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CS 677 Parallel Programming forCS 677: Parallel Programming for 
Many-core Processors y

Lecture 3

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E il Phili M d h i@ dE-mail: Philippos.Mordohai@stevens.edu



OverviewOverview

• A Common Programming StrategyA Common Programming Strategy

• Threading Hardware

M H d• Memory Hardware

• Control Flow
– Simple Reduction
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A Common Programming StrategyA Common Programming Strategy

• Global memory resides in device memoryGlobal memory resides in device memory 
(DRAM)
– Much slower access than shared memoryMuch slower access than shared memory

• Tile data to take advantage of fast shared 
memory:memory:
– Generalize from adjacent_difference example

• Lecture 2, slides 35-40,

– Divide and conquer
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A Common Programming Strategy

• Partition data into subsets that fit into 
h dshared memory
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A Common Programming Strategy

• Handle each data subset with one thread 
bl kblock
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A Common Programming Strategy

• Load the subset from global memory to 
shared memory using multiple threads toshared memory, using multiple threads to 
exploit memory-level parallelism
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A Common Programming Strategy

• Perform the computation on the subset from 
h dshared memory
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A Common Programming Strategy

• Copy the result from shared memory back 
t l b lto global memory
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A Common Programming Strategy

• Carefully partition data according to access y p g
patterns

• Read-only  __constant__ memory (fast)
R/W & h d i hi bl k• R/W & shared within block  __shared__ 
memory (fast)

• R/W within each thread registers (fast)• R/W within each thread  registers (fast)
• Indexed R/W within each thread  local 

memory (slow)y ( )
• R/W inputs/results  cudaMalloc‘ed global 

memory (slow)
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Communication Through MemoryCommunication Through Memory

• Question:

__global__ void race(void)
{{

__shared__ int my_shared_variable;
my shared variable = threadIdx.x;my_shared_variable  threadIdx.x;

// what is the value of
// my_shared_variable?

}
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Communication Through MemoryCommunication Through Memory

• This is a race conditionThis is a race condition

• The result is undefined

Th d i hi h h d h• The order in which threads access the 
variable is undefined without explicit 

di icoordination
• Use barriers (e.g., __syncthreads) or 

atomic operations (e.g., atomicAdd) to 
enforce well-defined semantics
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Threading HardwareThreading Hardware
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Single-Program Multiple-Data (SPMD)

• CUDA integrated CPU + GPU application C program
Serial C code executes on CPU– Serial C code executes on CPU

– Parallel Kernel C code executes on GPU thread blocks

CPU Serial CodeCPU Serial Code
Grid 0

GPU Parallel Kernel
K lA Blk Tid ( ) . . .KernelA<<< nBlk, nTid >>>(args);

CPU Serial Code
Grid 1

GPU Parallel Kernel 
KernelB<<< nBlk nTid >>>(args)
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CUDA Thread Block: Review

• Programmer declares (Thread) Block:
– Block size 1 to 512 concurrent threads
– Block shape 1D, 2D, or 3D
– Block dimensions in threads

CUDA Thread Block

Thread Id #:
• All threads in a Block execute the 

same thread program
• Threads share data and synchronize

Thread Id #:
0 1 2 3 …          m   

• Threads share data and synchronize 
while doing their share of the work

• Threads have thread id numbers 
ithi Bl k

Thread program

within Block
• Thread program uses thread id to 

select work and address shared data
Courtesy: John Nickolls NVIDIA
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GeForce-8 Series HW OverviewGeForce 8 Series HW Overview
Streaming Processor Array

TPC TPC TPC TPC TPC TPC
…

Instruction L1 Data L1
Texture Processor Cluster Streaming Multiprocessor

TEX
SP SP

Instruction Fetch/Dispatch

Instruction L1 Data L1

SM

Shared Memory

SM

SP

SP

SP

SFU
SP

SP

SP

SFU
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CUDA Processor Terminology
• SPA

Streaming Processor Arra

CUDA Processor Terminology

– Streaming Processor Array

• TPC
– Texture Processor Cluster (2 or more SM + TEX)( )

• SM
– Streaming Multiprocessor (8 or more SP)

M lti th d d– Multi-threaded processor core

– Fundamental processing unit for CUDA thread block

• SP
– Streaming Processor

– Scalar ALU for a single CUDA thread

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Streaming Multiprocessor (SM)Streaming Multiprocessor (SM)

• Streaming Multiprocessor (SM)• Streaming Multiprocessor (SM)
– 8 Streaming Processors (SP)
– 2 Super Function Units (SFU)

• Multi threaded instruction dispatch
Instruction L1 Data L1

Streaming Multiprocessor

• Multi-threaded instruction dispatch
– 1 to 512 threads active
– Shared instruction fetch per 32 threads

C l t f t t / l d
SP SP

Instruction Fetch/Dispatch

Shared Memory

– Cover latency of texture/memory loads
• 20+ GFLOPS
• 16 KB shared memory SP

SP

SP
SFU

SP

SP

SP
SFU

• texture and global memory access
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Thread Lifecycle in HW
• Grid is launched on the SPA
• Thread Blocks are serially 

di t ib t d t ll th SM’

Host Device

Grid 1

distributed to all the SM’s
– Potentially >1 Thread Block 

per SM
• Each SM launches Warps of

Kernel 
1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0 1)

Block
(1 1)

Block
(2 1)• Each SM launches Warps of 

Threads
– 2 levels of parallelism

• SM schedules and executes Kernel

(0, 1) (1, 1) (2, 1)

Grid 2

• SM schedules and executes 
Warps that are ready to run

• As Warps and Thread Blocks 
complete resources are

Kernel 
2

Block (1, 1)
complete, resources are 
freed
– SPA can distribute more 

Thread Blocks
Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)
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(0, 2)
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(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)



Threads in Linear OrderThreads in Linear Order

• If the block was 3D, we would start with threads whose 
threadIdx.z=0, then threadIdx.z=1, etc.

19
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SM Executes Blocks
t0 t1 t2 … tm

MT IU MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

• Threads are assigned to SMs in 
Block granularity

Blocks

SP SP

Block granularity
– Up to 8 Blocks to each SM as 

resource allows
– SM in G80 can take up to 768 

threads
Shared
Memory

Shared
Memory threads

• Could be 256 (threads/block) * 3 
blocks 

• Or 128 (threads/block) * 6 blocks, 
etc

Texture L1

y y

TF

etc.

• Threads run concurrently
– SM assigns/maintains thread id #s
– SM manages/schedules thread 

L2
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Thread Scheduling/ExecutionThread Scheduling/Execution

• Each Thread Blocks is divided in 32- … …Block 1 Warps Block 2 WarpsEach Thread Blocks is divided in 32
thread Warps
– This is an implementation decision, not 

part of the CUDA programming model

…

t0 t1 t2 … t31
…

t0 t1 t2 … t31

• Warps are scheduling units in SM
• If 3 blocks are assigned to an SM and each 

Block has 256 threads, how many Warps 
Instruction L1 Data L1

Streaming Multiprocessor

, y p
are there in an SM?
– Each Block is divided into 256/32 = 8 

Warps SP SP

Instruction Fetch/Dispatch

Shared Memory

– There are 8 * 3 = 24 Warps 
– At any point in time, only one of the 24 

Warps will be selected for instruction 
f h d i

SP

SP

SP
SFU

SP

SP

SP
SFU
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SM Warp Scheduling
• SM hardware implements zero-

overhead Warp scheduling
W h t i t ti h it– Warps whose next instruction has its 
operands ready for consumption are 
eligible for execution

– Eligible Warps are selected for SM multithreaded
Warp scheduler g p

execution on a prioritized scheduling 
policy

– All threads in a Warp execute the 
same instruction when selectedwarp 8 instruction 11

Warp scheduler

time

same instruction when selected
• 4 clock cycles needed to dispatch the 

same instruction for all threads in a 
Warp in G80

warp 1 instruction 42

3 i t ti 95 Warp in G80
– If one global memory access is needed 

for every 4 instructions
– A minimum of 13 Warps are needed to 

f ll t l t 200 l l t

warp 3 instruction 95

warp 8 instruction 12

...

22

fully tolerate 200-cycle memory latency
warp 3 instruction 96



SM Instruction Buffer – Warp Schedulingp g

• Fetch one warp instruction/cycle
– from instruction L1 cache 

– into any instruction buffer slot

• Issue one “ready-to-go” warp instruction/cycleIssue one ready to go  warp instruction/cycle
– from any warp - instruction buffer slot

– operand scoreboarding used to prevent hazards

I l i b d d bi / f• Issue selection based on round-robin/age of warp

• SM broadcasts the same instruction to 32 Threads of 
a Warpa Warp

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 23



ScoreboardingScoreboarding

• How to determine if an instruction is ready toHow to determine if an instruction is ready to 
execute?

• A scoreboard is a table in hardware that 
tracks
– instructions being fetched, issued, executed 
– resources (functional units and operands) they 

need
– which instructions modify which registers– which instructions modify which registers

• Old concept from CDC 6600 (1960s) to 
separate memory and computationseparate memory and computation

CS6963 University of Utah
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Scoreboarding Example
• Consider three separate 

instruction streams: warp1, p ,
warp3 and warp8

warp 8 instruction 11 t=k

Warp Current
Instruction

Instruction
State

warp 8 instruction 11

warp 1 instruction 42

t=k

t=k+1
Warp 1 42 Computing

W 3 95 C i
warp 3 instruction 95

warp 8 instruction 12

...

t=k+2

t=l>k

Warp 3 95 Computing

Warp 8 11 Operands  Schedule
t ti kwarp 8 instruction 12

warp 3 instruction 96

t l>k

t=l+1

ready to go

…

at time k

CS6963 University of Utah
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Scoreboarding Example
• Consider three separate 

instruction streams: warp1, p ,
warp3 and warp8

Warp Current
Instruction

Instruction
State

warp 8 instruction 11 t=k
Warp 1 42 Ready to 

write result 

W 3 95 C i

Schedule
at time k+1

warp 8 instruction 11

warp 1 instruction 42

t=k

t=k+1

Warp 3 95 Computing

Warp 8 11 Computing

warp 3 instruction 95

warp 8 instruction 12

...

t=k+2

t=l>k

…

warp 8 instruction 12

warp 3 instruction 96

t l>k

t=l+1

CS6963 University of Utah
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Scoreboarding

• All register operands of all instructions in the Instruction 
Buffer are scoreboarded
– Status becomes ready after the needed values are deposited
– prevents hazards
– cleared instructions are eligible for issue

• Decoupled Memory/Processor pipelines
– any thread can continue to issue instructions until 

scoreboarding prevents issueg p
– allows Memory/Processor ops to proceed in shadow of other 

waiting Memory/Processor ops

27
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Memory HardwareMemory Hardware

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign28

28



CUDA Device Memory Space: 
R iReview

• Each thread can:
R/W th d i t

(Device) Grid

– R/W per-thread registers
– R/W per-thread local memory
– R/W per-block shared memory

R/W per grid global memory

Block (0, 0)

Shared Memory

Block (1, 0)

Shared Memory

– R/W per-grid global memory
– Read only per-grid constant 

memory
– Read only per-grid texture memory Thread (0, 0)

Registers

Thread (1, 0)

Registers

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Read only per grid texture memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

• The host can R/W

Constant
Memory

Global
Memory

Host
• The host can R/W 

global, constant, and 
texture memories
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Parallel Memory Sharing
• Local Memory:   per-thread

– Private per thread
– Auto variables, register spill

• Shared Memory: per-Block

Thread

Local Memory • Shared Memory: per-Block
– Shared by threads of the same 

block
– Inter-thread communication

• Global Memory: per application

Block

• Global Memory:   per-application
– Shared by all threads
– Inter-Grid communication

Shared
Memory

Grid 0

. . .
Global

MemoryGrid 1
Sequential
Grids
i Ti

30
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SM Memory Architecture
t0 t1 t2 … tm

MT IU MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

• Threads in a block share data & Blocks

SP SP

results
– In Memory and Shared Memory
– Synchronize at barrier instruction

Shared
Memory

Shared
Memory y

• Per-Block Shared Memory 
Allocation

Keeps data close to processor
Texture L1

y y

TF

Courtesy: – Keeps data close to processor
– Minimize trips to global Memory
– Shared Memory is dynamically 

allocated to blocks one of the

L2

Courtesy: 
John Nicols, NVIDIA
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Texture MemoryTexture Memory

• Read only
• More closely related to graphics pipeline
• Small, but can be faster than global memory due to 

cachecache
– More relaxed coalescing requirements
– Optimized for 2D spatial locality
– Can pack 4 8-bit ints into 1 floatCan pack 4 8 bit ints into 1 float 
– Converts data to [0.0 .. 1.0] or [-1.0 .. 1.0] range
– Automatic boundary handling

out of scope for now
See http://cuda-programming.blogspot.com/2013/02/texture-memory-in-cuda-what-
is-texture.html if interested
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SM Register FileSM Register File

• Register File (RF) I$

– 32 KB (8K entries) for each SM in G80

• TEX pipe can also read/write RF
2 SMs share 1 TEX in G 80 3 SMs per

L1

Multithreaded
Instruction Buffer

– 2 SMs share 1 TEX in G 80, 3 SMs per 
TEX in GTX 200

– Related to graphics mode (out of scope)
R
F

C$
L1

Shared
Mem

• Load/Store pipe can also read/write RF

MAD: Multiply and Add unit

Operand Select

MAD SFUMAD: Multiply and Add unit

SFU: Super Function Unit – where more 
complex instructions are executed

MAD SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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Programmer View of Register FileProgrammer View of Register File

• There are 8192 registers in 
each SM in G80

4 blocks 3 blocks

each SM in G80
– This is an implementation 

decision, not part of CUDA
– Registers are dynamically 

i i d ll bl kpartitioned across all blocks 
assigned to the SM

– Once assigned to a block, the 
register is NOT accessible by 
h d i h bl kthreads in other blocks

– Each thread in the same block 
only access registers assigned 
to itself

(This has changed but the 
example is still useful)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 34



Matrix Multiplication ExampleMatrix Multiplication Example

• If each Block has 16X16 threads and each thread uses 
10 registers, how many threads can run on each SM?
– Each block requires 10*256 = 2560 registers
– 8192 = 3 * 2560 + changeg
– So, three blocks can run on an SM as far as registers are 

concerned

• How about if each thread increases the use of registersHow about if each thread increases the use of registers 
by 1?
– Each  Block now requires 11*256 = 2816 registers
– 8192 < 2816 *38192 < 2816 3
– Only two Blocks can run on an SM, 1/3 reduction of parallelism!!!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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More on Dynamic PartitioningMore on Dynamic Partitioning

• Dynamic partitioning gives more flexibility toDynamic partitioning gives more flexibility to 
compilers/programmers
– One can run a smaller number of threads thatOne can run a smaller number of threads that 

require many registers each or a large number of 
threads that require few registers each 

• This allows for finer grain threading than traditional 
CPU threading models

– The compiler can tradeoff between instruction-The compiler can tradeoff between instruction-
level parallelism and thread level parallelism

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
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ILP vs TLP ExampleILP vs. TLP Example

• Assume that a kernel has 256-thread Blocks, 4 
independent instructions for each global memory load in 
the thread program, and each thread uses 10 registers, 
global loads take 200 cycles g y
– 3 Blocks can run on each SM

• If a compiler can use one more register to change the 
dependence pattern so that 8 independent instructionsdependence pattern so that 8 independent instructions 
exist for each global memory load
– Only two can run on each SM

However one only needs 200/(8*4) = 7 Warps to tolerate the– However, one only needs 200/(8 4) = 7 Warps to tolerate the 
memory latency

– Two blocks have 16 Warps. The performance can be actually 
higher!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 37

g



Resource Allocation Example

I i h d f b f h dIncrease in per-thread performance, but fewer threads:
Lower overall performance in this case
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CUDA Occupancy Calculator

http://developer.download.nvidia.c
om/compute/cuda/CUDA_Occupa
ncy_calculator.xls
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Memory Layout of a Matrix in C
M2,0M1,0M0,0 M3,0

Memory Layout of a Matrix in C

M1,1M0,1 M2,1 M3,1

M1,2M0,2 M2,2 M3,2

MM M MM1,3M0,3 M2,3 M3,3

M

MMM M MM M M MM M M MM M M

M

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2 M1,3M0,3 M2,3 M3,3
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Memory Coalescing*Memory Coalescing
• When accessing global memory, peak 

f ili i h llperformance utilization occurs when all 
threads in a half warp access continuous 

l imemory locations
Not coalesced coalesced

Md Nd

HThread 1

W
ID

T
H

WIDTH

Thread 2
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Memory Layout of a Matrix in C
M2,0M1,0M0,0 M3,0

Memory Layout of a Matrix in C
Access 
direction in M1,1M0,1 M2,1 M3,1

M1,2M0,2 M2,2 M3,2

MM M M

direction in 
Kernel code

M1,3M0,3 M2,3 M3,3

Time Period 1 Time Period 2

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2 …

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2 M1,3M0,3 M2,3 M3,3
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Memory Layout of a Matrix in C
M2,0M1,0M0,0 M3,0

Memory Layout of a Matrix in C
Access 
direction in M1,1M0,1 M2,1 M3,1

M1,2M0,2 M2,2 M3,2

MM M M

direction in 
Kernel code

M1,3M0,3 M2,3 M3,3

T1 T2 T3 T4

Time Period 2
…

T1 T2 T3 T4

Time Period 1

1 2 3 4

M
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Matrix Multiplication
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{{
1.  __shared __float Mds[TILE_WIDTH][TILE_WIDTH];
2.  __shared __float Nds[TILE_WIDTH][TILE_WIDTH];

3.  int bx = blockIdx.x;  int by = blockIdx.y;
4 int tx threadIdx x; int ty threadIdx y;4.  int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5.  int Row = by * TILE_WIDTH + ty;
6.  int Col = bx * TILE_WIDTH + tx;

7.  float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8.  for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of Md and Nd tiles into shared memory
9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10. Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];
11. __syncthreads();

Why this works:12.    for (int k = 0; k < TILE_WIDTH; ++k)
13. Pvalue += Mds[ty][k] * Nds[k][tx];
14.    __syncthreads();

}
15 Pd[Row*Width + Col] = Pvalue;

Why this works:
• threads in warp have 

same ty
• adjacent threads read

44

15. Pd[Row Width + Col]  Pvalue;
}
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* Coalescing since 2013 Coalescing since 2013

• GPUs now have cacheGPUs now have cache
=> Coalescing is less important as it is done 

by the hardwareby the hardware
• Make sure you have enough cache 

available for each warpavailable for each warp

• There may still be some loss ofThere may still be some loss of 
performance (20-50%) due to uncoalesced
access
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Cache (Compute Capability 3 x)Cache (Compute Capability 3.x)

• L1 cache for each multiprocessorL1 cache for each multiprocessor 

• L2 cache shared by all multiprocessors

• Both are used to cache accesses to local orBoth are used to cache accesses to local or 
global memory, including temporary register 
spillsp

• Cache behavior (e.g., whether reads are cached 
in both L1 and L2 or in L2 only) can be partially 
configured

46



Configuring the CacheConfiguring the Cache

• The same on-chip memory is used for bothThe same on chip memory is used for both 
L1 and shared memory. It can be 
configured as:g
– 48 KB of shared memory and 16 KB of L1 

cache 
– 16 KB of shared memory and 48 KB of L1 

cache 
32 KB of shared memory and 32 KB of L1– 32 KB of shared memory and 32 KB of L1 
cache 

• using cudaFuncSetCacheConfig()using cudaFuncSetCacheConfig()

47



Cache PreferencesCache Preferences

// Host code

// cudaFuncCachePreferShared: shared memory is 48 KB
// cudaFuncCachePreferEqual: shared memory is 32 KB// cudaFuncCachePreferEqual: shared memory is 32 KB
// cudaFuncCachePreferL1: shared memory is 16 KB
// cudaFuncCachePreferNone: no preference

d S C h C fi ( lcudaFuncSetCacheConfig(MyKernel, 
cudaFuncCachePreferShared);

48



Cache PreferencesCache Preferences
• The default cache configuration is "prefer none" 

• If a kernel has no preference, then it will default 
to the preference of the current CPU 
th d/ t tthread/context

• If the current thread/context also has no 
preference then most recent cachepreference, then most recent cache 
configuration will be used
– unless a different cache configuration is required tounless a different cache configuration is required to 

launch the kernel (e.g., due to shared memory 
requirements) 

• The initial configuration is 48 KB of shared 
memory and 16 KB of L1 cache 49



Constants
• Immediate address constants (#d fi )• Immediate address constants (#define)
• Indexed address constants
• Constants stored in DRAM, and cached on chip

– L1 per SM

• A constant value can be broadcast to all threads in a warp
– Extremely efficient way of accessing a value that is common for all 

threads in a block!

// specify as global variable
__device__ __constant__ float gpuGamma[2]; 
// copy gamma value to constant device memory
cudaMemcpyToSymbol(gpuGamma, &gamma, sizeof(float));
…
// access as global variable in kernel
res = gpuGamma[0] * threadIdx.x;
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Shared MemoryShared Memory

• Each SM has 16 or more KB of SharedEach SM has 16 or more KB of Shared 
Memory
– 16 banks of 32-bit words16 banks of 32 bit words

– 64-bit access is also supported now

• CUDA uses Shared Memory as shared• CUDA uses Shared Memory as shared 
storage visible to all threads in a thread 
blockblock
– read and write access

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 51



Parallel Memory Architecture

• In a parallel machine, many threads access 
memoryy
– Therefore, memory is divided into banks
– Essential to achieve high bandwidth

Bank 0

• Each bank can service one address per cycle
– A memory can service as many simultaneous 

it h b k Bank 4
Bank 3
Bank 2
Bank 1

accesses as it has banks

• Multiple simultaneous accesses to a bank Bank 7
Bank 6
Bank 5
Bank 4

Multiple simultaneous accesses to a bank
result in a bank conflict 
– Conflicting accesses are serialized Bank 15
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Bank Addressing ExamplesBank Addressing Examples

• No Bank Conflicts • No Bank Conflicts
– Linear addressing 

stride == 1
– Random 1:1 Permutation

Bank 0Thread 0 Bank 0Thread 0

B k 4
Bank 3
Bank 2
Bank 1
Bank 0

Th d 4
Thread 3
Thread 2
Thread 1
Thread 0

B k 4
Bank 3
Bank 2
Bank 1
Bank 0

Th d 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 7
Bank 6
Bank 5
Bank 4

Thread 7
Thread 6
Thread 5
Thread 4

Bank 7
Bank 6
Bank 5
Bank 4

Thread 7
Thread 6
Thread 5
Thread 4

Bank 15

Bank 7

Thread 15

Thread 7

Bank 15

Bank 7

Thread 15

Thread 7
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Bank Addressing ExamplesBank Addressing Examples

• 2-way Bank Conflicts • 8-way Bank Conflicts

Thread 0 Bank 0 Thread 0 Bank 0x8

Th d 4
Thread 3
Thread 2
Thread 1
Thread 0

B k 4
Bank 3
Bank 2
Bank 1
Bank 0

Th d 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 2
Bank 1
Bank 0

Thread 4

Bank 7
Bank 6
Bank 5
Bank 4

Thread 7
Thread 6
Thread 5
Thread 4

Bank 9
Bank 8
Bank 7

Thread 11
Thread 10
Thread 9
Thread 8

Bank 15

Bank 7

Thread 15

Thread 7 Bank 9

Bank 15

x8
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How Addresses Map to 
Banks on G80Banks on G80

• Each bank has a bandwidth of 32 bits per p
clock cycle

• Successive 32-bit words are assigned toSuccessive 32 bit words are assigned to 
successive banks

• G80 has 16 banks• G80 has 16 banks
– So bank = address % 16

S th i f h lf– Same as the size of a half-warp
• No bank conflicts between different half-warps, 

only within a single half-warp
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Shared Memory Bank ConflictsShared Memory Bank Conflicts
• Shared memory is as fast as registers if there are no bank 

conflictsconflicts

• The fast case:
– If all threads of a half-warp access different banks, there is no bank 

conflict
– If all threads of a half-warp access an identical address, there is no 

bank conflict (broadcast)

• The slow case:
– Bank Conflict: multiple threads in the same half-warp access the p p

same bank
– Must serialize the accesses
– Cost = max # of simultaneous accesses to a single bank
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Linear Addressing

• Given:
Bank 3
Bank 2
Bank 1
Bank 0

Thread 3
Thread 2
Thread 1
Thread 0

s=1

__shared__ float shared[256];
float foo = Bank 7

Bank 6
Bank 5
Bank 4
Bank 3

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3

shared[baseIndex + s * threadIdx.x];
Bank 15Thread 15

• This is only bank-conflict-free 
if s shares no common factors 

Bank 2
Bank 1
Bank 0

Thread 2
Thread 1
Thread 0

s=3

with the number of banks 
– 16 on G80, so s must be odd Bank 7

Bank 6
Bank 5
Bank 4
Bank 3

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
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Compute 
Capability 3 xCapability 3.x

• Left: Linear addressing with a 
t id f 32 bit d (stride of one 32-bit word (no 

bank conflict)
• Middle: Linear addressing 

with a stride of two 32-bitwith a stride of two 32 bit 
words (no bank conflict)

• Right: Linear addressing with 
a stride of three 32-bit words 
(no bank conflict)

• More flexible definition of 
li t ithi b kalignment  within banks 

enables last two examples
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Compute 
Capability 3 xCapability 3.x

• Left: Conflict-free 
access via random 
permutation 

• Middle: Conflict-freeMiddle: Conflict free 
access since threads 3, 
4, 6, 7, and 9 access 
the same word withinthe same word within 
bank 5

• Right: Conflict-free 
broadcast accessbroadcast access 
(threads access the 
same word within a 
bank)bank)
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Control FlowControl Flow
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Control Flow Instructions
• Main performance concern with branching is divergence

– Threads within a single warp take different paths
Diff t ti th i li d GPU– Different execution paths are serialized on GPU
• The control paths taken by the threads in a warp are traversed 

one at a time until there is no more.

• A common case: avoid divergence when branchA common case: avoid divergence when branch 
condition is a function of thread ID
– Example with divergence: 

• If (threadIdx.x > 2) { }
• This creates two different control paths for threads in a block
• Branch granularity < warp size; threads 0, 1 and 2 follow different 

path than the rest of the threads in the first warp
– Example without divergence:Example without divergence:

• If (threadIdx.x / WARP_SIZE > 2) { }
• Also creates two different control paths for threads in a block
• Branch granularity is a whole multiple of warp size; all threads in 

any given warp follow the same path
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Parallel ReductionParallel Reduction

• Given an array of values, “reduce” them to a y ,
single value in parallel

• Examples 
– Sum reduction: sum of all values in the array
– Max reduction: maximum of all values in the array

• Typically parallel implementation:
– Recursively halve # threads, add two values per y

thread
– Takes log(n) steps for n elements, requires n/2 

threads
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A Vector Reduction ExampleA Vector Reduction Example

• Assume an in-place reduction usingAssume an in place reduction using 
shared memory

The original vector is in device global memory– The original vector is in device global memory

– The shared memory is used to hold a partial 
sum vectorsum vector

– Each iteration brings the partial sum vector 
closer to the final sumcloser to the final sum

– The final solution will be in element 0
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A simple implementationA simple implementation
• Assume we have already loaded array into

h d fl t ti lS []__shared__ float partialSum[]

unsigned int t = threadIdx.x;
for (unsigned int stride = 1; 

stride < blockDim.x;  stride *= 2) 
{{
__syncthreads();
if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];
}
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Vector Reduction with Branch Divergence
Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9
1

0...3 4..7 8..11
2

0..7 8..15
3

iterations
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Some Observations
• In each iteration, two control flow paths will be 

sequentially traversed for each warp
Th d th t f dditi d th d th t d t– Threads that perform addition and threads that do not

– Threads that do not perform addition may cost extra cycles 
depending on the implementation of divergence

• No more than half of threads will be executing at any time
– All odd index threads are disabled right from the beginning!
– On average, less than ¼ of the threads will be activated for all 

warps over time.
– After the 5th iteration, entire warps in each block will be disabled, 

poor resource utilization but no divergencepoor resource utilization but no divergence
• This can go on for a while, up to 4 more iterations (512/32=16= 24), 

where each iteration only has one thread activated until all warps 
retire 
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Shortcomings of the 
i l iimplementation

• Assume we have already loaded array into
h d fl t ti lS []__shared__ float partialSum[]

unsigned int t = threadIdx.x;

BAD: Divergence 
due to interleaved 
branch decisions

for (unsigned int stride = 1; 
stride < blockDim.x;  stride *= 2) 

{{
__syncthreads();
if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];
}
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A better implementationA better implementation
• Assume we have already loaded array into

shared float partialSum[]__shared__ float partialSum[]

unsigned int t = threadIdx.x;
f ( i d i t t id bl kDi /2for (unsigned int stride = blockDim.x/2; 

stride > 1;  stride >>= 1) 
{{
__syncthreads();
if (t < stride)

partialSum[t] += partialSum[t+stride];
}
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No Divergence until <= 16 sub-sums
Thread 0

No Divergence until <  16 sub sums 
Thread 1 Thread 2 Thread 14 Thread 15

0 1 2 3 … 13 1514 181716 19

0+16 15+31
1

3

4
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Prefetching and Instruction 
Mix
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Prefetching
• One could double buffer the computation, getting 

better instruction mix within each thread
– This is classic software pipelining in ILP compilers

Loop { Load next tile from global memory

Load current tile to shared memory

syncthreads()

Loop {
Deposit current tile to shared memory
syncthreads()syncthreads()

Compute current tile

syncthreads()

Load next tile from global memory

syncthreads()
}

Compute current tile

syncthreads()
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bx

t
0 1 2Prefetch

• Deposit blue tile from register 
into shared memory Nd

tx
01 TILE_WIDTH-12

W
ID

T
H
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Instruction Mix ConsiderationsInstruction Mix Considerations
for (int k = 0; k < BLOCK_SIZE; ++k)

Pvalue += Ms[ty][k] * Ns[k][tx];Pvalue += Ms[ty][k] * Ns[k][tx];

There are very few mul/add between branches and 
dd l l iaddress calculation 

Loop unrolling can help (Be aware that any local arraysLoop unrolling can help. (Be aware that any local arrays 
used after unrolling will be dumped into Local Memory)

Pvalue += Ms[ty][k] * Ns[k][tx] + …
Ms[ty][k+15] * Ns[k+15][tx];
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Unrolling
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