
1

CS 677 Parallel Programming forCS 677: Parallel Programming for
Many-core Processors y

Lecture 2

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E il Phili M d h i@ dE-mail: Philippos.Mordohai@stevens.edu

OverviewOverview

• Simple encryption exampleSimple encryption example

• Blocks, threads and warps

CUDA• CUDA memory types

• Matrix Multiplication using Shared Memory

• Thread Execution and Divergence

• AtomicsAtomics

2

Encryption Exampleyp p
include <iostream>
include <cutil.h>

using namespace std;

global void cuda encrypt(char* m int m len int shift)__global__ void cuda_encrypt(char m, int m_len, int shift)
{

for (int i = 0; i < m_len; i++)
m[i] = (((m[i] -'a') + shift) % 26) + 'a';

}

3
Courtesy of Werner Backes

int main()
{

char message[255];
int message_len, shift;
char* dev_message;

cin >> message;
cin >> shift;
cout << "plaintext: " << message << endl;cout << plaintext: << message << endl;
message_len = strlen(message);

cudaMalloc(&dev_message, message_len+1);
cudaMemcpy(dev_message, message, message_len+1,

cudaMemcpyHostToDevice);
cuda_encrypt<<<1,1>>>(dev_message, message_len, shift);
cudaMemcpy(message dev message message len+1cudaMemcpy(message, dev_message, message_len+1,

cudaMemcpyDeviceToHost);

cout << "ciphertext: " << message << endl;
return 0;

}
4

Compilation and Executionp
• Compile the example program hello world.cu using

the CUDA compiler nvcc.p
– nvcc -I. hello_world.cu -o hello_world
– The option -I is used to add an include path

nvcc --help outputs all available compiler options– nvcc --help outputs all available compiler options

• Output:
– Execute ./hello_world

helloworld
33
plaintext: helloworld
ciphertext: khoorzruog

5

Parallel Encryption Exampleyp p
include <iostream>
include <cutil.h>

using namespace std;

global void cuda encrypt(char* m int m len int shift)__global__ void cuda_encrypt(char m, int m_len, int shift)
{

int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < m_len)_

m[tid] = (((m[tid] -'a') + shift) % 26) + 'a';
}

6

int main()
{

char message[255];char message[255];
int message_len, shift;
char* dev_message;

cin >> message;
cin >> shift;
cout << "plaintext: " << message << endl;
message_len = strlen(message);

cudaMalloc(&dev_message, message_len+1);
cudaMemcpy(dev message message message len+1cudaMemcpy(dev_message, message, message_len+1,

cudaMemcpyHostToDevice);
cuda_encrypt<<<(message_len/32)+1,32>>>(dev_message, message_len,

shift);
cudaMemcpy(message, dev_message, message_len+1,

cudaMemcpyDeviceToHost);

cout << "ciphertext: " << message << endl;p g ;
return 0;

}
7

Block IDs and Thread IDs

Host Device

Block IDs and Thread IDs

• Each thread uses IDs to
Kernel

1

Grid 1

Block
(0, 0)

Block
(1, 0)

Block Block

Each thread uses IDs to
decide what data to work on
– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

Kernel
2

(0, 1) (1, 1)

Grid 2

, ,

• Simplifies memory
addressing when

Block (1, 1)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

addressing when
processing
multidimensional data
– Image processing

Courtesy: NDVIA

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)– Solving PDEs on volumes

– …

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign 8

bx

tx

0 1 2
Matrix Multiplication Using
M lti l Bl k

Nd

01 TILE_WIDTH-12Multiple Blocks

• Break-up Pd into tiles

W
ID

T
H• Each block calculates one

tile
– Each thread calculates one

element
– Block size equal to tile size

Md Pd

Pd b1
0

0

T
H

E

HPdsub

TILE_WIDTH

ty 2
1

TILE_WIDTH-1

by 1

T
IL

E
_W

ID

W
ID

T
H

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign 9

_

WIDTHWIDTH
2

A Small ExampleA Small Example

Block(0,0) Block(1,0)

P1,0P0,0

P0 1

P2,0 P3,0

P1 1 P3 1P2 1

TILE_WIDTH = 2

0,1 1,1

P0,2 P2,2 P3,2P1,2

3,12,1

P0,3 P2,3 P3,3P1,3

Block(1,1)Block(0,1)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign 10

A Small Example: MultiplicationA Small Example: Multiplication
Nd1,0Nd0,0

Nd1,2

Nd1,1Nd0,1

Nd0,2

PdMdMdMd Md Pd Pd Pd

Nd0,3 Nd1,3

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Pd1,1

Pd Pd PdPd

Pd3,1Pd2,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd0,3 Pd2,3 Pd3,3Pd1,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign 11

Revised Matrix Multiplication
K l i M lti l Bl kKernel using Multiple Blocks

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

fl t P l 0float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
l d[* id h k] * d[k* id h C l]Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

}
12

Revised Step 5: Kernel Invocation
(H t id C d)(Host-side Code)

// Setup the execution configuration// Setup the execution configuration
dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH);
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

// Launch the device computation threads
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign 13

CUDA Thread Block

• All threads in a block execute the same
kernel program (SPMD)
Programmer declares block

CUDA Thread Block

• Programmer declares block:
– Block size 1 to 512 concurrent threads
– Block shape 1D, 2D, or 3D
– Block dimensions in threads

Thread Id #:
0 1 2 3 … m – Block dimensions in threads

• Threads have thread id numbers within block
– Thread program uses thread id to select work

and address shared data Thread program

• Threads in the same block share data and
synchronize while doing their share of the

k

Thread program

work
• Threads in different blocks cannot cooperate

– Each block can execute in any order relative
to other blocs!

Courtesy: John
Nickolls, NVIDIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

14

to other blocs!

Transparent Scalability
• Hardware is free to assign blocks to any

processor at any timeprocessor at any time
– A kernel scales across any number of

parallel processorsparallel processors
Device Kernel grid

Block 0 Block 1
Device

Block 0 Block 1

Block 2 Block 3

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7 Block 0 Block 1 Block 2 Block 3
time

Block 2 Block 3

Block 4 Block 5

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to other blocks.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

15

Block 6 Block 7

G80 Example: Executing Thread Blocks

t0 t1 t2 … tm

MT IU MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

• Threads are assigned to Streaming Blocks

SP SP

Multiprocessors in block granularity
– Up to 8 blocks to each SM as

resource allowsShared
Memory

Shared
Memory

– SM in G80 can take up to 768 threads
• Could be 256 (threads/block) * 3

blocks
• Or 128 (threads/block) * 6 blocks etc

y y

• Or 128 (threads/block) 6 blocks, etc.

• Threads run concurrently
– SM maintains thread/block id #s

SM / h d l h d

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

16

– SM manages/schedules thread
execution

G80 Example: Thread Scheduling

• Each Block is executed as
32 thread Warps

… …Block 1 Warps Block 2 Warps …Block 1 Warps

32-thread Warps
– An implementation

decision, not part of the
CUDA programming model

…
t0 t1 t2 … t31

…
t0 t1 t2 … t31

…
t0 t1 t2 … t31

p g g
– Warps are scheduling units

in SM
• If 3 blocks are assigned to an Instruction Fetch/Dispatch

Instruction L1
Streaming Multiprocessor

g
SM and each block has 256
threads, how many Warps are
there in an SM? SP

SP

SP

SP

Shared Memory

– Each Block is divided into
256/32 = 8 Warps

– There are 8 * 3 = 24 Warps
SP

SP
SFU

SP

SP
SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

17

G80 Example: Thread Scheduling (Cont.)

• SM implements zero-overhead warp schedulingSM implements zero overhead warp scheduling
– Warps whose next instruction has its operands ready

for consumption are eligible for execution
– Eligible Warps are selected for execution on a

prioritized scheduling policy
– All threads in a warp execute the same instructionAll threads in a warp execute the same instruction

when selected

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

18

G80 Block Granularity Considerations

• For Matrix Multiplication using multiple blocks, should I
use 8X8 16X16 or 32X32 blocks?use 8X8, 16X16 or 32X32 blocks?

– For 8X8, we have 64 threads per Block. Since each SM can take
up to 768 threads there are 12 Blocks However each SM canup to 768 threads, there are 12 Blocks. However, each SM can
only take up to 8 Blocks, only 512 threads will go into each SM!

F 16X16 h 256 h d Bl k Si h SM– For 16X16, we have 256 threads per Block. Since each SM can
take up to 768 threads, it can take up to 3 Blocks and achieve full
capacity unless other resource considerations overrule.

– For 32X32, we have 1024 threads per Block. Not even one can fit
into an SM!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

19

Technical Specifications per Compute Capability

Major version number :
1: Tesla

Source: Wikipedia

20

2: Fermi
3: Kepler
5: Maxwell

More Details of API FeaturesMore Details of API Features

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

21
21

Application Programming InterfaceApplication Programming Interface

• The API is an extension to the C programming p g g
language

• It consists of:
– Language extensions

• To target portions of the code for execution on the device

– A runtime library split into:y p
• A common component providing built-in vector types and a

subset of the C runtime library in both host and device
code

• A host component to control and access one or more
devices from the host

• A device component providing device-specific functions

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

22

Language Extensions:
B ilt i V i blBuilt-in Variables

• dim3 gridDim;
– Dimensions of the grid in blocksg

• dim3 blockDim;
– Dimensions of the block in threads

• dim3 blockIdx;
– Block index within the grid

• dim3 threadIdx;
– Thread index within the block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

23

Common Runtime Component:
M th ti l F tiMathematical Functions

• pow, sqrt, cbrt, hypot
2 1• exp, exp2, expm1

• log, log2, log10, log1p
• sin, cos, tan, asin, acos, atan, atan2, , , , , ,
• sinh, cosh, tanh, asinh, acosh, atanh
• ceil, floor, trunc, round
• Etc.

– When executed on the host, a given function
uses the C runtime implementation ifuses the C runtime implementation if
available

– These functions are only supported for

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

24

y pp
scalar types, not vector types

Device Runtime Component:
M th ti l F tiMathematical Functions

• Some mathematical functions (e gSome mathematical functions (e.g.
sin(x)) have a less accurate, but faster
device-only version (e g sin(x))device only version (e.g. __sin(x))
– __pow

log log2 log10– __log, __log2, __log10
– __exp

sin cos tan– __sin, __cos, __tan

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

25

Host Runtime Component

• Provides functions to deal with:
– Device management (including multi-device systems)Device management (including multi device systems)
– Memory management
– Error handling

• Initializes the first time a runtime function is called

• A host thread can invoke device code on only one
device

Multiple host threads required to run on multiple– Multiple host threads required to run on multiple
devices

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

26

Device Runtime Component:
S h i ti F tiSynchronization Function

• id th d ()• void __syncthreads();

• Synchronizes all threads in a block

• Once all threads have reached this
point, execution resumes normally

• Used to avoid RAW / WAR / WAW hazards
when accessing shared or global memory

• Allowed in conditional constructs only if the
conditional is uniform across the entire

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

27

thread block

CUDA MemoriesCUDA Memories

28

Hardware Implementation of CUDA
M iMemories

• Each thread can:
Grid

Each thread can:
– Read/write per-thread

registers

R d/ it th d

Block (0, 0)

Shared Memory

Block (1, 0)

Shared Memory

– Read/write per-thread
local memory

– Read/write per-block

Registers Registers Registers Registers

shared memory

– Read/write per-grid
global memory

Global Memory

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

Host

– Read/only per-grid
constant memory

Global MemoryHost

Constant Memory

29

CUDA Variable Type Qualifiers
Variable declaration Memory Scope Lifetime

int var; register thread thread
int array_var[10]; local thread thread

__shared__ int shared_var; shared block block
device int global var; global grid application

“a tomatic” scalar ariables itho t

__device__ int global_var; global grid application
__constant__ int constant_var; constant grid application

• “automatic” scalar variables without
qualifier reside in a register

compiler will spill to thread local memory– compiler will spill to thread local memory

• “automatic” array variables without
qualifier reside in thread local memoryqualifier reside in thread local memory

30

CUDA Variable Type Performance
Variable declaration Memory Penalty
int var; register 1x
int array_var[10]; local 100x

__shared__ int shared_var; shared 1x
device int global var; global 100x

• scalar variables reside in fast on chip registers

__device__ int global_var; global 100x
__constant__ int constant_var; constant 1x

• scalar variables reside in fast, on-chip registers
• shared variables reside in fast, on-chip memories
• thread-local arrays & global variables reside in

h d ff hiuncached off-chip memory
– Cache is now available, but there is still a significant drop

off in speed
t t i bl id i h d ff hi• constant variables reside in cached off-chip memory

31

CUDA Variable Type Scale
Variable declaration Instances Visibility
int var; 100,000s 1
int array_var[10]; 100,000s 1

__shared__ int shared_var; 100s 100s
device int global var; 1 100 000s__device__ int global_var; 1 100,000s

__constant__ int constant_var; 1 100,000s

• 100Ks per-thread variables, R/W by 1 thread
• 100s shared variables, each R/W by 100s of

th dthreads
• 1 global variable is R/W by 100Ks threads
• 1 constant variable is readable by 100Ks• 1 constant variable is readable by 100Ks

threads
32

Where to declare variables?

Can host Can host
access it?access it?

Y N

Outside ofOutside of In theIn the

Yes No

Outside of
any function
Outside of
any function

In the
kernel
In the
kernelyy

__constant__ int constant_var;

device int global var;

int var;

int array var[10];__device__ int global_var; int array_var[10];

__shared__ int shared_var;
33

Example – thread-local variablesExample thread local variables
// Ten Nearest Neighbors application

global void ten nn(float2 *result, float2 *ps, float2 *qs,__g __ _ (, p , q ,
size_t num_qs)

{
// p goes in a register
float2 p = ps[threadIdx.x];

// per-thread heap goes in off-chip memory
float2 heap[10];float2 heap[10];

// read through num_qs points, maintaining
// the nearest 10 qs to p in the heap
...
// write out the contents of heap to result
...

}}

34

Example – shared variablesp
// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] – input[i-1]p [] p [] p []
__global__ void adj_diff_naive(int *result, int *input)
{

// compute this thread’s global index
unsigned int i = blockDim x * blockIdx x + threadIdx x;unsigned int i blockDim.x blockIdx.x + threadIdx.x;

if(i > 0)
{

int x_i = input[i];
int x_i_minus_one = input[i-1];

result[i] = x_i – x_i_minus_one;
}

}

35

Example – shared variablesExample shared variables
// motivate shared variables with
// Adjacent Difference application:
// l [i] i [i] i [i 1]// compute result[i] = input[i] – input[i-1]
__global__ void adj_diff_naive(int *result, int *input)
{

// compute this thread’s global index
unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

if(i > 0)
{{

// what are the bandwidth requirements of this kernel?
int x_i = input[i];
int x_i_minus_one = input[i-1]; Two loads

result[i] = x_i – x_i_minus_one;
}

}

36

Example – shared variablesExample shared variables
// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] – input[i-1]// compute result[i] = input[i] input[i 1]
__global__ void adj_diff_naive(int *result, int *input)
{

// compute this thread’s global index
i d i t i bl kDi * bl kId + th dIdunsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

if(i > 0)
{

// How many times does this kernel load input[i]?
int x_i = input[i];
int x_i_minus_one = input[i-1];

// once by thread i

// again by thread i+1

result[i] = x_i – x_i_minus_one;
}

}

37

Example – shared variablesExample shared variables
// optimized version of adjacent difference
global void adj diff(int *result, int *input)__g __ j_ (, p)

{
// shorthand for threadIdx.x
int tx = threadIdx.x;
// allocate a __shared__ array, one element per thread
__shared__ int s_data[BLOCK_SIZE];
// each thread reads one element to s_data
unsigned int i = blockDim x * blockIdx x + tx;unsigned int i = blockDim.x * blockIdx.x + tx;
s_data[tx] = input[i];

// avoid race condition: ensure all loads
// complete before continuing
__syncthreads();
...

38

Example – shared variablesExample shared variables

...
if(tx > 0)

result[i] = s_data[tx] – s_data[tx–1];
else if(i > 0)
{

// handle thread block boundary
result[i] = s_data[tx] – input[i-1];

}
}}

39

Example – shared variablesExample shared variables
// when the size of the array isn’t known at compile time...
global void adj diff(int *result, int *input)__global__ void adj_diff(int result, int input)

{
// use extern to indicate a __shared__ array will be
// allocated dynamically at kernel launch time
extern __shared__ int s_data[];
...

}

// pass the size of the per-block array, in bytes, as the third
// argument to the triple chevrons
adj diff<<<num blocks, block size, block size * sizeof(int)>>>(r,i);j_ _ , _ , _ () (,);

• Only one extern shared array can be declared

40

• See CUDA programming guide for work-around

About Pointers – Outdated but Useful

• Yes, you can use them!
• You can point to any memory space:You can point to any memory space:
__device__ int my_global_variable;
__constant__ int my_constant_variable = 13;

__global__ void foo(void)
{

shared int my shared variable;__ __ y_ _ ;

int *ptr_to_global = &my_global_variable;
const int *ptr_to_constant = &my_constant_variable;
int *ptr_to_shared = &my_shared_variable;
...
*ptr_to_global = *ptr_to_shared;

}}

41

About Pointers – Outdated but UsefulAbout Pointers Outdated but Useful

• Pointers aren’t typed on memory space
– __shared__ int *ptr;

– Where does ptr point?

– ptr is a shared pointer variable, not a p __ __ p ,
pointer to a __shared__ variable!

42

Don’t confuse the compiler!p
__device__ int my_global_variable;

global void foo(int *input)__ __
{
__shared__ int my_shared_variable;

int *ptr = 0;
if(i [h d d] % 2)if(input[threadIdx.x] % 2)
ptr = &my_global_variable;

elseelse
ptr = &my_shared_variable;

// where does ptr point?p p
}

43

AdviceAdvice

• Prefer dereferencing pointers in simple, g p p ,
regular access patterns

• Avoid propagating pointers
A id i i• Avoid pointers to pointers
– The GPU would rather not pointer chase
– Linked lists will not perform well– Linked lists will not perform well

• Pay attention to compiler warning messages
– Warning: Cannot tell what pointer g p
points to, assuming global memory
space

– Crash waiting to happenCrash waiting to happen

44

Unified Virtual Address SpaceUnified Virtual Address Space

• The location of any memory on the host or on any y y y
of the devices which use the unified address
space, can be determined from the value of the
pointer using cudaPointerGetAttributes()pointer using cudaPointerGetAttributes()

• When copying, the cudaMemcpyKind parameter
of cudaMemcpy*() can be set to py
cudaMemcpyDefault to determine locations
from the pointers. This also works for host pointers
not allocated through CUDA as long as thenot allocated through CUDA, as long as the
current device uses unified addressing.

45

Matrix Multiplication using
Shared Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

46 46

Review: Matrix Multiplication
K l i M lti l Bl kKernel using Multiple Blocks

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

fl t P l 0float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
l d[* id h k] * d[k* id h C l]Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

47

}

How about performance on GPU?

Grid

How about performance on GPU?

• All threads access global memory
for their input matrix elements

Block (0, 0)

Shared Memory

Block (1, 0)

Shared Memory

for their input matrix elements
– Two memory accesses (8 bytes)

per floating point multiply-add
– 4B/s of memory

b d id h/FLOPS Shared Memory

Registers Registers

Shared Memory

Registers Registers

bandwidth/FLOPS
– 4*346.5 = 1386 GB/s required to

achieve peak FLOP rating
– 86.4 GB/s limits the code at 21.6

Global Memory

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

Host

86.4 GB/s limits the code at 21.6
GFLOPS

• The actual code runs at about 15
GFLOPS

Constant Memory• Need to drastically cut down
memory accesses to get closer to
the peak 346.5 GFLOPS (on G80 –
ignore specific numbers)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

48

ignore specific numbers)

Idea: Use Shared Memory to reuse global
dmemory data

• Each input element is N

read by Width threads

• Load each element into

D
T

H

Shared Memory and
have several threads
use the local version to

W
ID

use the local version to
reduce the memory
bandwidth

M P

tybandwidth
– Tiled algorithms

W
ID

T
H

y

tx

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

WIDTH WIDTH

tx

Tiled Multiply
bx

0 1 2

• Break up the execution of
the kernel into phases so

Nd

tx
01 TILE_WIDTH-12

ID
T

H

the kernel into phases so
that the data accesses in
each phase is focused on

T
IL

E
_W

I
_W

ID
T

H W
ID

T
H

each phase is focused on
one subset (tile) of Md and
Nd

T
IL

E
_

Nd
Md Pd

0

Pdsub

by ty 2
1
0

TILE_WIDTH-1

1

T
IL

E
_W

ID
T

H
E

W
ID

T
H

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

_

2

A Small ExampleA Small Example
Nd1,0Nd0,0

Nd1,2

Nd1,1Nd0,1

Nd0,2

Nd0,3 Nd1,3

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Pd1,1

Pd Pd PdPd

Pd3,1Pd2,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd0,3 Pd2,3 Pd3,3Pd1,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

51

Every Md and Nd Element is used exactly
t i i ti 2X2 til f Ptwice in generating a 2X2 tile of P

P0 0 P1 0 P0 1 P1 1P0,0

thread0,0

P1,0

thread1,0

P0,1

thread0,1

P1,1

thread1,1

M0 0 * N0 0 M0 0 * N1 0 M0 1 * N0 0 M0 1 * N1 00,0 0,0 0,0 1,0 0,1 0,0 0,1 1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1Access 1,0 0,1 1,0 1,1 1,1 0,1 1,1 1,1

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2

order

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

52

Breaking Md and Nd into Tiles

NdNd

Breaking Md and Nd into Tiles

• Break up the inner
d l f h

Nd1 2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0 2

product loop of each
thread into phases

• At the beginning of each

Nd0,3 Nd1,3

Nd1,2Nd0,2
g g

phase, load the Md and
Nd elements that
everyone needs during

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Pd1,1 Pd3,1Pd2,1

y g
the phase into shared
memory

• Everyone accesses the
Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd0,3 Pd2,3 Pd3,3Pd1,3

Everyone accesses the
Md and Nd elements from
shared memory during
the phase

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

53

the phase

Work for Block (0,0)Work for Block (0,0)

SM

N0,1N0,0

N1 0

N0,2 N0,3

N1 1 N1 3N1 2

N0,1N0,0

N1 0 N1 1

SM

N1,0 N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

N1,0 N1,1

P0,1P0,0 P0,2 P0,3
M0,1M0,0 M0,2 M0,3

3,0 3,2 3,33,1

M0,1M0,0

SM

P1,0 P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2
M1,0 M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2 M1,0 M1,1

P3,0 P3,2 P3,3P3,1
M3,0 M3,2 M3,3M3,1

54
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ECE498al, 2007-2012

Work for Block (0 0)Work for Block (0,0)

SM
N0,1N0,0

N

N0,2 N0,3

N NN
N0,1N0,0

N1,0 N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N N NN

N1,0 N1,1

SM

M0,1M0,0 M0,2 M0,3

N3,0 N3,2 N3,3N3,1

P0,1P0,0 P0,2 P0,3M0,1M0,0

M1,0 M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2 P1,0 P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2M1,0 M1,1

M3,0 M3,2 M3,3M3,1 P3,0 P3,2 P3,3P3,1

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ECE498al, 2007-2012 55

Work for Block (0 0)Work for Block (0,0)

SM
N0,1N0,0

N

N0,2 N0,3

N NN
N0,1N0,0

N1,0 N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N N NN

N1,0 N1,1

SM

M0,1M0,0 M0,2 M0,3

N3,0 N3,2 N3,3N3,1

P0,1P0,0 P0,2 P0,3M0,1M0,0

M1,0 M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2 P1,0 P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2M1,0 M1,1

M3,0 M3,2 M3,3M3,1 P3,0 P3,2 P3,3P3,1

© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ECE498al, 2007-2012 56

Work for Block (0 0)Work for Block (0,0)

N0,1N0,0

N

N0,2 N0,3

N NN

N1 0

N1,0 N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N N NN

N0,1N0,0

N1 11,0

M0,1M0,0 M0,2 M0,3

N3,0 N3,2 N3,3N3,1

P0 1P0 0 P0 2 P0 3
M0,1M0,0

1,1

SM

M1,0 M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

0,10,0

P1,0

0,2 0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2
M1,0 M1,1

M3,0 M3,2 M3,3M3,1 P3,0 P3,2 P3,3P3,1

57© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ECE498al, 2007-2012

Work for Block (0 0)Work for Block (0,0)

N0,1N0,0

N

N0,2 N0,3

N NN

SM

N1,0 N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N N NN

N0,1N0,0

N1,0 N1,1

M0,1M0,0 M0,2 M0,3

N3,0 N3,2 N3,3N3,1

P0 1P0 0 P0 2 P0 3M0 1M0 0

SM

M1,0 M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

0,10,0

P1,0

0,2 0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

0,10,0

M1,0 M1,1

M3,0 M3,2 M3,3M3,1 P3,0 P3,2 P3,3P3,1

58© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/ECE498al, 2007-2012

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{{
1. __shared __float Mds[TILE_WIDTH][TILE_WIDTH];
2. __shared __float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;
4 int tx threadIdx x; int ty threadIdx y;4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of Md and Nd tiles into shared memory
9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10. Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];
11. __syncthreads();

12. for (int k = 0; k < TILE_WIDTH; ++k)
13. Pvalue += Mds[ty][k] * Nds[k][tx];
14. __syncthreads();

}
15 Pd[Row*Width + Col] = Pvalue;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

59

15. Pd[Row Width + Col] Pvalue;
}

CUDA Code – Kernel Execution
C fi iConfiguration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width / TILE_WIDTH,

/Width / TILE_WIDTH);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

60

First-order Size ConsiderationsFirst order Size Considerations

• Each thread block should have many threads
– TILE_WIDTH of 16 gives 16*16 = 256 threads

• There should be many thread blocks• There should be many thread blocks
– A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

– TILE_WIDTH of 16 gives each SM 3 blocks, 768 threads (full
i)capacity)

• Each thread block performs 2*256 = 512 float loads from p
global memory for 256 * (2*16) = 8,192 mul/add
operations (lines 9-14)

Memory bandwidth no longer a limiting factor

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

– Memory bandwidth no longer a limiting factor

61

Tiled Multiply
bx

0 1 2

• Each block computes one
square sub-matrix Pd of

Nd

tx
01 TILE_WIDTH-12

ID
T

H

square sub-matrix Pdsub of
size TILE_WIDTH

Each thread computes one

T
IL

E
_W

I
_W

ID
T

H W
ID

T
H

m

kbx
• Each thread computes one

element of Pdsub

T
IL

E
_

Md Pd

0
by

m
Pdsub

by ty 2
1
0

TILE_WIDTH-1

1

T
IL

E
_W

ID
T

H
E

W
ID

T
H

k

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

_

2

Shared Memory and Threading
• Each SM in G80 has 16KB shared memory

– SM size is implementation-dependent!
– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of _ ,

shared memory.
– The SM can potentially have up to 8 Thread Blocks actively executing

• This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per
block)

• The threading model limits the number of thread blocks to 3 so shared
memory is not the limiting factor here

– The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared
memory usage per thread block, allowing only up to two thread blocks
active at the same timeactive at the same time

• Using 16x16 tiling, we reduce the accesses to the global memory by
a factor of 16
– The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 GFLOPS

• Each SM in Fermi has 16KB or 48KB shared memory
Configurable vs L1 cache total 64KB

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

63

– Configurable vs L1 cache, total 64KB

Tiling Size EffectsTiling Size Effects

90

100

60

70

80

20

30

40

50

0

10

20

le
d nl
y & le
d

le
d nl
y & le
d

le
d nl
y & le
d

le
d nl
y & le
d

til o

til
ed

un

ro
l ti l o

til
ed

un

ro
l ti l o

til
ed

un

ro
l ti l o

til
ed

un

ro
l

not tiled 4x4 tiles 8x8 tiles 12x12 tiles 16x16 tiles

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

64

Memory Resources as Limit to
P ll liParallelism

Resource Per GT200 SM Full Occupancy on p y
GT200

Registers 16384 <= 16384 / 768 threads
= 21 per thread

• Effective use of different memory resources

__shared__ Memory 16KB <= 16KB / 8 blocks
= 2KB per block

• Effective use of different memory resources
reduces the number of accesses to global memory

• These resources are finite!
• The more memory locations each thread requires
 the fewer threads an SM can accommodate
 what if each thread required 22 registers and q g
each block had 256 threads?

65

Final Thoughts on MemoryFinal Thoughts on Memory

• Effective use of CUDA memory hierarchy decreases ec e use o CU e o y e a c y dec eases
bandwidth consumption to increase throughput

• Use __shared__ memory to eliminate redundant
loads from global memory
– Use __syncthreads barriers to protect __shared__

datadata

– Use atomics if access patterns are sparse or unpredictable

• Optimization comes with a development cost

• Memory resources ultimately limit parallelism

66

Thread Execution and
Divergence

67

Scheduling Blocks onto SMsg

• HW Schedules thread blocks onto available SMs
• No guarantee of ordering among thread blocks
• HW will schedule thread blocks as soon as a previous thread block

finishes
68

Mapping of Thread BlocksMapping of Thread Blocks

• Each thread block is mapped to one or more warpsac ead b oc s apped o o e o o e a ps
• The hardware schedules each warp independently

TB N W1

Thread Block N (128
threads)

TB N W2

TB N W3

TB N W4

69

Thread Scheduling Example
• SM implements zero-overhead warp scheduling

– At any time, only one of the warps is executed by SM
– Warps whose next instruction has its inputs ready forWarps whose next instruction has its inputs ready for

consumption are eligible for execution
– Eligible warps are selected for execution on a

prioritized scheduling policyprioritized scheduling policy
– All threads in a warp execute the same instruction

when selected

70

Control Flow DivergenceControl Flow Divergence
• What happens if you have the following code?

if(foo(threadIdx.x))
{
d A()do_A();

}
elseelse
{
do B();_

}

71

Control Flow DivergenceControl Flow Divergence

BranchBranch

Path APath A

Path BPath B

From Fung et al. MICRO ‘07 72

Control Flow DivergenceControl Flow Divergence
• Nested branches

if(foo(threadIdx.x))
{
if(b (th dId))if(bar(threadIdx.x))
do_A();

elseelse
do_B();

}
else
do_C();

73

Control Flow DivergenceControl Flow Divergence

BranchBranchBranchBranch

Branch

Path A

Path C

Path B

74

Control Flow DivergenceControl Flow Divergence
• You don’t have to worry about divergence for

correctness (*)()
• You might have to think about it for

performance
Depends on your branch conditions– Depends on your branch conditions

* M l (f l* Mostly true, except corner cases (for example
intra-warp locks)

75

Control Flow DivergenceControl Flow Divergence
• Performance drops off with the degree of divergence

switch(threadIdx.x % N)switch(threadIdx.x % N)
{
case 0:
...

case 1:
...

}

76

DivergenceDivergence
35

25

30

ce

15

20

or
m
an

10Pe
rf
o

0

5

0 2 4 6 8 10 12 14 16 18

Divergence
77

AtomicsAtomics

78

The ProblemThe Problem

• How do you do global communication?How do you do global communication?

• Finish a grid and start a new one

79

Global CommunicationGlobal Communication

• Finish a kernel and start a new one
• All writes from all threads complete before

a kernel finishes
step1<<<grid1,blk1>>>(...);
// The system ensures that all
// writes from step1 complete.
step2<<<grid2,blk2>>>(...);

80

Global CommunicationGlobal Communication

• Would need to decompose kernels intoWould need to decompose kernels into
before and after parts

81

Race ConditionsRace Conditions

• Or write to a predefined memory locationOr, write to a predefined memory location
– Race condition! Updates can be lost

82

Race ConditionsRace Conditions
threadId:0 threadId:1917

// vector[0] was equal to 0
vector[0] += 5; vector[0] += 1;
...
a = vector[0]; a = vector[0];

• What is the value of a in thread 0?

• What is the value of a in thread 1917?• What is the value of a in thread 1917?

83

Race ConditionsRace Conditions

• Thread 0 could have finished executionThread 0 could have finished execution
before 1917 started

• Or the other way aroundy
• Or both are executing at the same time

• Answer: not defined by the programming
model, can be arbitrary

• CUDA provides atomic operations to deal
with this problem

84

AtomicsAtomics
• An atomic operation guarantees that only a

single thread has access to a piece ofsingle thread has access to a piece of
memory while an operation completes

• The name atomic comes from the fact that it
is uninterruptable

• No dropped data, but ordering is still arbitrary
• Different types of atomic instructions
• atomic{Add, Sub, Exch, Min, Max,
Inc, Dec, CAS, And, Or, Xor}

• More types in newer architectures

85

Compare and SwapCompare and Swap
int compare_and_swap(int* register,

i t ld l i t l)int oldval, int newval)
{

int old_reg_val = *register;
if(ld l ld l)if(old_reg_val == oldval)

*register = newval;

return old_reg_val;
}

• Most general type of atomic• Most general type of atomic

• Can emulate all others with CAS

86

Example: HistogramExample: Histogram
// Determine frequency of colors in a picture
// colors have already been converted into ints// colors have already been converted into ints
// Each thread looks at one pixel and increments
// a counter atomically

global void histogram(int* color__global__ void histogram(int color,
int* buckets)

{
int i = threadIdx.x

+ blockDim.x * blockIdx.x;
int c = colors[i];
atomicAdd(&buckets[c], 1);

}

87

Example: WorkqueueExample: Workqueue
// For algorithms where the amount of work per item
// i hi hl if it ft k// is highly non-uniform, it often makes sense
// to continuously grab work from a queue

__global__
void workq(int* work_q, int* q_counter,

int* output, int queue_max)
{

int i = threadIdx.x + blockDim.x * blockIdx.x;
int q_index = atomicInc(q_counter, queue_max);
int result = do work(work q[q index]);int result = do_work(work_q[q_index]);
output[i] = result;

}

88

AtomicsAtomics

• Atomics are slower than normal load/storeAtomics are slower than normal load/store

• You can have the whole machine queuing
on a single location in memoryon a single location in memory

• Atomics unavailable on G80

89

Example: Global Min/Max (Naive)Example: Global Min/Max (Naive)
// If you require the maximum across all threads
// in a grid, you could do it with a single global
// maximum value, but it will be VERY slow

__global__
void global max(int* values int* gl max)void global_max(int values, int gl_max)
{
int i = threadIdx.x

+ blockDim.x * blockIdx.x;
int val = values[i];
atomicMax(gl max val);atomicMax(gl_max,val);

}

90

Example: Global Min/Max (Better)Example: Global Min/Max (Better)
// introduce intermediate maximum results, so that
// most threads do not try to update the global max// most threads do not try to update the global max
__global__
void global_max(int* values, int* max,

int *regional maxes,_
int num_regions)

{
// i and val as before …
int region = i % num_regions;
if(atomicMax(®_max[region],val) < val)
{

t i M (l)atomicMax(max,val);
}

}

91

Global Min/MaxGlobal Min/Max

• Single value causes serial bottleneckSingle value causes serial bottleneck

• Create hierarchy of values for more
parallelismparallelism

• Performance will still be slow, so use
j di i ljudiciously

92

Atomics - SummaryAtomics Summary
• Can’t use normal load/store for inter-thread

communication because of race conditions

• Use atomic instructions for sparse and/or
unpredictable global communication

• Decompose data (very limited use of singleDecompose data (very limited use of single
global sum/max/min/etc.) for more parallelism

93

