CS 677 Parallel Programming for
Many-core Processors
Lecture 13

Instructor: Philippos Mordohai

Webpage: www.cs.stevens.edu/”mordohai
E-mail: Philippos.Mordohai@stevens.edu

mailto:Philippos.Mordohai@stevens.edu

Outline

* Introduction to OpenMP

 Hardware developments
* Developments in CUDA

OpenMP

Based on tutorial by Joel Yliluoma
http://bisgwit.iki.fi/story/howto/openmp/

OpenMP in C++

* OpenMP consists of a set of compiler
#pragmas that control how the program
works.

* The pragmas are designed so that even if
the compiler does not support them, the
program will still yield correct behavior, but
without any parallelism.

Simple Example

* Multiple threads

#include <cmath>

int main ()

{
const int size = 256;
double sinTable[size];

fpragma omp parallel for
for(int n=0; n<size; ++n)

sinTable[n] = std::sin(2 * M PI * n / size);

// the table is now initialized

Simple Example

« Single thread, SIMD

#include <cmath>
int main ()

{

const int size = 256;
double sinTable[size];

fpragma omp simd
for(int n=0; n<size; ++n)

sinTable[n] = std::sin(2 * M PI * n / size);

// the table is now initialized

Simple Example

« Multiple threads on another device

#include <cmath>

int main ()

{
const int size = 256;
double sinTable[size];

fpragma omp target teams distribute parallel for
map (from:sinTable[0:256])

for (int n=0,; n<size; ++n)
sinTable[n] = std::sin(2 * M PI * n / size);

// the table i1s now 1initialized

Syntax

* All OpenMP constructs start with #pragma
omp

* The parallel construct

— Creates a team of N threads (N determined at
runtime) all of which execute statement or next
block

— All variables declared within block become local
variables to each thread

— Variables shared from the context are handled
transparently, sometimes by passing a reference
and sometimes by using register variables

1f

extern 1nt parallelism enabled;
#pragma omp parallel for if (parallelism enabled)
for(int c¢=0; c<n; ++cC)
handle (c) ;

for

#fpragma omp for
for(int n=0; n<10; ++n)
{
printf (" %d", n);

}
printf (".\n");

« Qutput may appear in arbitrary order

Creating a New Team

fpragma omp parallel
{

fpragma omp for

for(int n=0; n<10; ++n) printf (" %d", n);
}
printf (".\n");

* Or, equivalently
#pragma omp parallel for

for(int n=0; n<10; ++n) printf (" %d", n);
printf (".\n");

Specifying Number of Threads

#pragma omp parallel num threads (3)

{
// This code will be executed by three threads.

// Chunks of this loop will be divided amongst
// the (three) threads of the current team.
fpragma omp for

for (int n=0; n<10; ++n) printf (" %d", n);

parallel, for, parallel for

The difference between parallel, parallel for and foris
as follows:

« A team is the group of threads that execute currently.
— At the program beginning, the team consists of a single thread.

— A parallel construct splits the current thread into a new team
of threads for the duration of the next block/statement, after
which the team merges back into one.

 for divides the work of the for-loop among the threads of the
current team. It does not create threads.

e parallel for is a shorthand for two commands at once.
Parallel creates a new team, and for splits that team to
handle different portions of the loop.

 If your program never contains a parallel construct, there is
never more than one thread.

Scheduling

« Each thread independently decides which chunk of the
loop it will process
fpragma omp for schedule(static)
for (int n=0; n<10; ++n) printf (" %d", n);
printf (".\n");

* In dynamic schedule, each thread asks OpenMP runtime
library for an iteration number, then handles it and asks
for next.

— Useful when different iterations take different amounts of time to
execute

fpragma omp for schedule (dynamic)
for (int n=0; n<10; ++n) printf (" %d", n);
printf (".\n");

Scheduling

 Each thread asks for iteration number,
executes 3 iterations, then asks for
another

fpragma omp for schedule (dynamic, 3)
for(int n=0; n<1l0; ++n) printf(" %d", n);
printf (".\n");

ordered

fprragma omp for ordered schedule (dynamic)
for(int n=0; n<100,; ++n)
{

files[n] .compress () ;

fpragma omp ordered

send(files[n]) ;

reduction

int sum=0;
fprragma omp parallel for reduction (+:sum)
for(int n=0; n<1000; ++n)

sum += table[n];

Sections

fpragma omp parallel sections

{

{ Workl1(); }
#fpragma omp section
{ Work?2 () ;

Work3(); }

fpragma omp section
{ Workd (); }

#pragma omp parallel // starts a new team

{

//WorkO0 (); // this function would be run by all threads.

#pragma omp sections // divides the team into sections

{

// everything herein is run only once.

{ Work1(); }
#pragma omp section
{ Work2();

Work3 (), }

fpragma omp section
{ Work4 (); }

//Work5(); // this function would be run by all threads.

19

s1md

« SIMD means that multiple calculations will be performed
simultaneously using special instructions that perform
the same calculation to multiple values at once.

« This is often more efficient than regular instructions that
operate on single data values. This is also sometimes
called vector parallelism or vector operations.

float a[8], b[8];

fpragma omp simd
for (int n=0; n<8; ++n) al[n] += b[n];

simd

fpragma omp declare simd aligned(a,b:16)

void add arrays(float * restrict a, float
* restrict @ Db)

{
fpragma omp simd aligned(a,b:16)
for (int n=0; n<8; ++n) al[n] += b[n];

Reduction:
int sum=0;
#fpragma omp simd reduction (+:sum)

for (int n=0; n<1000; ++n) sum += table[n];

21

aligned

fpragma omp declare simd aligned(a,b:16)

void add arrays(float * restrict a, float
* restrict @ Db)

{
fpragma omp simd aligned(a,b:16)
for (int n=0; n<8; ++n) al[n] += b[n];

« Tells compiler that each element is aligned to the given number of bytes
* Increases performance

declare target

fpragma omp declare target
int x;
vold murmur () { x+=5; }

fpragma omp end declare target

* This creates one or more versions of "x" and "murmur". A set that exists
on the host computer, and also a separate set that exists and can be run
on a device.

» These two functions and variables are separate, and may contain values
separate from each others.

target, target data

« The target data construct creates a device data environment.

« The target construct executes the construct on a device (and also has target data
features).

« These two constructs are identical in effect:

#pragma omp target // device()... map()... 1if()...
{
<<statements...>>
}
#pragma omp target data // device()... map()... if()...

{
fpragma omp target
{
<<statements...>>

critical

Restricts the execution of the associated statement / block to a single thread at time

May optionally contain a global name that identifies the type of the critical construct.
No two threads can execute a critical construct of the same name at the same time.

Below, only one of the critical sections named "dataupdate" may be executed at any
given time, and only one thread may be executing it at that time. |l.e. the functions
"reorganize" and "reorganize_again" cannot be invoked at the same time, and two calls
to the function cannot be active at the same time

#fpragma omp critical (dataupdate)

{

datastructure.reorganize () ;

fpragma omp critical (dataupdate)

{

datastructure.reorganize again();

private, firstprivate, shared

int a, b=0;
fpragma omp parallel for private(a) shared (b)
for (a=0; a<50; ++a)
{
#fpragma omp atomic
b += a;

private, firstprivate, shared

#include <string>
#include <iostream>

int main ()

{
std::string a = "x", b = "y";
int ¢ = 3;

fpragma omp parallel private(a,c) shared (b)
num threads (2)

{

a += "k",’

c += 7;

std: :cout << "A becomes (" << a << "),
b lS (" << b << H)\n";

}
}

* Outputs “k” not “xk”, ¢ is uninitialized

private, firstprivate, shared

#include <string>
#include <iostream>

int main ()

{
std::string a = "x", b = "y";
int ¢ = 3;

fpragma omp parallel firstprivate(a,c) shared(b)
num threads (2)
{

a += "k",’

c += 7;

std: :cout << "A becomes (" << a << "),
b lS (" << b << H)\n";

}
}
* Outputs “xk”

Barriers

fpragma omp parallel

{
/* All threads execute this. */

someCode () ;
fpragma omp barrier

/* All threads execute this, but not before

* all threads have finished executing
SomeCode () .

*/

SomeMoreCode () ;

#pragma omp parallel
{

#pragma omp for
for (int n=0; n<10; ++n) Work() ;

// This line is not reached before the for-loop is completely finished

SomeMoreCode () ;

// This line is reached only after all threads from
// the previous parallel block are finished.

CodeContinues () ;

#pragma omp parallel
{

#pragma omp for nowait
for (int n=0; n<10; ++n) Work();

// This line may be reached while some threads are still executing for-loop.

SomeMoreCode () ;

// This line is reached only after all threads from
// the previous parallel block are finished.

CodeContinues () ;
30

Nested Loops

#fpragma omp parallel for
for(int y=0; y<25; ++vy)
{
fpragma omp parallel for
for(int x=0; x<80; ++x)
{
tick(x,vy);

}

« Code above fails, inner loop runs is sequence
fpragma omp parallel for collapse(2)
for(int y=0; y<25; ++vy)

for(int x=0; x<80; ++Xx)
{
tick(x,vy);

The Fermi Architecture

Selected notes from
presentation by:

Michael C. Shebanow

Principal Research Scientist,
NV Research
mshebanow@nvidia.com

(2010)

32

* Programmability
— C++ Support
— Exceptions/Debug support

« Performance
— Dual issue SMs

* Reliability: ECC

Much Better Compute

L1 cache

Larger Shared Memory
Much better DP math
Much better atomic support

GT200 GF100 Benefit

L1 Texture 12 KB 12 KB Fast texture

Cache (per filtering
quad)

Dedicated X 16 or 48 KB Efficient

L1 LD/ST physics and

Cache ray tracing

Total 16KB 16 or 48 KB | More data reuse

Shared among threads
Memory

L2 Cache 256KB 768 KB Greater texture

(TEX read (all clients coverage,

only) read/write) | robust compute

performance

Double 30 256 Much higher

Precision | FMAs/clock | FMAs/clock | throughputs for

Throughput Scientific codes

Instruction Set Architecture

Enables C++ : virtual functions,
new/delete, try/catch

Unified load/store addressing

64-bit addressing for large
problems

Optimized for CUDA C, OpenCL
& Direct Compute
— Direct Compute is Microsoft’s
general-purpose computing on GPU
API
Enables system call functionality

- stdio.h, etc.

Instruction Cache
Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit
3 . s

CUDA Core
Dispatch Port
Operand Collector

Register File (32,768 x 32-bit)

B . - 3 - =
LD/ST
Core Core Core Core
LD/ST

LD/ST

FP Unit INT Unit

Result Queue Core Core Core Core

LD/ST
LD/ST
LD/ST

Core Core Core Core

LD/ST
Core Core Core Core
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST

64 KB Shared Memory / L1 Cache
Uniform Cache
Tex Tex

Texture Cache
PolyMorph Engine

Vertex Fetch || Tessellator | #aewpoﬁ rr; I

|Attribute Setupl | Stream Output |

34

Unified Load/Store Addressing

Non-unified Address Space

*p_shared

Global

0]
*p_global

Unified Address Space

Global

40-bit

Instruction Issue and Control Flow

* Decouple internal execution resources
— Deliver peak IPC on branchy / int-heavy / LD-ST - heavy codes

« Dual issue pipelines select two warps to issue

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit Instruction Dispatch Unit

Warp 8 instruction 11 Warp 9 instruction 11

Warp 2 instruction 42 Warp 3 instruction 33

Warp 14 instruction 95 Warp 15 instruction 95

Warp 8 instruction 12 Warp 9 instruction 12

Warp 14 instruction 96 Warp 3 instruction 34

Warp 2 instruction 43 Warp 15 instruction 96

36

Caches

« Configurable L1 cache per SM
— 16KB L1$ / 48KB Shared

Memory Tesla Memory Hiearchy Fermi Memory Hiearchy

T =

— 48KB L1$ / 16KB Shared
Memory

« Shared 768KB L2 cache

« Compute motivation:

— Caching captures locality,
amplifies bandwidth

— Caching more effective than
Shared Memory for irregular or
unpredictable access

« Ray tracing, sparse matrix
multiplication, physics kernels ...

— Caching helps latency sensitive
cases

37

GigaThread Hardware Thread Scheduler

» Hierarchically manages tens of
thousands of simultaneously
active threads

« 10x faster
context
switching
on Fermi

 Concurrent
kernel execution

HTS

38

GigaThread Streaming Data Transfer Engine

Dual DMA engines

Simultaneous CPU->GPU
and GPU—->CPU data
transfer

Fully overlapped with
CPU/GPU processing

Kernel 0 iEE SDT1

Kernel 1 TCPU SDTO SDT1

Kernel 2 CPU SDTO SDT1
Kernel 3 T cp CPU SDTO SDT1

39

Fermi runs independent kernels in parallel
Concurrent Kernel Execution + Faster Context Switch

Kernel Kernel Kernel 2
1 1

—_— .
v —

Kernel 2 Kernel 2 Kernel 3

Kernel 2 Kernel 5

=

Kernel 3

Kernel
4

Kernel 5

Serial Kernel Execution Parallel Kernel Execution

Inside Kepler

Manuel Ujaldon
Nvidia CUDA Fellow
Computer Architecture Department
University of Malaga (Spain)

Modified by P. Mordohai

41

Summary of Features

Released in 2012

Architecture: Between 7 and 15 multiprocessors
SMX, endowed with 192 cores each.

Arithmetic: More than 1 TeraFLOP in double
precision (64 bits IEEE-754 floating-point format).

— Specific values depend on the clock frequency for
each model (usually, more on GeForces, less on

Teslas).
Major innovations in core design:

— Dynamic parallelism
— Thread scheduling (Hyper-Q)

How the Architecture Scales Up

Architecture

CUDA Compute
Capability (CCC)

N (multiprocs.) 16 30 16 7 8 15

M (cores/multip.) 8 8 32 48 192 192

Number of cores 128 240 512 336 1536 2880

43

Hardware Resources and Peak Performance

Tesla card (commercial model) M2075 M2090 K10 K20 K20X

GPU generation Fermi Kepler

GPU architecture GF100 GK104 | GK110 |

CUDA Compute Capability (CCC)
GPUs per graphics card 1 2 1 1

Multiprocessors x (cores/multiproc.) 14 x 32 16 x32 |8x192(x2) 13x192 14x192
Total number of cores 448 512 1536 (x2) 2496 2688

: SMX with dynamic
Multiprocessor type SM 2 &Jarallelism and HyperQ,

Transistors manufacturing process 40 nm. 40 nm. 28 nm. 28 nm. 28 nm.

575MHz 650 MHz | 745 MHz (706 MHz 732 MHz
Core clock frequency (for GPGPU) 1150 MHz 1300 MHz | 745 MHz | 706 MHz 732 MHz
448 512 | 1536 (x2) 2496 2688
1030 1331|2288 (x2) 3520 3950
224 256 | 64(x2) [832 896

GFLOPS (peak double precision) 515 665 95 (x2) 1170 1310 |
Manuel Ujaldon - Nvidia CUDA Fellow

Memory Features

Tesla card M2075 | M2090 K10 | K20 | K20X
32-bit register file / multiprocessor 32768 32768 65536 65536 65536
L1 cache + shared memory size 64 KB. 64 KB. 64 KB. 64 KB. 64 KB.
32bits 32bits | 64bits 64bits 64 bits
575MHz 650 MHz | 745MHz 706 MHz 732 MHz
L1 and shared memory bandwidth 73.6 GB/s. 83.2 GB/s.]190.7 GB/s 180.7 GB/s 187.3 GB/s
768KB. 768KB. | 768 KB. [1.25 MB. 1.5 MB.]
384 384 512 1024 1024
1/9 perclk 1/9 perclk] 1perclk 1perclk 1 perclk
L2 on atomic ops. (indep. address) 24 per clk 24 per clk | 64 per clk 64 per clk 64 per clk
DRAM memory width 384 bits 384 bits | 256 bits 320 bits 384 bits
2x 1500 2x 1850 | 2x 2500 [2x 2600 2x 2600
144 177 | 160 (x2) | 208 250
GDDR5 GDDR5 | GDDR5S ~ GDDR5 GDDRS
SRR e S

45

Fermi

2
S
<«
Q
=
o

9928)U| 1SOH

peayjefio

Kepler GK110

Memory Controller Memory Controller Memory Controller

PCI Express 3.0 Host Interface

Memory Controller Memory Controller

47

From SM to SMX in Kepler

Instruction Cache
Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

Déapateh Unit Diapal i Dliap it Uit k i Uit
L - L

Regieter File (x 32-hit)

+ & 4 4

2
Core Core - LEST | SFU
Core Core - LOisT [SFU

Core SFU

§

SFU

§
§

SFU

SFU

§

SFU

SFU

Core

8FU

§

Core SFU

Corc SFU

Core - LCisT SFU

Core - LOVST | SFU

Cere - LDveT |BFU
Core Core - LCisT
Core Ceoro - LEYST

64 KB Shared Mamory [L1 Cache

§

§'

]
]

43 KB Read-Only Cache

Tex

Tex

48

Differences in Memory Hierarchy

Thread Kepler Memory Hierarchy

(1

Shared Memory L1 Cache Shared
[Memory

[

L2
Cache

49

New Data Cache

Additional 48 Kbytes to expand L1 cache size
Avoids the texture unit

Allows a global address to be fetched and

cached, using a pipeline different from that of
L1/shared

Flexible (does not require aligned accesses)
Eliminates texture setup

Managed automatically by compiler ("const__
restrict” indicates eligibility). Next slide shows
an example.

How to use Data Cache

* Annotate eligible kernel parameters with "const __ restrict"

« Compiler will automatically map loads to use read-only data cache
path.

__global wvoid saxpy(float x, float vy,
const float * restrict input,
float * output)

size t offset = threadIldx.x +
(blockIdx.x * blockDim.x);

// Compiler will automatically use cache for "input"
output [offset] = (input[offset] * x) + vy,

GPUDirect now supports RDMA
[Remote Direct Memory Access]

« This allows direct transfers between GPUs and network
devices, for reducing the penalty on the extraordinary
bandwidth of GDDRS video memory

52

Relaxing Software Constraints for
Massive Parallelism

GPU generation Fermi Kepler

32 32 32

Number of threads / warp (warp size) 32

Max. number of warps / Multiprocessor 48 48 64 64
Max. number of blocks / Multiprocessor 8 8 16 16
Max. number of threads / Block 1024 1024 1024 1024

Max. number of threads / Multiprocessor 1536 1536 m m

Crucial enhancement
for Hyper-Q (see later)

53

Major Hardware Enhancements

» Large scale computations

GPU generation

Hardware model |GF100]GF104] GK104 | GKI10 | Limitation
Compute Capabiliy (€6) | 20 | 21 | 30 | 35

| 2A16-1 2°16-1 2/A32-1 2732-1 Software Problem sizel

* New architectural features

GPU generation

Hardware model |GF100|GF104| GK104 | GK110 | Limitation

Compute Capabilty (6cc) | 20 | 2.1 | 30 | 35

‘ No No No Hardware Problem
structure

No No No Hardware Threa;l
scheduling

54

Dynamic Parallelism

« The ability to launch new grids from the GPU:
— Dynamically: Based on run-time data
— Simultaneously: From multiple threads at once
— Independently: Each thread can launch a different grid

R ¢ N[

U eruU ‘cPu

Fermi: Only CPU Kepler: GPU can
can generate GPU work. generate work for itself.

GPU

55

Dynamic Parallelism

The pre-Kepler GPU is a co-processor

The Kepler GPU s autonomous:
Dynamic parallelism

CPU

Now programs run faster and
are expressed in a more natural way.

56

R sm

LREBERERG

[V
wh kb

Workload Balance

Plenty of factors, unpredictable at run time, may
transform workload balancing among
multiprocessors into an impossible goal

See below the duration of 8 warps on an SM of

-]

l-ﬂw

=

L3

57

Hyper-Q

* In Fermi, several CPU processes can send thread blocks
to the same GPU, but a kernel cannot start its execution
until the previous one has finished

* In Kepler, we can execute simultaneously up to 32
kernels launched from different:
— MPI processes, CPU threads (POSIX threads) or CUDA streams

« This increments the % of temporal occupancy on the

GPU

1 MP] Task at a Time

]

32 Simultaneous MPI Tasks

i

58

Without Hyper-Q

X
c
o
-
©
-~
=
=
=
o
O

59

With Hyper-Q

% UOLIezZiliin Nd9

60

Six Ways to Improve Code on Kepler

parallelism
and Hyper-Q
on Kepler

61

Dynamic Work Generation

Coarse grid Fine grid

Higlher performance, Lower performance,
OWer accuracy higher accuracy

Parallelism based on Level of Detall

CUDA until 2012:

* The CPU launches
kernels regularly.

e All pixels are treated
the same.

CUDA on Kepler:

* The GPU launches a
different number of
kernels/blocks for each
computational region.

Grid Management Unit

Fermi

Stream Queue
(ordered queues of grids)

Stream 1 Stream 2 Stream 3
Kernel C Kernel R Kernel Z
Kernel B Kernel Q Kernel Y
Kernel A Kernel P Kernel X

"~ Single hardware queue
muftiplexing streams

Work Distributor

Tracks blocks issued from grids

16 active grids

CUDA Generated Work

Kepler GK110

Stream Queue

Parallel hardjvare streams

Grid Management Unit
Pending & Suspended Grids

1000s of pending grids

Allows suspending of grids

Work Distributor
Actively dispatching grids

32 active grids

64

Software and Hardware Queues

Fermi:

Stream 1

Up to 16 grids | | — . :
on GPU hardware " | f ~— \ - Q .

Chances for overlapping: Only at stream edges .

Stream 3

65

Software and Hardware Queues

Kepler: No inter-stream dependencies

— : ‘ Stream 1 '

Up to 32 grids ,, Y
can run at once B iy (o Yo

on GPU hardware ~ P ; Q ’ R ,

Concurrency at full-stream level Stream 3

66

Instruction Issue and Execution

SM-SMX fetch & issue (front-end) SM-SMX execution (back-end)

Can issue 2 warps, 1 instruction each. 32 cores (1 warp) for "int" and "float".

Total: 2 warps per cycle. 16 cores for "double” (1/2 warp).
Active warps: 48 on each SM, 16 load/store units (1/2 warp).
chosen from up to 8 blocks. 4 special function units (1/8 warp).

In GTX480: 15 * 48 = 720 active warps. A total of up to 4 concurrent warps.

Can issue 4 warps, 2 instructions each. 192 cores (6 warps) for "int" and "float".

Total: 8 warps per cycle. 64 cores for "double” (2 warps).
Active warps: 64 on each SMX, 32 load/store units (1 warp).
chosen from up to 16 blocks. 32 special function units (1 warp).

In K20: 13 * 64 = 832 active warps. A total of up to 10 concurrent warps.

Data-Dependent Parallelism

* The simplest possible parallel program:
— Loops are parallelizable
— Workload is known at compile-time
for 1 = 1 to N
for J =1 to M
convolution (i, 3J);

* The simplest impossible program:
— Workload is unknown at compile-time.
— The challenge is data partitioning
for 1 = 1 to N
for J = 1 to x[1]
convolution (i, J);

Data-Dependent Parallelism

* Kepler version:

__global wvoid convolution(int x[])
{
for Jj = 1 to x[blockIdx]

// Each block launches x[blockIdx]
// kernels from GPU

kernel <<< ... >>> (blockIdx, 7j)
}

// Launch N blocks of 1 thread
// on GPU (rows start in parallel)
convolution <<< N, 1 >>> (x);

« Up to 24 nested loops supported in CUDA 5.0

Recursive Parallel Algorithms prior
to Kepler

Early CUDA programming model did not
support recursion at all

CUDA started to support recursive functions
in version 3.1, but they can easily crash if the
size of the arguments is large

A user-defined stack in global memory can be
employed instead, but at the cost of a
significant performance penalty

An efficient solution is possible using
dynamic parallelism

Parallel Recursion: Quicksort
» Typical divide-and-conquer algorithm hard to do
on Fermi |
Select pivot
' value
312]216]3]0]1]4]5]8]1[8]7]0[2]5] 2
/ \ 4
212111112 0141513l l6la 71013 5] For each element
00 BHEE HOEEHGEEEE OO § " b
r:: \, ; Store left if Store right if
mmm : value < pivot No‘ value >= pivot
= , ol w
1]1]2]2]2]3]3]4]5]5]6]7]8]8]o]9}

done?

Recurse sort
‘-= nto left-hand

subset

Recurse sort
-

into right-hand -~
subset

global void

{

Quicksort

Version for Fermi

gsort (int *data, int 1, int r)

int pivot data[0];
int *lptr data+l,

// Partition data around pivot value

*rptr = data+tr;

partition(data, 1, r, lptr, rptr, pivot);

// Launch next stage recursively

int rx = rptr-data; 1lx =
if (1 < rx)

gsort<<<...>>>(data,l,rx);
if (r > 1x)

gsort<<<...>>>(data,lx,r);

lptr-data;

left- and right-hand sorts are serialized

_global void

{

gsort(int *data, int 1, int r)

int pivot data[0];
int *lptr data+l,

// Partition data around pivot value

*rptr = data+r;

partition(data, 1, r, 1lptr, rptr, pivot);

int rx = rptr-data; lx = lptr-data;
if (1 < rx)
gsort<<<...,

if (r > 1x)

>>>(data,l,rx);

gsort<<<..., >>>(data,lx,r);

Quicksort Results

Quicksort

2X

browns

o |

e \\ithout Dynamic Parallelism

e \Nith Dynamic Parallelism
Ox T 1

0 5 10
Problem Size (Million of Elements)

Relative Sorting Performance
N
>

73

Maxwell

(2"d generation)
Released in 2014

Material by Mark Harris (NVIDIA)
and others

74

Energy Efficiency

RESULTS : ENERGY EFFICIENCY

GTX 680

m GTX 980

Performance per Watt
GTX 680: Kepler GTX 980: Maxwell

New Features

SMs 8 16
CUDA Cores 1536 2048
Base Clock _ 1006 MHz 1126 MHz
GPU Boost Clock 1058 MHz 1216 MHz
GFLOPs 3090 4612
“Texture Units 128 128
Texel fill-rate 128.8 Gigatexels/sec 144 1 Gigatexels/sec
Memory Clock 6000 MHz 7000 MHz
Memory Bandwidth 192 GBlsec 224 GBisec
"ROPs 32 64
L2 Cache Size 512KB 2048KB
TDP 195 Watts 165 Watts
Transistors 3.54 billion 5.2 billion
Die Size 294 mm?* 398 mm?*
Hanufa[:tun'ng Process 28-nm 28-nm

76

New Features

Improved instruction scheduling

— Four warp schedulers per SMM, no shared
core functional units

Increased occupancy
— Maximum active blocks per SMM has doubled

Larger dedicated shared memory
— L1 is now with texture cache

Faster shared memory atomics
Broader support for dynamic parallelism

Graphics

NEXT GENERATION
GRAPHICS

Enabling New Algorithms and
Superior Image Quality

Voxel Global Illumination
Multi Projection
Conservative Raster

Shader : Raster Ordered View
Tiled Resources

Advanced Sampling

Pascal

Key New Features

Smaller manufacturing process
— 16 nm vs. 28 nm of previous generations

Much faster memory

Higher clock frequency
— 1607 MHz vs. 1216 MHz

Dynamic load balancing including graphics
pipeline
Page Migration Engine

NVIDIA DGX-1

NVIDIA DGX-1

ININ (. C
ANING O

“250 SERVERS IN-A-BOX”

DUAL XEON

FLOPS (CPU + GPU) 3TE 170 TF

AGGREGATE NODE BW 76 GB/ s 768 GB/ s

ALEXNET TRAIN TIME 150 HOURS 2 HOURS

TRAIN IN 2 HOURS >250 NODES* 1 NODE

*Caffe Training on Multi-node Digributed-memory Systems Based on Intel ® Xeon ® Processor ES Family (extrapolated)
Gennady Fedorov (Intel)'s picture Submitted by Gennady Fedorov (Intel), Vadim P. (Intel) on October 29, 2015
httos:/ f software. intel. com/en-usf atidess catfe-tmining-on-multi-node-distributed-memory-syste ms-based-o0-intel-Xeon- Droc s - e5

82

AMD RX Vega

Will be released soon
8/16 GB high bandwidth memory (HBM2)
14 nm production process

12 TFLOPS expected

— Compared to 11 TFLOPS of NVIDIA GTX
Titan X

4096 cores

CUDA 4.0

)

CUDA 4.0: Highlights

Easier Parallel Faster New & Improved
Application Porting Multi-GPU Programming Developer Tools
A 4 A 4 A 4

» Share GPUs across multiple threads

« Single thread access 1o all GPUs » Unified Virtual Addressing * Auto Performance Analysis
» No-copy pinning of system memory » NVIDIA GPUDirect™ v2.0 « C++ Debugging

* News CUDA C/C++ features * Peer-to-Peer Access « GPU Binary Disassembler
* Thrust templated primitives library » Peer-to-Peer Transfers . cuda-gdb for MacOS

* NPP image/video processing library * GPU-accelerated MP)

* Layered Textures

CUDA 4.0 Release

 March 2011
* Independent software release

e Unlike:

— CUDA 1.0 released with G80/G9x in 2007
(nearly a year later than the hardware)

— CUDA 2.0 released for GT200 in 2008
— CUDA 3.0 released for Fermi in 2009

CUDA 4.0 - Application Porting

 Unified Virtual Addressing

» Faster Multi-GPU Programming
— NVIDIA GPUDirect 2.0

» Easier Parallel Programming in C++
— Thrust

Easier Porting of Existing Applications

Share GPUs across multiple
threads

« Easier porting of multi-
threaded apps

— pthreads / OpenMP threads
share a GPU
 Launch concurrent kernels
from different host threads

— Eliminates context switching
overhead
* New, simple context
management APIs

— Old context migration APIs
still supported

Single thread access to all
GPUs

« Each host thread can now
access all GPUs in the
system

— One thread per GPU
limitation removed

« Easier than ever for
applications to take
advantage of multi-GPU

— Single-threaded applications

can now benefit from
multiple GPUs

— Easily coordinate work
across multiple GPUs

No-copy Pinning of System Memory

* Reduce system memory usage and CPU
memcpy() overhead

— Easier to add CUDA acceleration to existing
applications

— Just register malloc’d system memory for async
operations and then call cudaMemcpy() as usual

Before No-copy Pinning With No-copy Pinning

Extra allocation and extra copy required Just register and go!

malloc(a)

cudaMallocHost(b)
memcpy(b, a) cudaHostRegister(a)
cudaMemcpy() to GPU, launch kernels, cudaMemcpy() from GPU
memcpy(a, b)
cudaFreeHost(b) cudaHostUnregister(a)

89

New CUDA C/C++ Language Features

« C++ new/delete
— Dynamic memory management

« C++ virtual functions
— Easier porting of existing applications

* Inline PTX
— Enables assembly-level optimization

GPU-Accelerated Image Processing

* NVIDIA Performance Primitives (NPP) library

— 10x to 36x faster image processing

— Initial focus on imaging and video related
primitives
« Data exchange and initialization
Color conversion
Threshold and compare operations
Statistics
Filter functions
Geometry transforms
 Arithmetic and logical operations
« JPEG

Layered Textures - Faster Image Processing

 ldeal for processing multiple textures with same size/format

— Large sizes supported on Tesla T20 (Fermi) GPUs (up to 16k
X 16k x 2k)

— e.g. Medical Imaging, Terrain Rendering (flight simulators),
etc.

« Faster Performance
— Reduced CPU overhead: single binding for entire texture array
— Faster than 3D Textures: more efficient filter caching
— Fast interop with OpenGL / Direct3D for each layer
— No need to create/manage a texture atlas
* No sampling artifacts
— Linear/Bilinear filtering applied only within a layer

NVIDIA GPUDirect:Towards
Eliminating the CPU Bottleneck

Version 1.0 Version 2.0

for applications that communicate for applications that communicate
over a network within a node

v v

* Direct access to GPU memory for 3
party devices

* Peer-to-Peer memory access,

* Eliminates unnecessary sys mem transfers & synchronization
copies & CPU overhead

» Supported by Mellanox and Qlogic » Less code, higher programmer

* Up to 30% improvement in productivity

communication performance

Before GPUDirect 2.0

Two copies required

GPUDirect 2.0;: Peer-to-Peer
Communication

Only one copy required

GPUDirect 2.0: Peer-to-Peer
Communication

Direct communication between GPUs

— Faster - no system memory copy overhead
— More convenient multi-GPU programming
Direct Transfers

— Copy from GPUO memory to GPU1 memory
— Works transparently with UVA

Direct Access
— GPUQ reads or writes GPU1 memory (load/store)

Supported on Tesla 20-series and other Fermi
GPUs

— 64-bit applications on Linux and Windows

Unified Virtual Addressing

 No UVA: Multiple « UVA: Single Address
Memory Spaces Space

System GPUO GPU1
Memory Memory

97

Unified Virtual Addressing

* One address space for all CPU and GPU memory

— Determine physical memory location from pointer
value

— Enables libraries to simplify their interfaces (e.g.
cudaMemcpy)

« Supported on Tesla 20-series and other Fermi
GPUs

Before UVA With UVA

Separate options for each permutation One function handles all cases

cudaMemcpyHostToHost
cudaMemcpyHostToDevice cudaMemcpyDefault
cudaMemcpyDeviceToHost (data location becomes an implementation detail)

cudaMemcpyDeviceToDevice

98

New Developer Tools

» Auto Performance Analysis: Visual Profiler
— Identify limiting factor
— Analyze instruction throughput
— Analyze memory throughput
— Analyze kernel occupancy
« C++ Debugging
— cuda-gdb for MacOS
« GPU Binary Disassembler

CUDA 5.0

Mark Harris

Chief Technologist, GPU
Computing

100

Open Source LLVM Compiler

* Provides ability for anyone to add CUDA to new
languages and processors

CUDA
C, C++, Fortran

LLVM Compiler
For CUDA

NVIDIA x86
GPUs CPUs

101

NVIDIA Nsight, Eclipse Edition

A= £\ 1re 110 N NT UedDud el

® Automated CPU to GPU code refactoring ® Simultaneously debug of CPU and GPU o Quickly identifies performance issues
® Semantic highlighting of CUDA code ® Inspect variables across CUDA threads o Integrated expert system
¢ Integrated code samples & docs ® Use breakpoints & single-step debugging ® Automated analysis

® Source line correlation

For Linux and Mac OS

102

CUDA 4: Whole-Program
Compilation & Linking

CUDA 5: GPU Library Object
Linking
Separate compilation allows building independent

object files

CUDA 5 can link multiple object files into one
program

Can also combine object files into static libraries
— Link and externally call device code

3 4 A I ¥ . 4
i
- — A
main.cpp + N4 N4 iz F program.exe

104

CUDA 5: GPU Library Object
Linking

« Enables 3rd party
closed-source
device libraries

 User-defined device
callback functions

main.cpp
100.CU

program.exe

105

CUDA 5.0: Run-time Syntax and
Semantics

{

\J

/,;_device__ float buf[1l024]; ‘\

global wvoid dynamic(float *data)

int tid = threadIdx.x;
if (tid % 2)

buf[tid/2] = data[tid]+data[tid+1];
__syncthreads();

— This launch is per-thread

if (tid == 0) {
launchkernel<<<128,256>>>(buf) ; €
cudaDeviceSynchronize();

}

__syncthreads () ; <

CUDA 5.0: Sync. all launches within my block

if (tid == 0) {
cudaMemCpyAsync(data, buf, 1024); €
cudaDeviceSynchronize();

idle threads wait for the others here

— CUDA 5.0: Only async. launches
are allowed on data gathering

J

106

CUDA 6.0

Manuel Ujaldon
Nvidia CUDA Fellow
Computer Architecture
Department
University of Malaga (Spain)

107

CUDA 6 Highlights

Unified Memory:

— Cfl;’U and GPU can share data without much programming
effort

Extended Library Interface (XT) and Drop-in Libraries:
— Libraries much easier to use

GPUDirect RDMA:
— A key achievement in multi-GPU environments

Developer tools:

— Visual Profiler enhanced with:
» Side-by-side source and disassembly view showing.

* New analysis passes (per SM activity level), generates a kernel
analysis report.

Multi-Process Server (MPS) support in nvprof and cuda-
memcheck

Nsight Eclipse Edition supports remote development (x86
and ARM)

CUDA 6.0: Performance
Improvements in Key Use Cases

Kernel launch

Repeated launch of the same set of
kernels

cudaDeviceSynchronize()
Back-to-back grids in a stream

Unified Memory

Dual-, tri- or
quad-channel
(~100 GB/s.)

256, 320,
384 bits
(~300 GB/s.)

PCI-express
(~10 GB/s.)

Main memory Video memory

110

Unified Memory Contributions

* Creates pool of managed memory between
CPU and GPU

» Simpler programming and memory model:

— Single pointer to data, accessible anywhere

— Eliminate need for cudaMemcpy(), use
cudaMallocManaged()

— No need for deep copies
« Performance through data locality:
— Migrate data to accessing processor

— Guarantee global coherency
— Still allows cudaMemcpyAsync() hand tuning

CUDA call
Allocation fixed in
Local access for
PIC-e access for
Other features

Coherency

Full support in

Memory Types

Zero-Copy

(pinned memory)
cudaMallocHost(&A, 4);

Main memory (DDR3) Video memory (GDDR5)

CPU
All GPUs
Avoid swapping to disk
At all times
CUDA 2.2

Unified Virtual
Addressing

cudaMalloc(&A, 4);

Home GPU
Other GPUs
No CPU access
Between GPUs
CUDA 1.0

Unified Memory

cudaMallocManaged(&A, 4);
Both
CPU and home GPU
Other GPUs
On access CPU/GPU migration
Only at launch & sync.
CUDA 6.0

112

Additions to the CUDA API

* New call: cudaMallocManaged()

— Drop-in replacement for cudaMalloc() allocates
managed memory

— Returns pointer accessible from both Host and
Device

* New call: cudaStreamAttachMemAsync()

— Manages concurrency in multi-threaded CPU
applications

* New keyword: __managed___

— Declares global-scope migratable device variable
— Symbol accessible from both GPU and CPU code

Code without Unified Memory

void launch(dataElem *elem) {
CPU memory dataElem *g elem;
dataElem char *g_text;

int textlen = strlen(elem->text);

“Hello, world” // Allocate storage for struct and text
cudaMalloc (&g elem, sizeof(dataElem));

cudaMalloc (&g text, textlen);
Two addresses

g?ghtewga%gples // Copy up each piece separately, including

new “text” pointer value
cudaMemcpy (g_elem, elem, sizeof(dataElem));

cudaMemcpy (g _text, elem->text, textlen);

GPU memory

dataEl:m sizeof (g _text));

cudaMemcpy (& (g_elem->text), &g text,

propl

prop2 // CPU and GPU use different copies of “elem”

@ “HE"O, world” kernel<<< ... >>>(g_elem);

// Finally we can launch our kernel, but

114

Code with Unified Memory

CPU memory void launch(dataElem *elem) ({

kernel<<< ... >>>(elem);

}
« What remains the same:

— Data movement
— GPU accesses a local
copy of text
prop2 ¢ What haS Changed:
“text g Hello, world” — Programmer sees a
single pointer
GPU memory — CPU and GPU both

reference the same object
— There is coherence

115

CUDA 7.0

By Mark Harris
NVIDIA

116

New Features: C++11

« C++11 features on device including:
— auto,
— lambda,
— variadic templates,
— rvalue references,
— range-based for loops

Example

#include <initializer list>
#include <iostream>

#include <cstring>

// Generic parallel find routine. Threads search through the
// array in parallel. A thread returns the index of the
// first wvalue it finds that satisfies predicate "'p°, or -1.
template <typename T, typename Predicate>
__device int find(T *data, int n, Predicate p)
{

for (int 1 = blockIdx.x * blockDim.x + threadIdx.x;

i < n;

1 += blockDim.x * gridDim.Xx)

1f (p(data[i])) return 1i;
}

return -1;

//
//
//
//

Use find with a lambda function that searches for x, v,
or w. Note the use of range-based for loop and

initializer list inside the functor, and auto means we
don't have to know the type of the lambda or the array
global

void xyzw frequency (unsigned int *count, char *data, 1int n)

{

auto match xyzw = [] (char c) {
const char letters[] = { 'x','y','z"'",'w' };
for (const auto x : letters)
if (c == x) return true;
return false;

b
int 1 = find(data, n, match xyzw);

if (1 >= 0) atomicAdd(count, 1);

119

Z

int main (void)

{

char text[] = "zebra xylophone wax";

char *d text;

cudaMalloc (&d text, sizeof (text));

cudaMemcpy (d text, text, sizeof (text),cudaMemcpyHostToDevice);
unsigned int *d count;

cudaMalloc (&d count, sizeof (unsigned int));
cudaMemset (d count, 0, sizeof (unsigned int));

xyzw frequency<<<l, 64>>>(d count, d text, strlen(text));

unsigned int count;

cudaMemcpy (&count, d count, sizeof (unsigned int), cudaMemcpyDeviceToHost) ;

std::cout << count << " instances of 'x', 'y', 'z', 'w'"
<< "in " << text << std::endl;

cudaFree (d count) ;

cudaFree (d text);

return 0O;
120

Other Features

 Thrust version 1.8

— Thrust algorithms can now be invoked from
the device

* CUSOLVER, cuFFT

— cuSolver library is a high-level package based
on the cuBLAS and cuSPARSE libraries

* Runtime compilation

— No need to generate multiple optimized
kernels at compile time

CUDA 8.0

By Milind Kukanur
NVIDIA

122

What’'s New

PASCAL SUPPORT UNIFIED MEMORY

New Architecture
NVLINK

HBM2 Stacked Memory
Page Migration Engine

Larger Datasets
Demand Paging
New Tuning APIs
Data Coherence & Atomics

New nvGRAPH library

CuBLAS improvements
for Deep Learning

Critical Path Analysis
2x Faster Compile Time
OpenACC Profiling

Debug CUDA Apps on Display
GPU

123

Unified Memory

* Oversubscribe GPU memory, up to system
memory size

void foo () {
// Allocate 64 GB
char *data;
size t size = 64*1024*1024*1024;

cudaMallocManaged (&data, size);

Unified Memory

global voilid mykernel (char *data) {
datall] = ‘g’;

void foo () {
char *data;
cudaMallocManaged (&data, 2);

mykernel<<<...>>>(data);
// no synchronize here

datal[0] = ‘c’;

cudafFree (data) ;

126

