
1

CS 677 Parallel Programming forCS 677: Parallel Programming for
Many-core Processors y

Lecture 3

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E il Phili M d h i@ dE-mail: Philippos.Mordohai@stevens.edu

OverviewOverview

• A Common Programming StrategyA Common Programming Strategy

• Threading Hardware

M H d• Memory Hardware

• Control Flow
– Simple Reduction

2

A Common Programming StrategyA Common Programming Strategy

• Global memory resides in device memoryGlobal memory resides in device memory
(DRAM)
– Much slower access than shared memoryMuch slower access than shared memory

• Tile data to take advantage of fast shared
memory:memory:
– Generalize from adjacent_difference example

• Lecture 2, slides 35-40,

– Divide and conquer

3

A Common Programming Strategy

• Partition data into subsets that fit into
h dshared memory

4

A Common Programming Strategy

• Handle each data subset with one thread
bl kblock

5

A Common Programming Strategy

• Load the subset from global memory to
shared memory using multiple threads toshared memory, using multiple threads to
exploit memory-level parallelism

6

A Common Programming Strategy

• Perform the computation on the subset from
h dshared memory

7

A Common Programming Strategy

• Copy the result from shared memory back
t l b lto global memory

8

A Common Programming Strategy

• Carefully partition data according to access y p g
patterns

• Read-only  __constant__ memory (fast)
R/W & h d i hi bl k• R/W & shared within block  __shared__
memory (fast)

• R/W within each thread registers (fast)• R/W within each thread  registers (fast)
• Indexed R/W within each thread  local

memory (slow)y ()
• R/W inputs/results  cudaMalloc‘ed global

memory (slow)

9

Communication Through MemoryCommunication Through Memory

• Question:

__global__ void race(void)
{{

__shared__ int my_shared_variable;
my shared variable = threadIdx.x;my_shared_variable threadIdx.x;

// what is the value of
// my_shared_variable?

}

10

Communication Through MemoryCommunication Through Memory

• This is a race conditionThis is a race condition

• The result is undefined

Th d i hi h h d h• The order in which threads access the
variable is undefined without explicit

di icoordination
• Use barriers (e.g., __syncthreads) or

atomic operations (e.g., atomicAdd) to
enforce well-defined semantics

11

Threading HardwareThreading Hardware

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign12 12

Single-Program Multiple-Data (SPMD)

• CUDA integrated CPU + GPU application C program
Serial C code executes on CPU– Serial C code executes on CPU

– Parallel Kernel C code executes on GPU thread blocks

CPU Serial CodeCPU Serial Code
Grid 0

GPU Parallel Kernel
K lA Blk Tid () . . .KernelA<<< nBlk, nTid >>>(args);

CPU Serial Code
Grid 1

GPU Parallel Kernel
KernelB<<< nBlk nTid >>>(args)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 13

. . .KernelB<<< nBlk, nTid >>>(args);

CUDA Thread Block: Review

• Programmer declares (Thread) Block:
– Block size 1 to 512 concurrent threads
– Block shape 1D, 2D, or 3D
– Block dimensions in threads

CUDA Thread Block

Thread Id #:
• All threads in a Block execute the

same thread program
• Threads share data and synchronize

Thread Id #:
0 1 2 3 … m

• Threads share data and synchronize
while doing their share of the work

• Threads have thread id numbers
ithi Bl k

Thread program

within Block
• Thread program uses thread id to

select work and address shared data
Courtesy: John Nickolls NVIDIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 14

Courtesy: John Nickolls, NVIDIA

GeForce-8 Series HW OverviewGeForce 8 Series HW Overview
Streaming Processor Array

TPC TPC TPC TPC TPC TPC
…

Instruction L1 Data L1
Texture Processor Cluster Streaming Multiprocessor

TEX
SP SP

Instruction Fetch/Dispatch

Instruction L1 Data L1

SM

Shared Memory

SM

SP

SP

SP

SFU
SP

SP

SP

SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

SP SP

15

CUDA Processor Terminology
• SPA

Streaming Processor Arra

CUDA Processor Terminology

– Streaming Processor Array

• TPC
– Texture Processor Cluster (2 or more SM + TEX)()

• SM
– Streaming Multiprocessor (8 or more SP)

M lti th d d– Multi-threaded processor core

– Fundamental processing unit for CUDA thread block

• SP
– Streaming Processor

– Scalar ALU for a single CUDA thread

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 16

Streaming Multiprocessor (SM)Streaming Multiprocessor (SM)

• Streaming Multiprocessor (SM)• Streaming Multiprocessor (SM)
– 8 Streaming Processors (SP)
– 2 Super Function Units (SFU)

• Multi threaded instruction dispatch
Instruction L1 Data L1

Streaming Multiprocessor

• Multi-threaded instruction dispatch
– 1 to 512 threads active
– Shared instruction fetch per 32 threads

C l t f t t / l d
SP SP

Instruction Fetch/Dispatch

Shared Memory

– Cover latency of texture/memory loads
• 20+ GFLOPS
• 16 KB shared memory SP

SP

SP
SFU

SP

SP

SP
SFU

• texture and global memory access

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 17

Thread Lifecycle in HW
• Grid is launched on the SPA
• Thread Blocks are serially

di t ib t d t ll th SM’

Host Device

Grid 1

distributed to all the SM’s
– Potentially >1 Thread Block

per SM
• Each SM launches Warps of

Kernel
1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0 1)

Block
(1 1)

Block
(2 1)• Each SM launches Warps of

Threads
– 2 levels of parallelism

• SM schedules and executes Kernel

(0, 1) (1, 1) (2, 1)

Grid 2

• SM schedules and executes
Warps that are ready to run

• As Warps and Thread Blocks
complete resources are

Kernel
2

Block (1, 1)
complete, resources are
freed
– SPA can distribute more

Thread Blocks
Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 18

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Threads in Linear OrderThreads in Linear Order

• If the block was 3D, we would start with threads whose
threadIdx.z=0, then threadIdx.z=1, etc.

19
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

threadIdx.z 0, then threadIdx.z 1, etc.

SM Executes Blocks
t0 t1 t2 … tm

MT IU MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

• Threads are assigned to SMs in
Block granularity

Blocks

SP SP

Block granularity
– Up to 8 Blocks to each SM as

resource allows
– SM in G80 can take up to 768

threads
Shared
Memory

Shared
Memory threads

• Could be 256 (threads/block) * 3
blocks

• Or 128 (threads/block) * 6 blocks,
etc

Texture L1

y y

TF

etc.

• Threads run concurrently
– SM assigns/maintains thread id #s
– SM manages/schedules thread

L2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

20

S a ages sc edu es t ead
executionMemory

Thread Scheduling/ExecutionThread Scheduling/Execution

• Each Thread Blocks is divided in 32- … …Block 1 Warps Block 2 WarpsEach Thread Blocks is divided in 32
thread Warps
– This is an implementation decision, not

part of the CUDA programming model

…

t0 t1 t2 … t31
…

t0 t1 t2 … t31

• Warps are scheduling units in SM
• If 3 blocks are assigned to an SM and each

Block has 256 threads, how many Warps
Instruction L1 Data L1

Streaming Multiprocessor

, y p
are there in an SM?
– Each Block is divided into 256/32 = 8

Warps SP SP

Instruction Fetch/Dispatch

Shared Memory

– There are 8 * 3 = 24 Warps
– At any point in time, only one of the 24

Warps will be selected for instruction
f h d i

SP

SP

SP
SFU

SP

SP

SP
SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 21

fetch and execution.

SM Warp Scheduling
• SM hardware implements zero-

overhead Warp scheduling
W h t i t ti h it– Warps whose next instruction has its
operands ready for consumption are
eligible for execution

– Eligible Warps are selected for SM multithreaded
Warp scheduler g p

execution on a prioritized scheduling
policy

– All threads in a Warp execute the
same instruction when selectedwarp 8 instruction 11

Warp scheduler

time

same instruction when selected
• 4 clock cycles needed to dispatch the

same instruction for all threads in a
Warp in G80

warp 1 instruction 42

3 i t ti 95 Warp in G80
– If one global memory access is needed

for every 4 instructions
– A minimum of 13 Warps are needed to

f ll t l t 200 l l t

warp 3 instruction 95

warp 8 instruction 12

...

22

fully tolerate 200-cycle memory latency
warp 3 instruction 96

SM Instruction Buffer – Warp Schedulingp g

• Fetch one warp instruction/cycle
– from instruction L1 cache

– into any instruction buffer slot

• Issue one “ready-to-go” warp instruction/cycleIssue one ready to go warp instruction/cycle
– from any warp - instruction buffer slot

– operand scoreboarding used to prevent hazards

I l i b d d bi / f• Issue selection based on round-robin/age of warp

• SM broadcasts the same instruction to 32 Threads of
a Warpa Warp

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 23

ScoreboardingScoreboarding

• How to determine if an instruction is ready toHow to determine if an instruction is ready to
execute?

• A scoreboard is a table in hardware that
tracks
– instructions being fetched, issued, executed
– resources (functional units and operands) they

need
– which instructions modify which registers– which instructions modify which registers

• Old concept from CDC 6600 (1960s) to
separate memory and computationseparate memory and computation

CS6963 University of Utah
24

Scoreboarding Example
• Consider three separate

instruction streams: warp1, p ,
warp3 and warp8

warp 8 instruction 11 t=k

Warp Current
Instruction

Instruction
State

warp 8 instruction 11

warp 1 instruction 42

t=k

t=k+1
Warp 1 42 Computing

W 3 95 C i
warp 3 instruction 95

warp 8 instruction 12

...

t=k+2

t=l>k

Warp 3 95 Computing

Warp 8 11 Operands Schedule
t ti kwarp 8 instruction 12

warp 3 instruction 96

t l>k

t=l+1

ready to go

…

at time k

CS6963 University of Utah
25

Scoreboarding Example
• Consider three separate

instruction streams: warp1, p ,
warp3 and warp8

Warp Current
Instruction

Instruction
State

warp 8 instruction 11 t=k
Warp 1 42 Ready to

write result

W 3 95 C i

Schedule
at time k+1

warp 8 instruction 11

warp 1 instruction 42

t=k

t=k+1

Warp 3 95 Computing

Warp 8 11 Computing

warp 3 instruction 95

warp 8 instruction 12

...

t=k+2

t=l>k

…

warp 8 instruction 12

warp 3 instruction 96

t l>k

t=l+1

CS6963 University of Utah
26

Scoreboarding

• All register operands of all instructions in the Instruction
Buffer are scoreboarded
– Status becomes ready after the needed values are deposited
– prevents hazards
– cleared instructions are eligible for issue

• Decoupled Memory/Processor pipelines
– any thread can continue to issue instructions until

scoreboarding prevents issueg p
– allows Memory/Processor ops to proceed in shadow of other

waiting Memory/Processor ops

27
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

Memory HardwareMemory Hardware

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign28

28

CUDA Device Memory Space:
R iReview

• Each thread can:
R/W th d i t

(Device) Grid

– R/W per-thread registers
– R/W per-thread local memory
– R/W per-block shared memory

R/W per grid global memory

Block (0, 0)

Shared Memory

Block (1, 0)

Shared Memory

– R/W per-grid global memory
– Read only per-grid constant

memory
– Read only per-grid texture memory Thread (0, 0)

Registers

Thread (1, 0)

Registers

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Read only per grid texture memory

Local
Memory

Local
Memory

Local
Memory

Local
Memory

• The host can R/W

Constant
Memory

Global
Memory

Host
• The host can R/W

global, constant, and
texture memories

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

y

Texture
Memory

texture memories

Parallel Memory Sharing
• Local Memory: per-thread

– Private per thread
– Auto variables, register spill

• Shared Memory: per-Block

Thread

Local Memory • Shared Memory: per-Block
– Shared by threads of the same

block
– Inter-thread communication

• Global Memory: per application

Block

• Global Memory: per-application
– Shared by all threads
– Inter-Grid communication

Shared
Memory

Grid 0

. . .
Global

MemoryGrid 1
Sequential
Grids
i Ti

30

. . .
in Time

SM Memory Architecture
t0 t1 t2 … tm

MT IU MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

• Threads in a block share data & Blocks

SP SP

results
– In Memory and Shared Memory
– Synchronize at barrier instruction

Shared
Memory

Shared
Memory y

• Per-Block Shared Memory
Allocation

Keeps data close to processor
Texture L1

y y

TF

Courtesy: – Keeps data close to processor
– Minimize trips to global Memory
– Shared Memory is dynamically

allocated to blocks one of the

L2

Courtesy:
John Nicols, NVIDIA

31

allocated to blocks, one of the
limiting resourcesMemory

Texture MemoryTexture Memory

• Read only
• More closely related to graphics pipeline
• Small, but can be faster than global memory due to

cachecache
– More relaxed coalescing requirements
– Optimized for 2D spatial locality
– Can pack 4 8-bit ints into 1 floatCan pack 4 8 bit ints into 1 float
– Converts data to [0.0 .. 1.0] or [-1.0 .. 1.0] range
– Automatic boundary handling

out of scope for now
See http://cuda-programming.blogspot.com/2013/02/texture-memory-in-cuda-what-
is-texture.html if interested

32

SM Register FileSM Register File

• Register File (RF) I$

– 32 KB (8K entries) for each SM in G80

• TEX pipe can also read/write RF
2 SMs share 1 TEX in G 80 3 SMs per

L1

Multithreaded
Instruction Buffer

– 2 SMs share 1 TEX in G 80, 3 SMs per
TEX in GTX 200

– Related to graphics mode (out of scope)
R
F

C$
L1

Shared
Mem

• Load/Store pipe can also read/write RF

MAD: Multiply and Add unit

Operand Select

MAD SFUMAD: Multiply and Add unit

SFU: Super Function Unit – where more
complex instructions are executed

MAD SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 33

p

Programmer View of Register FileProgrammer View of Register File

• There are 8192 registers in
each SM in G80

4 blocks 3 blocks

each SM in G80
– This is an implementation

decision, not part of CUDA
– Registers are dynamically

i i d ll bl kpartitioned across all blocks
assigned to the SM

– Once assigned to a block, the
register is NOT accessible by
h d i h bl kthreads in other blocks

– Each thread in the same block
only access registers assigned
to itself

(This has changed but the
example is still useful)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 34

Matrix Multiplication ExampleMatrix Multiplication Example

• If each Block has 16X16 threads and each thread uses
10 registers, how many threads can run on each SM?
– Each block requires 10*256 = 2560 registers
– 8192 = 3 * 2560 + changeg
– So, three blocks can run on an SM as far as registers are

concerned

• How about if each thread increases the use of registersHow about if each thread increases the use of registers
by 1?
– Each Block now requires 11*256 = 2816 registers
– 8192 < 2816 *38192 < 2816 3
– Only two Blocks can run on an SM, 1/3 reduction of parallelism!!!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 35

More on Dynamic PartitioningMore on Dynamic Partitioning

• Dynamic partitioning gives more flexibility toDynamic partitioning gives more flexibility to
compilers/programmers
– One can run a smaller number of threads thatOne can run a smaller number of threads that

require many registers each or a large number of
threads that require few registers each

• This allows for finer grain threading than traditional
CPU threading models

– The compiler can tradeoff between instruction-The compiler can tradeoff between instruction-
level parallelism and thread level parallelism

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 36

ILP vs TLP ExampleILP vs. TLP Example

• Assume that a kernel has 256-thread Blocks, 4
independent instructions for each global memory load in
the thread program, and each thread uses 10 registers,
global loads take 200 cycles g y
– 3 Blocks can run on each SM

• If a compiler can use one more register to change the
dependence pattern so that 8 independent instructionsdependence pattern so that 8 independent instructions
exist for each global memory load
– Only two can run on each SM

However one only needs 200/(8*4) = 7 Warps to tolerate the– However, one only needs 200/(8 4) = 7 Warps to tolerate the
memory latency

– Two blocks have 16 Warps. The performance can be actually
higher!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 37

g

Resource Allocation Example

I i h d f b f h dIncrease in per-thread performance, but fewer threads:
Lower overall performance in this case

38

CUDA Occupancy Calculator

http://developer.download.nvidia.c
om/compute/cuda/CUDA_Occupa
ncy_calculator.xls

39

Memory Layout of a Matrix in C
M2,0M1,0M0,0 M3,0

Memory Layout of a Matrix in C

M1,1M0,1 M2,1 M3,1

M1,2M0,2 M2,2 M3,2

MM M MM1,3M0,3 M2,3 M3,3

M

MMM M MM M M MM M M MM M M

M

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2 M1,3M0,3 M2,3 M3,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 40

Memory Coalescing*Memory Coalescing
• When accessing global memory, peak

f ili i h llperformance utilization occurs when all
threads in a half warp access continuous

l imemory locations
Not coalesced coalesced

Md Nd

HThread 1

W
ID

T
H

WIDTH

Thread 2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 41

Memory Layout of a Matrix in C
M2,0M1,0M0,0 M3,0

Memory Layout of a Matrix in C
Access
direction in M1,1M0,1 M2,1 M3,1

M1,2M0,2 M2,2 M3,2

MM M M

direction in
Kernel code

M1,3M0,3 M2,3 M3,3

Time Period 1 Time Period 2

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2 …

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2 M1,3M0,3 M2,3 M3,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 42

Memory Layout of a Matrix in C
M2,0M1,0M0,0 M3,0

Memory Layout of a Matrix in C
Access
direction in M1,1M0,1 M2,1 M3,1

M1,2M0,2 M2,2 M3,2

MM M M

direction in
Kernel code

M1,3M0,3 M2,3 M3,3

T1 T2 T3 T4

Time Period 2
…

T1 T2 T3 T4

Time Period 1

1 2 3 4

M

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 43

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2 M1,3M0,3 M2,3 M3,3

Matrix Multiplication
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{{
1. __shared __float Mds[TILE_WIDTH][TILE_WIDTH];
2. __shared __float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;
4 int tx threadIdx x; int ty threadIdx y;4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of Md and Nd tiles into shared memory
9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10. Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];
11. __syncthreads();

Why this works:12. for (int k = 0; k < TILE_WIDTH; ++k)
13. Pvalue += Mds[ty][k] * Nds[k][tx];
14. __syncthreads();

}
15 Pd[Row*Width + Col] = Pvalue;

Why this works:
• threads in warp have

same ty
• adjacent threads read

44

15. Pd[Row Width + Col] Pvalue;
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

adjacent threads read
adjacent elements from
memory

* Coalescing since 2013 Coalescing since 2013

• GPUs now have cacheGPUs now have cache
=> Coalescing is less important as it is done

by the hardwareby the hardware
• Make sure you have enough cache

available for each warpavailable for each warp

• There may still be some loss ofThere may still be some loss of
performance (20-50%) due to uncoalesced
access

45

Cache (Compute Capability 3 x)Cache (Compute Capability 3.x)

• L1 cache for each multiprocessorL1 cache for each multiprocessor

• L2 cache shared by all multiprocessors

• Both are used to cache accesses to local orBoth are used to cache accesses to local or
global memory, including temporary register
spillsp

• Cache behavior (e.g., whether reads are cached
in both L1 and L2 or in L2 only) can be partially
configured

46

Configuring the CacheConfiguring the Cache

• The same on-chip memory is used for bothThe same on chip memory is used for both
L1 and shared memory. It can be
configured as:g
– 48 KB of shared memory and 16 KB of L1

cache
– 16 KB of shared memory and 48 KB of L1

cache
32 KB of shared memory and 32 KB of L1– 32 KB of shared memory and 32 KB of L1
cache

• using cudaFuncSetCacheConfig()using cudaFuncSetCacheConfig()

47

Cache PreferencesCache Preferences

// Host code

// cudaFuncCachePreferShared: shared memory is 48 KB
// cudaFuncCachePreferEqual: shared memory is 32 KB// cudaFuncCachePreferEqual: shared memory is 32 KB
// cudaFuncCachePreferL1: shared memory is 16 KB
// cudaFuncCachePreferNone: no preference

d S C h C fi (lcudaFuncSetCacheConfig(MyKernel,
cudaFuncCachePreferShared);

48

Cache PreferencesCache Preferences
• The default cache configuration is "prefer none"

• If a kernel has no preference, then it will default
to the preference of the current CPU
th d/ t tthread/context

• If the current thread/context also has no
preference then most recent cachepreference, then most recent cache
configuration will be used
– unless a different cache configuration is required tounless a different cache configuration is required to

launch the kernel (e.g., due to shared memory
requirements)

• The initial configuration is 48 KB of shared
memory and 16 KB of L1 cache 49

Constants
• Immediate address constants (#d fi)• Immediate address constants (#define)
• Indexed address constants
• Constants stored in DRAM, and cached on chip

– L1 per SM

• A constant value can be broadcast to all threads in a warp
– Extremely efficient way of accessing a value that is common for all

threads in a block!

// specify as global variable
__device__ __constant__ float gpuGamma[2];
// copy gamma value to constant device memory
cudaMemcpyToSymbol(gpuGamma, &gamma, sizeof(float));
…
// access as global variable in kernel
res = gpuGamma[0] * threadIdx.x;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 50

Shared MemoryShared Memory

• Each SM has 16 or more KB of SharedEach SM has 16 or more KB of Shared
Memory
– 16 banks of 32-bit words16 banks of 32 bit words

– 64-bit access is also supported now

• CUDA uses Shared Memory as shared• CUDA uses Shared Memory as shared
storage visible to all threads in a thread
blockblock
– read and write access

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 51

Parallel Memory Architecture

• In a parallel machine, many threads access
memoryy
– Therefore, memory is divided into banks
– Essential to achieve high bandwidth

Bank 0

• Each bank can service one address per cycle
– A memory can service as many simultaneous

it h b k Bank 4
Bank 3
Bank 2
Bank 1

accesses as it has banks

• Multiple simultaneous accesses to a bank Bank 7
Bank 6
Bank 5
Bank 4

Multiple simultaneous accesses to a bank
result in a bank conflict
– Conflicting accesses are serialized Bank 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 52

Bank Addressing ExamplesBank Addressing Examples

• No Bank Conflicts • No Bank Conflicts
– Linear addressing

stride == 1
– Random 1:1 Permutation

Bank 0Thread 0 Bank 0Thread 0

B k 4
Bank 3
Bank 2
Bank 1
Bank 0

Th d 4
Thread 3
Thread 2
Thread 1
Thread 0

B k 4
Bank 3
Bank 2
Bank 1
Bank 0

Th d 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 7
Bank 6
Bank 5
Bank 4

Thread 7
Thread 6
Thread 5
Thread 4

Bank 7
Bank 6
Bank 5
Bank 4

Thread 7
Thread 6
Thread 5
Thread 4

Bank 15

Bank 7

Thread 15

Thread 7

Bank 15

Bank 7

Thread 15

Thread 7

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

53

Bank 15Thread 15 Bank 15Thread 15

Bank Addressing ExamplesBank Addressing Examples

• 2-way Bank Conflicts • 8-way Bank Conflicts

Thread 0 Bank 0 Thread 0 Bank 0x8

Th d 4
Thread 3
Thread 2
Thread 1
Thread 0

B k 4
Bank 3
Bank 2
Bank 1
Bank 0

Th d 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 2
Bank 1
Bank 0

Thread 4

Bank 7
Bank 6
Bank 5
Bank 4

Thread 7
Thread 6
Thread 5
Thread 4

Bank 9
Bank 8
Bank 7

Thread 11
Thread 10
Thread 9
Thread 8

Bank 15

Bank 7

Thread 15

Thread 7 Bank 9

Bank 15

x8

54

Thread 11 Bank 15 Thread 15 Bank 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

How Addresses Map to
Banks on G80Banks on G80

• Each bank has a bandwidth of 32 bits per p
clock cycle

• Successive 32-bit words are assigned toSuccessive 32 bit words are assigned to
successive banks

• G80 has 16 banks• G80 has 16 banks
– So bank = address % 16

S th i f h lf– Same as the size of a half-warp
• No bank conflicts between different half-warps,

only within a single half-warp

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 55

only within a single half warp

Shared Memory Bank ConflictsShared Memory Bank Conflicts
• Shared memory is as fast as registers if there are no bank

conflictsconflicts

• The fast case:
– If all threads of a half-warp access different banks, there is no bank

conflict
– If all threads of a half-warp access an identical address, there is no

bank conflict (broadcast)

• The slow case:
– Bank Conflict: multiple threads in the same half-warp access the p p

same bank
– Must serialize the accesses
– Cost = max # of simultaneous accesses to a single bank

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 56

Linear Addressing

• Given:
Bank 3
Bank 2
Bank 1
Bank 0

Thread 3
Thread 2
Thread 1
Thread 0

s=1

__shared__ float shared[256];
float foo = Bank 7

Bank 6
Bank 5
Bank 4
Bank 3

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3

shared[baseIndex + s * threadIdx.x];
Bank 15Thread 15

• This is only bank-conflict-free
if s shares no common factors

Bank 2
Bank 1
Bank 0

Thread 2
Thread 1
Thread 0

s=3

with the number of banks
– 16 on G80, so s must be odd Bank 7

Bank 6
Bank 5
Bank 4
Bank 3

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign Bank 15Thread 15

Compute
Capability 3 xCapability 3.x

• Left: Linear addressing with a
t id f 32 bit d (stride of one 32-bit word (no

bank conflict)
• Middle: Linear addressing

with a stride of two 32-bitwith a stride of two 32 bit
words (no bank conflict)

• Right: Linear addressing with
a stride of three 32-bit words
(no bank conflict)

• More flexible definition of
li t ithi b kalignment within banks

enables last two examples

58

Compute
Capability 3 xCapability 3.x

• Left: Conflict-free
access via random
permutation

• Middle: Conflict-freeMiddle: Conflict free
access since threads 3,
4, 6, 7, and 9 access
the same word withinthe same word within
bank 5

• Right: Conflict-free
broadcast accessbroadcast access
(threads access the
same word within a
bank)bank)

59

Control FlowControl Flow

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign60 60

Control Flow Instructions
• Main performance concern with branching is divergence

– Threads within a single warp take different paths
Diff t ti th i li d GPU– Different execution paths are serialized on GPU
• The control paths taken by the threads in a warp are traversed

one at a time until there is no more.

• A common case: avoid divergence when branchA common case: avoid divergence when branch
condition is a function of thread ID
– Example with divergence:

• If (threadIdx.x > 2) { }
• This creates two different control paths for threads in a block
• Branch granularity < warp size; threads 0, 1 and 2 follow different

path than the rest of the threads in the first warp
– Example without divergence:Example without divergence:

• If (threadIdx.x / WARP_SIZE > 2) { }
• Also creates two different control paths for threads in a block
• Branch granularity is a whole multiple of warp size; all threads in

any given warp follow the same path

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

any given warp follow the same path

61

Parallel ReductionParallel Reduction

• Given an array of values, “reduce” them to a y ,
single value in parallel

• Examples
– Sum reduction: sum of all values in the array
– Max reduction: maximum of all values in the array

• Typically parallel implementation:
– Recursively halve # threads, add two values per y

thread
– Takes log(n) steps for n elements, requires n/2

threads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

threads

62

A Vector Reduction ExampleA Vector Reduction Example

• Assume an in-place reduction usingAssume an in place reduction using
shared memory

The original vector is in device global memory– The original vector is in device global memory

– The shared memory is used to hold a partial
sum vectorsum vector

– Each iteration brings the partial sum vector
closer to the final sumcloser to the final sum

– The final solution will be in element 0

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 63

A simple implementationA simple implementation
• Assume we have already loaded array into

h d fl t ti lS []__shared__ float partialSum[]

unsigned int t = threadIdx.x;
for (unsigned int stride = 1;

stride < blockDim.x; stride *= 2)
{{
__syncthreads();
if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 64

Vector Reduction with Branch Divergence
Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9
1

0...3 4..7 8..11
2

0..7 8..15
3

iterations

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

Array elements

iterations

65

Some Observations
• In each iteration, two control flow paths will be

sequentially traversed for each warp
Th d th t f dditi d th d th t d t– Threads that perform addition and threads that do not

– Threads that do not perform addition may cost extra cycles
depending on the implementation of divergence

• No more than half of threads will be executing at any time
– All odd index threads are disabled right from the beginning!
– On average, less than ¼ of the threads will be activated for all

warps over time.
– After the 5th iteration, entire warps in each block will be disabled,

poor resource utilization but no divergencepoor resource utilization but no divergence
• This can go on for a while, up to 4 more iterations (512/32=16= 24),

where each iteration only has one thread activated until all warps
retire

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 66

Shortcomings of the
i l iimplementation

• Assume we have already loaded array into
h d fl t ti lS []__shared__ float partialSum[]

unsigned int t = threadIdx.x;

BAD: Divergence
due to interleaved
branch decisions

for (unsigned int stride = 1;
stride < blockDim.x; stride *= 2)

{{
__syncthreads();
if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 67

A better implementationA better implementation
• Assume we have already loaded array into

shared float partialSum[]__shared__ float partialSum[]

unsigned int t = threadIdx.x;
f (i d i t t id bl kDi /2for (unsigned int stride = blockDim.x/2;

stride > 1; stride >>= 1)
{{
__syncthreads();
if (t < stride)

partialSum[t] += partialSum[t+stride];
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 68

No Divergence until <= 16 sub-sums
Thread 0

No Divergence until < 16 sub sums
Thread 1 Thread 2 Thread 14 Thread 15

0 1 2 3 … 13 1514 181716 19

0+16 15+31
1

3

4

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 69

Prefetching and Instruction
Mix

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign70 70

Prefetching
• One could double buffer the computation, getting

better instruction mix within each thread
– This is classic software pipelining in ILP compilers

Loop { Load next tile from global memory

Load current tile to shared memory

syncthreads()

Loop {
Deposit current tile to shared memory
syncthreads()syncthreads()

Compute current tile

syncthreads()

Load next tile from global memory

syncthreads()
}

Compute current tile

syncthreads()

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

y ()
}

71

bx

t
0 1 2Prefetch

• Deposit blue tile from register
into shared memory Nd

tx
01 TILE_WIDTH-12

W
ID

T
H

• Syncthreads

• Load orange tile into register

T
IL

E
_W

ID
T

H W
ID

T
H

• Compute Blue tile

• Deposit orange tile into shared

T
IL

E
_W

I

memory

• ….
Md Pd

0

0

E

Pdsub
by ty 2

1
0

TILE_WIDTH-1

1

T
IL

E
_W

ID
T

H
E

W
ID

T
H

© David Kirk/NVIDIA and Wen-mei
W. Hwu, 2007-2010
ECE 408, University of Illinois,
Urbana-Champaign

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH
2

Instruction Mix ConsiderationsInstruction Mix Considerations
for (int k = 0; k < BLOCK_SIZE; ++k)

Pvalue += Ms[ty][k] * Ns[k][tx];Pvalue += Ms[ty][k] * Ns[k][tx];

There are very few mul/add between branches and
dd l l iaddress calculation

Loop unrolling can help (Be aware that any local arraysLoop unrolling can help. (Be aware that any local arrays
used after unrolling will be dumped into Local Memory)

Pvalue += Ms[ty][k] * Ns[k][tx] + …
Ms[ty][k+15] * Ns[k+15][tx];

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 73

Unrolling

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign 74

