CS 677 Parallel Programming for
Many-core Processors
Lecture 4

Instructor: Philippos Mordohai

Webpage: www.cs.stevens.edu/” mordohai
E-mail: Philippos.Mordohai@stevens.edu




Logistics

e Midterm: March 22

* Project proposal presentations: March 8
— Have to be approved by me by March 3



Project Proposal

 Problem description
— What is the computation and why is it important?
— Abstraction of computation: equations, graphic or pseudo-
code, no more than 1 page
« Suitability for GPU acceleration

— Amdahl’s Law: describe the inherent parallelism. Argue that it
is close to 100% of computation.

— Synchronization and Communication: Discuss what data
structures may need to be protected by synchronization, or
communication through host.

— Copy Overhead: Discuss the data footprint and anticipated
cost of copying to/from host memory.
 [ntellectual Challenges
— Generally, what makes this computation worthy of a project?

— Point to any difficulties you anticipate at present in achieving
high speedup



Overview

 More Performance Considerations
— Memory Coalescing
— Occupancy
— Kernel Launch Overhead
— Instruction Performance

« Summary of Performance Considerations
— Lectures 3 and 4

* Floating-Point Considerations



Memory Coalescing (Part 2)

slides by
Jared Hoberock and David Tarjan
(Stanford CS 193QG)



Consider the stride of your accesses

~_global  void foo(int* 1nput,
Tloat3* 1nput2?)
{
int 1 = blockDim.x * blockldx.x
+ threadldx.x;
// Stride 1
int a = 1nput|i];
// Stride 2, half the bandwidth 1s wasted
int b = nput[2*i1];
// Stride 3, 2/3 of the bandwidth wasted
Tloat ¢ = nput2[i1]-x;



Example: Array of Structures (AoS)

struct record
1
int key;
int value;
int flag;

}s

record *d_records;
cudaMal loc((vord**)&d records,

--);



Example: Structure of Arrays (SoA)
struct SOA
{
int * keys;
int * values;
int * flags;
}>

SOA d _SOA data;

cudaMal loc((vord**)&d_SoA data.keys, ...);
cudaMal loc((vord**)&d SoA data.values, ...);
cudaMalloc((void**)&d_SoA data.flags, ...);



Example: SoA vs. AoS

~_global  void bar(record
*A0oS data, SOA SOA data)

{
iInt 1 = blockDIm.x * blockldx.X
+ threadldx.X;
// A0S wastes bandwidth
int key = AoS_datali1]-key;
// SOA efficient use of bandwirdth
int key better = SoA data.keys|1];

¥



Memory Coalescing

o Structure of arrays is often better than
array of structures

— Very clear win on regular, stride 1 access
patterns

— Unpredictable or irregular access patterns
are case-by-case



Occupancy

slides (mostly) by

Jared Hoberock and David Tarjan
(Stanford CS 193QG)

and Joseph T. Kider Jr. (UPenn)



Reminder: Thread Scheduling

 SM implements zero-overhead warp scheduling

— At any time, only one of the warps is executed by SM

— Warps whose next instruction has its inputs ready for
consumption are eligible for execution

— Eligible Warps are selected for execution on a
prioritized scheduling policy

— All threads in a warp execute the same instruction
when selected

TB1, W1 stall

F—TB2, W1 stal— TB3, W2 stall——— ]

I TB2 TB3 TB3 TB2 TB1 TB1 TB1 TB3
: U I I w1 Wi W2 Wi Wi W2 W3 W2
Instruction: | 1 i2i3i4i5i6|1i2]|1i2|1:i2|8 4|7 8|1i2|1i2[3i4

—Time-» TB = Thread Block, W = Warp



Thread Scheduling

 What happens if all warps are stalled?
— No instruction issued - performance lost

 Most common reason for stalling?
— Waiting on global memory

 |f your code reads global memory every couple
of instructions

— You should try to maximize occupancy



Occupancy

* Thread instructions are executed
sequentially, so executing other warps is the

only way to hide latencies and keep cores
busy

e Occupancy = number of warps running
concurrently on a multiprocessor divided by
maximum number of warps that can run
concurrently

« Limited by resource usage.:
— Registers
— Shared memory



Resource Limits (1)

Registers Shared Memory Registers Shared Memory

 Pool of registers and shared memory per SM

 Each thread block grabs registers & shared memory

* If one or the other is fully utilized -> no more thread
blocks
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Resource Limits (2)

e (Can only have N thread blocks per SM

e Ifthey’re too small, can’t fill up the SM

 Need 128 threads / block (GT200), 192 threads/
block (GF100)

« Higher occupancy has diminishing returns for
hiding latency



Grid/Block Size Heuristics

o # of blocks > # of multiprocessors

— So all multiprocessors have at least one block to
execute

o # of blocks / # of multiprocessors > 2

— Multiple blocks can run concurrently on a
multiprocessor

— Blocks not waiting at a __syncthreads() keep
hardware busy

— Subject to resource availability - registers, shared
memory

e # of blocks > 100 to scale to future devices

17



Register Dependency

 Read-after-write register dependency

— Instruction’s result can be read approximately
24 cycles later

 To completely hide latency:
— Run at least 192 threads (6 warps) per

multiprocessor

o At least 25% occupancy for compute capability 1.0
and 1.1

* Threads do not have to belong to the same block



Register Pressure

* Hide latency by using more threads per
SM

 Limiting factors:

— Number of registers per thread

» 8k/16k/... per SM, partitioned among concurrent
threads

— Amount of shared memory

e 16kB/... per SM, partitioned among concurrent
blocks



How do you know what you're using?

« Use nvcc —Xptxas —v to getregister and shared
memory usage

nvcc -Xptxas -v acos.cu

ptxas info : Compiling entry function "acos_main*

ptxas info : Used 4 registers, 60+56 bytes Imem, 44+40 bytes
smem, 20 bytes cmem[1l], 12 bytes cmem[14]

— The first number represents the total size of all the variables
declared in that memory segment and the second number
represents the amount of system allocated data.

— Constant memory numbers include which memory banks have
been used

e Plug those numbers into CUDA Occupancy Calculator
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How to influence how many registers
you use

» Pass option —maxrregcount=X to nvcc

* This isn’t magic, won’t get occupancy for
free

» Use this very carefully when you are right
on the edge



Optimizing Threads per Block

Choose threads per block as multiple of warp size
— Avoid wasting computation on under-populated warps
Run as many warps as possible per SM

— Hide latency

SMs can run up to N blocks at a time

Heuristics
— Minimum: 64 threads per block
* Only if multiple concurrent blocks

— 192 or 256 threads are a better choice

« Usually, still enough registers to compile and invoke
successfully

— This all depends on computation



Occupancy != Performance

* |Increasing occupancy does not
necessarily increase performance

 BUT..

e Low-occupancy SMs cannot adequately
hide latency



Parameterize your Application

o Parameterization helps adaptation to different
GPUs
 GPUs vary in many ways
— # of SMs
— Memory bandwidth
— Shared memory size
— Register file size
— Max threads per block

» Avoid local minima
— Try widely varying configurations

28



Kernel Launch Overhead
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Kernel Launch Overhead

e Kernel launches aren’t free
— A null kernel launch will take non-trivial time

— Actual time changes with HW generations
and driver software...

* Independent kernel launches are cheaper
than dependent kernel launches

— Dependent launch: Some readback to the
CPU

e Launching lots of small grids comes with
substantial performance loss



Kernel Launch Overheads

 |f you are reading back data to the CPU
for control decisions, consider doing it on
the GPU

 Even though the GPU is slow at serial
tasks, it can do surprising amounts of
work before you used up kernel launch
overhead



Instruction Performance

slides by
Joseph T. Kider Jr. (Upenn)



Instruction Performance

 Instruction cycles (per warp) is the sum of
— Operand read cycles
— Instruction execution cycles
— Result update cycles

e Therefore instruction throughput depends on
— Nominal instruction throughput
— Memory latency
— Memory bandwidth

o Cycle refers to the multiprocessor clock rate



Maximizing Instruction Throughput

 Maximize use of high-bandwidth memory
— Maximize use of shared memory

— Minimize accesses to global memory
— Maximize coalescing of global memory accesses

e Optimize performance by overlapping
memory accesses with computation
— High arithmetic intensity programs
— Many concurrent threads



Arithmetic Instruction Throughput

e int and float add, shift, min, max and float mul,
mad: 4 cycles per warp
— int mulitply is by default 32-bit
e requires multiple cycles/warp
— use _ _mul24() and __umul24() intrinsics for 4-cycle
24-bit int multiplication
 Integer division and modulo operations are costly
— The compiler will convert literal power-of-2 divides to
shifts
e But it may miss

— Be explicit in cases where the compiler cannot tell
that the divisor is a power of 2

* Trick: foo % n ==foo & (n-1) if n is a power of 2



Loop Transformations

Mary Hall
CS6963 University of Utah



Reordering Transformations

* Analyze reuse in computation

* Apply loop reordering transformations to
Improve locality based on reuse

« With any loop reordering transformation,
always ask

— Safety? (doesn’t reverse dependences)
— Profitablity? (improves locality)

CS6963



Loop Permutation:
A Reordering Transformation

Permute the order of the loops to modify the traversal order

for (i= 0; i<3; i++) for (j=0; j<6; j++)
for (j=0; j<6; j++) for (i= 0; i<3; i++)

ANlII+1]=ADNI+B[); ANlII+1]=ADNI+B[);

i 1 i | new traversal order!

Which one is better for row-major storage?

CS6963 38



Safety of Permutation

 |ntuition: Cannot permute two loops i and j in a loop nest if
doing so reverses the direction of any dependence.

for (i= 0; i<3; i++) for (i= 0; i<3; i++)
for (j=0; j<6; j++) for (j=1; j<6; j++)

Alilli+11=Allli1+BIl; Ali+1][j-1]=Ali][1+Bli];

e Ok to permute?

CS6963 39



Tiling (Blocking):
Another Loop Reordering

Transformation

* Blocking reorders loop iterations to bring
iterations that reuse data closer in time

|4

CS6963



Tiling Example

for (j=1; j<M; j++)
for (i=1; i<N; i++)

D[i] = D[i] + BOIL;

Strip for (=1; J<M; J++)
mine for (ii=1; ii<N; ii+=s)
for (i=ii; i<min(ii+s,N); i++)
DI[i] = D[i] +B[0l;

for (ii=1; ii<N; ii+=s)
Permute for (j=1; j<M; j++)
for (i=ii; i<min(ii+s,N); i++)
DIi] = D[i] +B[I0T;

CS6963 :



Legality of Tiling

* Tiling = strip-mine and permutation

CS6963

— Strip-mine does not reorder iterations
— Permutation must be legal

OR

— strip size less than dependence
distance



A Few Words On Tiling

* Tiling can be used hierarchically to compute partial
results on a block of data wherever there are
capacity limitations

— Between grids if total data exceeds global memory
capacity
— Across thread blocks if shared data exceeds shared

memory capacity (also to partition computation across
blocks and threads)

— Within threads if data in constant cache exceeds cache
capacity or data in registers exceeds register capacity or
(as in example) data in shared memory for block still
exceeds shared memory capacity

CS6963



Summary of Performance
Considerations



Summary of Performance
Considerations

Thread Execution and Divergence
Communication Through Memory

Instructi_on Level Parallelism and Thread Level
Parallelism

Memory Coalescing

Shared Memory Bank Conflicts
Parallel Reduction

Prefetching

_oop Unrolling and Transformations
Occupancy

Kernel Launch Overhead
Instruction Performance




Thread Execution and Divergence

 |nstructions are issued per 32 threads

(warp)
* Divergent branches:

— Threads within a single warp take different
paths

e if-else, ...

— Different execution paths within a warp are
serialized

 Different warps can execute different code
with no impact on performance



An Example

Tfor(int offset = blockDim.x / 2;

¥

offset > O;
offset >>= 1)

__syncthreads();

47



A Second Example

~_global  void do_1_halt(int *iInput)
{

int 1 = ...

iT(input[1])

{

__synctnreads{):// a divergent barrier

} // hangs the machine

48



Communication Through Memory

o Carefully partition data according to access
patterns

e Read-only 2 constant  memory (fast)

« R/W & shared within block =  shared
memory (fast)

 R/W within each thread = registers (fast)

 Indexed R/W within each thread = local
memory (slow)

 R/W inputs/results = cudaMal loc'ed global
memory (slow)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign



Communication Through Memory

e Question:

~_global  void race(void)

1

~_shared  1nt my shared variable;
my shared variable = threadldx.x;

// what 1s the value of
// my shared variable?

}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign
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Instruction Level Parallelism and
Thread Level Parallelism

 Dynamic partitioning gives more flexibility to
compilers/programmers

— One can run a smaller number of threads that
require many registers each or a large number of
threads that require few registers each

 This allows for finer grain threading than traditional
CPU threading models

— The compiler can tradeoff between instruction-

level parallelism and thread level parallelism

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign



Memory Coalescing

 When accessing global memory, peak
performance utilization occurs when all

threads in a half warp access continuous
memory locations

Not coalesced coalesced

;

Thread 1 —
Thread 2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign



Memory Layout of a Matrix in C

Access

direction in
MJ,l Ml,l |vl2,1 M3,1

Kernel code

MJ,Z I\/|1,2 I\/|2,2 M3,2

M3,3 M1,3 M2,3 M3,3

Time Period 1

LT, T3 1,

Time Period 2

T, T, T3 T,

M

l

IVIO,O

MO,l Ml,l M2,1 M3,1 MO,Z I\/|1,2 I\/|2,2 M3,2 M0,3 M1,3 M2,3 M3,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign
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Memory Layout of a Matrix in C

Access T T T T
direction in
MO,l Ml,l |v|2,1 M3,1

Kernel code
MO,Z I\/Il,2 M2,2 M3,2

Time Period 2

Tl T2 TS
A A

> —

Tijme Period 1
T, T, T,

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign
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Example: SoA vs. AoS

~_global  void bar(record
*AoS data, SOA SOA data)

{
int 1 = blockDim.x * blockldx.X
+ threadldx.Xx;
// A0S wastes bandwidth
int key = AoS datali]-key;
// SOA efficient use of bandwidth

int key better =
SoA data.keys[i];

L
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Shared Memory Bank Conflicts

 Shared memory is as fast as registers if there are no
bank conflicts

e Bank conflicts are less of an issue in newer versions of
CUDA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign



Parallel Reduction:
No Divergence until <= 16 sub-sums

Thread 0 Thread 1 Thread 2 Thread 14 Thread 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 57



Prefetching

e One could double buffer the computation, getting
better instruction mix within each thread

— This is classic software pipelining in ILP compilers

Loop {

Load current tile to shared memory
syncthreads()

Compute current tile

syncthreads()
¥

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

Load next tile from global memory
Loop {

Deposit current tile to shared memory
syncthreads()

Load next tile from global memory

Compute current tile

syncthreads()
¥




Instruction Mix Considerations:
Loop Unrolling

for (int k = 0; k < BLOCK_SIZE; ++k)
Pvalue += Ms[ty][k] * Ns[k][tx];

There are very few mul/add between branches and
address calculation

Loop unrolling can help. (Beware that any local arrays
used after unrolling will be dumped into Local Memory)

Pvalue += Ms[ty][k] * Ns[k][tx] + ..
Ms[ty][k+15] * Ns[k+15][tx];

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign



Occupancy

* Thread instructions are executed
sequentially, so executing other warps is the

only way to hide latencies and keep memory
busy

e Occupancy = number of warps running
concurrently on a multiprocessor divided by
maximum number of warps that can run
concurrently

« Limited by resource usage.:
— Registers
— Shared memory



Optimizing Threads per Block

Choose threads per block as multiple of warp size
— Avoid wasting computation on under-populated warps
Run as many warps as possible per SM

— Hide latency

SMs can run up to N blocks at a time

Heuristics
— Minimum: 64 threads per block
* Only if multiple concurrent blocks

— 192 or 256 threads are a better choice

« Usually, still enough registers to compile and invoke
successfully

— This all depends on computation



Kernel Launch Overhead

e Kernel launches aren’t free
— A null kernel launch will take non-trivial time

— Actual time changes with HW generations
and driver software...

* Independent kernel launches are cheaper
than dependent kernel launches
— Dependent launch: Some readback to the
cpu
e Launching lots of small grids comes with
substantial performance loss



Compute Capabilities

 Reminder: do not take various constants,
such as size of shared memory etc., for
granted since they continuously change

e Check CUDA programming guide for the
features of the compute capability of your

GPU



Floating-Point Considerations

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign



Objective

e To understand the fundamentals of floating-
point representation

 To know the IEEE-754 Floating Point
Standard

 GeForce 8800 CUDA Floating-point speed,
accuracy and precision

— Deviations from IEEE-754

— Accuracy of device runtime functions

— -fastmath compiler option

— Future performance considerations

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign



What is IEEE floating-point format?

» A floating point binary number consists of three parts:
— sign (S), exponent (E), and mantissa (M).
— Each (S, E, M) pattern uniquely identifies a floating point number.

 For each bit pattern, its IEEE floating-point value is
derived as:

— value = (-1)S * M * {2€}, where 1.0 < M < 10.04

* The interpretation of S is simple: S=0 results in a positive
number and S=1 a negative humber.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign



Normalized Representation

» Specifying that 1.05 < M < 10.05; makes the mantissa
value for each floating point number unique.
— For example, the only one mantissa value allowed for
0.55is M =1.0
« 0.5, =1.0g * 2
— Neither 10.0g * 2 -2 nor 0.15 * 20 qualifies

 Because all mantissa values are of the form 1.XX...,
one can omit the “1.” part in the representation.

— The mantissa value of 0.5 in a 2-bit mantissa is 00,
which is derived by omitting “1.” from 1.00.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign



Note: Two’s Complement

* The negative value of a number can be
derived by:

 Complementing every bit
e Adding 1

 Example: -3
« 3=0114
« Complement every bit: 100
 Add 1: 101



Exponent Representation

e |n an n-bits exponen’[ 2’s complement | Actual decimal Excess-3
representation, 2™1-1 is
added to its 2's 000 0 011

complement

. . 001 1 100
representation to form its
excess representation. 010 2 101
— See Table for a 3-bit
exponent representation 011 3 110
e A simple unsigned integer
100 d 111
comparator can be used e orm)
to compare the magnitude P -

of two FP numbers

 Symmetric range for +/- 110 2 001
exponents (111 reserved)

111 -1 010

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign



A simple, hypothetical 6-bit FP

format
e Assume 1-bit S. 3-bit E 2’s complement | Actual decimal Excess-3
— 0.5, =1.00g * 21
001 1 100
— 0.55=001000, where S =
0,E=010,and M = (1.)00 010 2 101
011 3 110
100 (reserved 111
pattern)
101 -3 000
110 -2 001
111 -1 010

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana-Champaign



Representable Numbers

 The representable

numbers of a given format 000

IS the set of all numbers 001

that can be exactly

represented in the format. 10

* See Table for 011

representable numbers of 100
an unsigned 3-bit integer

format ot

J,Y + + ++++‘LY 110

10 1 234567289

111

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Representable Numbers of a 5-bit
Hypothetical IEEE Format

No-zero
E M S=0 S=1
00 00 |21 -(2°Y)
01 | 2:141*23 -(21+1*23)
10 | 2:142*28 -(2:142%279)
11| 2243%23 | (2143%279)
01 00 20 -(29)
01 20+1%*2-2 -(20+1%22)
10 | 204+2%22 -(20+2*22)
11 2043%9-2 -(20+3*22)
10 00 21 -(29)
01 | 2141*21 -(21+1*2°1)
10 214+2*2-1 -(2142%2°1)
1| 2443*21 -(2143*21)
11 Reserved pattern
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Represerfigtiiit ot a o-bit

E M S=0 S=1
00 00 |21 -(2°Y)
01 | 2241%23 | -(2141%279)
10 | 2442%23 | -(2142*273)
11 2-143*23 -(2-1+3*23)
01 00 20 -(29)
01 20+1%*2-2 -(20+1%22)
10 | 2042%22 -(20+2*%2-2)
11 | 2043*22 -(20+3*22)
10 00 |2t -(29)
01 | 21+1*21 -(214+1%2Y)
10 214+2*2-1 -(2142%2°1)
11 | 2143*21 -(2143*%2°Y)
11

Reserved pattern
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Representable Numbers of a 5-bit
Hypothetical IEEE Format

« Exponent bits define major intervals of representable
numbers

 Mantissa bits define the number of representable numbers
In each interval

— With N mantissa bits, 2N representable numbers per interval

 Representable numbers come closer to each other in the
neighborhood of 0

— Desirable property

 Thereis a gap around O
— Significantly larger error between 0 and 0.5 than 0.5 and 1

%%%%% % % A A A A A
RS v v
2

0 1

>+
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Flush to Zero (Abrupt Underflow)

 Treat all bit patterns with E=0 as 0.0

— This takes away several representable
numbers near zero and lumps them all into 0.0

— For a representation with large M, a large
number of representable numbers will be
removed

+ T

0 1 2

<=
w <=
<=
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Flush to Zero

No-zero Flush to Zero
E M S=0 s=1 S=0 S=1
00 00 |2t -(27) 0 0
01 | 2141%23 -(2141*2°3) 0 0
10 | 242%23 -(2142%2°3) 0 0
11 | 214323 -(2143*273) 0 0
01 00 20 -(29) 20 _(20)
01 20+1%2-2 -(29+1*22) 2041 *9-2 -(20+1*2-2)
10 20+2%2-2 -(29+2*22) 2049%9-2 -(20+2*2-2)
11 20+3*22 -(2043*22) 2043*9-2 _(20+ 3*2-2)
10 00 21 -(2Y) 21 _(21)
01 2141*21 -(21+1*21) 2141%9-1 -(21+1%2)
10 2142*21 -(21+2*21) 2149%9-1 -(21+2%21)
11 2143*21 -(21+3*21) 2143*2-1 -(21+3*21)
11 Reserved pattern
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Denormalized Numbers

 The actual method adopted by the IEEE
standard is called denormalized numbers or
gradual underflow.

— The method relaxes the normalization
requirement for numbers very close to 0

— whenever E=0, the mantissa is no longer
assumed to be of the form 1.XX. Rather, it is
assumed to be 0.XX. In general, if the n-bit
exponent is 0, the value is

e O.M*2-2%(n1) +2

A

0 1 2
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Denormalization

No-zero Flush to Zero Denormalized
E M S=0 S=1 S=0 S=1 S=0 S=1
00 00 |2 -(2Y) 0 0 0 0
01 | 2:1+1%23 -(21+1%279) 0 0 1*2-2 _1%9-2
10 | 2142%2° -(214+2%23) 0 0 O*9-2 %92
11 | 2143%2°2 -(21+3%23) 0 0 3%)-2 _3%9-2
01 00 |20 -(29) 20 -(29) 20 -(29)
01 [ 2041%22 -(20+1*27?) 20+1%22 -(29+1*272) 2041%22 | -(2041%22)
10 20+2%2-2 -(20+2*22) 20+2%2-2 -(20+2*22) 20492%9-2 _(20+ 2*2-2)
11 20+3*22 -(2043*22) 2043*22 -(20+3*22) 2043*9-2 _(20+3*2-2)
10 00 |2t -(2Y) 21 -(2Y) 21 -(29)
01 21+1%2-1 -(21+1*2°1) 21+1%21 -(21+1*2°1) 2141*9-1 _(21+ 1*2-1)
10 | 2t+2%21 -(21+2*27) 2142721 -(24+2%27) 2142%21 | (2142%21)
11 21+3*21 -(21+3*2Y) 21+3%2-1 -(21+3*2°1) 2143%9-1 _(21+3*2-1)
11 Reserved pattern
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Arithmetic Instruction Throughput

e int and float add, shift, min, max and float mul,
mad: 4 cycles per warp
— int multiply (*) is by default 32-bit
requires multiple cycles / warp

— Use  mul24() / __umul24() intrinsics for 4-cycle 24-bit
iInt multiply

* Integer divide and modulo are expensive
— Compiler will convert literal power-of-2 divides to shifts

— Be explicit in cases where compiler can’t tell that
divisor is a power of 2!
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Arithmetic Instruction Throughput

* Reciprocal, reciprocal square root, sin/cos,
log, exp: 16 cycles per warp
— These are the versions prefixed with ©
— Examples:___rcp(), __sin(), __exp()

e (Other functions are combinations of the
above

— y/x==rcp(x) *y == 20 cycles per warp
— sqgrt(x) == rcp(rsqgrt(x)) == 32 cycles per warp
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Runtime Math Library

 There are two types of runtime math
operations
— _ func(): direct mapping to hardware ISA
« Fast but low accuracy (see prog. guide for details)
« Examples: sin(x), __exp(x), __ pow(Xx,y)
— func() : compile to multiple instructions
« Slower but higher accuracy: error of 5 ulp or less

o (ulp: units in the last place or units of least precision)
o Examples: sin(x), exp(x), pow(X,y)

 The -use_fast_math compiler option forces
every func() to compile to __ func()
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Make your program float-safe!

 Hardware now has double precision support
— @G80 is single-precision only
— Double precision has additional performance cost
— Careless use of double or undeclared types may run more
slowly on G80+
 |mportant to be float-safe (be explicit whenever you want
single precision) to avoid using double precision where it
IS not needed
— Add f’ specifier on float literals:

e Too = bar * 0.123; // double assumed
e fToo = bar * 0.123f; // float explicit

— Use float version of standard library functions
e Too = sin(bar); // double assumed
« Too = sinf(bar); // single precision explicit
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Floating-Point Calculation Results Can
Depend on Execution Order

Order 1

1.00*2° +1.00*2° + 1.00*2-2 + 1.00*22
=1.00*2! + 1.00*22 + 1.00*22
=1.00*2! + 1.00*22

= 1.00*21

Order 2
(100*20 +1.00*20) + (1_00*2-2 + 1.00%2-2 )
=1.00*21 + 1.00*2-1
=1.01%2*
Pre-sorting Is often used to increase stability of floating point
results.
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Special Bit Patterns in the IEEE
Standard Format

Exponent Mantissa Meaning
11 ...1 #+ 0 NaN
11 ... 1 =0 (—1)° x oo
00...0 # 0 Denormalized
00...0 =0 0
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