1*2-2

10 2-1+2*2-3 -(2-1+2*2-3) 0 0 2*2-2 -2*2-2

11 2-1+3*2-3 (2-1+3*2-3) 0 0 3*2 2 3*2 211 2 1+3*2 3 -(2 1+3*2 3) 0 0 3*2-2 -3*2-2

01 00 20 -(20) 20 -(20) 20 -(20)
01 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2) 20+1*2-2 -(20+1*2-2)
10 20+2*2 2 (20+2*2 2) 20+2*2 2 (20+2*2 2) 20 2*2 2 (20 2*2 2)10 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2) 20+2*2-2 -(20+2*2-2)
11 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2) 20+3*2-2 -(20+3*2-2)

10 00 21 -(21) 21 -(21) 21 -(21)
01 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1) 21+1*2-1 -(21+1*2-1)
10 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1) 21+2*2-1 -(21+2*2-1)
11 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1) 21+3*2-1 -(21+3*2-1)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

78

11 Reserved pattern

Arithmetic Instruction Throughput
• int and float add, shift, min, max and float mul,

mad: 4 cycles per warpy
– int multiply (*) is by default 32-bit

• requires multiple cycles / warp

U l24() / l24() i i i f 4 l 24 bi– Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit
int multiply

• Integer divide and modulo are expensive
– Compiler will convert literal power-of-2 divides to shifts

– Be explicit in cases where compiler can’t tell that
divisor is a power of 2!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 79

Arithmetic Instruction ThroughputArithmetic Instruction Throughput

• Reciprocal, reciprocal square root, sin/cos, p , p q , ,
log, exp: 16 cycles per warp
– These are the versions prefixed with “__”
– Examples:__rcp(), __sin(), __exp()

• Other functions are combinations of the
above
– y / x == rcp(x) * y == 20 cycles per warp
– sqrt(x) == rcp(rsqrt(x)) == 32 cycles per warp

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 80

Runtime Math Libraryy
• There are two types of runtime math

operationsoperations
– __func(): direct mapping to hardware ISA

• Fast but low accuracy (see prog. guide for details)
Examples: sin(x) exp(x) pow(x y)• Examples: __sin(x), __exp(x), __pow(x,y)

– func() : compile to multiple instructions
• Slower but higher accuracy: error of 5 ulp or less
• (ulp: units in the last place or units of least precision)
• Examples: sin(x), exp(x), pow(x,y)

• The -use_fast_math compiler option forces
every func() to compile to __func()

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 81

Make your program float-safe!
• Hardware now has double precision support

– G80 is single-precision only
– Double precision has additional performance cost
– Careless use of double or undeclared types may run more

slowly on G80+
Important to be float safe (be explicit whenever you want• Important to be float-safe (be explicit whenever you want
single precision) to avoid using double precision where it
is not needed
– Add ‘f’ specifier on float literals:– Add f specifier on float literals:

• foo = bar * 0.123; // double assumed
• foo = bar * 0.123f; // float explicit

– Use float version of standard library functions
• foo = sin(bar); // double assumed
• foo = sinf(bar); // single precision explicit

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 82

Floating-Point Calculation Results Can
Depend on Execution OrderDepend on Execution Order

1 00*20 +1 00*20 + 1 00*2 2 + 1 00*2 2

Order 1
1.00*20 +1.00*20 + 1.00*2-2 + 1.00*2-2

= 1.00*21 + 1.00*2-2 + 1.00*2-2

= 1.00*21 + 1.00*2-2

= 1.00*21

Order 2
(1.00*20 +1.00*20) + (1.00*2-2 + 1.00*2-2)
= 1.00*21 + 1.00*2-1

Order 2

= 1.01*21

Pre-sorting is often used to increase stability of floating point
results

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign 83

results.

Special Bit Patterns in the IEEE
S d d FStandard Format

84
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign

