CS 677: Parallel Programming for Many-core Processors Lecture 13

Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu

Outline

- Introduction to OpenMP
- Hardware developments
- Developments in CUDA

OpenMP

Based on tutorial by Joel Yliluoma http://bisqwit.iki.fi/story/howto/openmp/

OpenMP in C++

- OpenMP consists of a set of compiler #pragmas that control how the program works.
- The pragmas are designed so that even if the compiler does not support them, the program will still yield correct behavior, but without any parallelism.

Simple Example

• Multiple threads

```
#include <cmath>
int main()
{
  const int size = 256;
  double sinTable[size];
  #pragma omp parallel for
  for(int n=0; n<size; ++n)</pre>
    sinTable[n] = std::sin(2 * M PI * n / size);
  // the table is now initialized
}
```

Simple Example

• Single thread, SIMD

```
#include <cmath>
int main()
{
  const int size = 256;
  double sinTable[size];
  #pragma omp simd
  for(int n=0; n<size; ++n)</pre>
    sinTable[n] = std::sin(2 * M PI * n / size);
  // the table is now initialized
}
```

Simple Example

• Multiple threads on another device

```
#include <cmath>
int main()
{
    const int size = 256;
    double sinTable[size];
    #pragma omp target teams distribute parallel for
        map(from:sinTable[0:256])
    for(int n=0; n<size; ++n)
        sinTable[n] = std::sin(2 * M_PI * n / size);
    // the table is now initialized
}</pre>
```

Syntax

- All OpenMP constructs start with #pragma omp
- The parallel construct
 - Creates a *team* of N threads (N determined at runtime) all of which execute statement or next block
 - All variables declared within block become local variables to each thread
 - Variables shared from the context are handled transparently, sometimes by passing a reference and sometimes by using register variables

if

```
extern int parallelism_enabled;
#pragma omp parallel for if(parallelism_enabled)
for(int c=0; c<n; ++c)
handle(c);</pre>
```

for

```
#pragma omp for
for(int n=0; n<10; ++n)
{
    printf(" %d", n);
}
printf(".\n");
```

• Output may appear in arbitrary order

Creating a New Team

```
#pragma omp parallel
{
    #pragma omp for
    for(int n=0; n<10; ++n) printf(" %d", n);
}
printf(".\n");</pre>
```

• Or, equivalently

```
#pragma omp parallel for
for(int n=0; n<10; ++n) printf(" %d", n);
printf(".\n");
```

Specifying Number of Threads

#pragma omp parallel num_threads(3)
{

// This code will be executed by three threads.

// Chunks of this loop will be divided amongst
// the (three) threads of the current team.
#pragma omp for
for(int n=0; n<10; ++n) printf(" %d", n);</pre>

parallel, for, parallel for

The difference between parallel, parallel for and for is as follows:

- A team is the group of threads that execute currently.
 - At the program beginning, the team consists of a single thread.
 - A parallel construct splits the current thread into a new team of threads for the duration of the next block/statement, after which the team merges back into one.
- for divides the work of the for-loop among the threads of the current team. It does not create threads.
- parallel for is a shorthand for two commands at once. Parallel creates a new team, and for splits that team to handle different portions of the loop.
- If your program never contains a parallel construct, there is never more than one thread.

Scheduling

 Each thread independently decides which chunk of the loop it will process

```
#pragma omp for schedule(static)
for(int n=0; n<10; ++n) printf(" %d", n);
printf(".\n");</pre>
```

- In dynamic schedule, each thread asks OpenMP runtime library for an iteration number, then handles it and asks for next.
 - Useful when different iterations take different amounts of time to execute

```
#pragma omp for schedule(dynamic)
```

```
for(int n=0; n<10; ++n) printf(" %d", n);
printf(".\n");</pre>
```

Scheduling

 Each thread asks for iteration number, executes 3 iterations, then asks for another

#pragma omp for schedule(dynamic, 3)
for(int n=0; n<10; ++n) printf(" %d", n);
printf(".\n");</pre>

ordered

```
#pragma omp for ordered schedule(dynamic)
for(int n=0; n<100; ++n)
{
  files[n].compress();
  #pragma omp ordered
  send(files[n]);
}</pre>
```

reduction

```
int sum=0;
#pragma omp parallel for reduction(+:sum)
for(int n=0; n<1000; ++n)
     sum += table[n];
```

Sections

```
#pragma omp parallel sections
{
    { Work1(); }
    #pragma omp section
    { Work2();
    Work3(); }
    #pragma omp section
    { Work4(); }
}
```

```
#pragma omp parallel // starts a new team
{
  //Work0(); // this function would be run by all threads.
  #pragma omp sections // divides the team into sections
  {
    // everything herein is run only once.
    { Work1(); }
    #pragma omp section
    { Work2();
      Work3(); }
    #pragma omp section
    { Work4(); }
  }
```

//Work5(); // this function would be run by all threads.

simd

- SIMD means that multiple calculations will be performed simultaneously using special instructions that perform the same calculation to multiple values at once.
- This is often more efficient than regular instructions that operate on single data values. This is also sometimes called vector parallelism or vector operations.

```
float a[8], b[8];
...
#pragma omp simd
for(int n=0; n<8; ++n) a[n] += b[n];</pre>
```

simd

```
#pragma omp declare simd aligned(a,b:16)
void add_arrays(float *_restrict__ a, float
*_restrict__ b)
{
    #pragma omp simd aligned(a,b:16)
    for(int n=0; n<8; ++n) a[n] += b[n];
}</pre>
```

Reduction:

```
int sum=0;
#pragma omp simd reduction(+:sum)
for(int n=0; n<1000; ++n) sum += table[n];</pre>
```

aligned

```
#pragma omp declare simd aligned(a,b:16)
void add_arrays(float *__restrict__ a, float
*__restrict__ b)
{
    #pragma omp simd aligned(a,b:16)
    for(int n=0; n<8; ++n) a[n] += b[n];</pre>
```

- Tells compiler that each element is aligned to the given number of bytes
- Increases performance

}

declare target

```
#pragma omp declare target
int x;
void murmur() { x+=5; }
#pragma omp end declare target
```

- This creates one or more versions of "x" and "murmur". A set that exists on the host computer, and also a separate set that exists and can be run on a device.
- These two functions and variables are separate, and may contain values separate from each others.

target, target data

- The target data construct creates a device data environment.
- The target construct executes the construct on a device (and also has target data features).
- These two constructs are identical in effect:

```
#pragma omp target // device()... map()... if()...
{
    <<statements...>>
}
.....
#pragma omp target data // device()... map()... if()...
{
    #pragma omp target
    {
        <statements...>>
    }
}
```

critical

- Restricts the execution of the associated statement / block to a single thread at time
- May optionally contain a global name that identifies the type of the critical construct. No two threads can execute a critical construct of the same name at the same time.
- Below, only one of the critical sections named "dataupdate" may be executed at any given time, and only one thread may be executing it at that time. I.e. the functions "reorganize" and "reorganize_again" cannot be invoked at the same time, and two calls to the function cannot be active at the same time

```
#pragma omp critical(dataupdate)
{
   datastructure.reorganize();
}
...
#pragma omp critical(dataupdate)
{
   datastructure.reorganize_again();
}
```

private, firstprivate, shared

```
int a, b=0;
#pragma omp parallel for private(a) shared(b)
for(a=0; a<50; ++a)
{
    #pragma omp atomic
    b += a;
}
```

private, firstprivate, shared

```
#include <string>
#include <iostream>
int main()
{
    std::string a = "x", b = "y";
    int c = 3;
    #pragma omp parallel private(a,c) shared(b)
            num threads (2)
    {
        a += "k";
        c += 7;
        std::cout << "A becomes (" << a << "),</pre>
                   b is (" << b << ")\n";
    }
```

• Outputs "k" not "xk", c is uninitialized

private, firstprivate, shared

```
#include <string>
#include <iostream>
int main()
{
    std::string a = "x", b = "y";
    int c = 3;
    #pragma omp parallel firstprivate(a,c) shared(b)
            num threads (2)
    {
        a += "k";
        c += 7;
        std::cout << "A becomes (" << a << "),</pre>
                   b is (" << b << ")\n";
    }
```

• Outputs "xk"

Barriers

```
#pragma omp parallel
{
    /* All threads execute this. */
    SomeCode();
```

#pragma omp barrier

```
/* All threads execute this, but not before
 * all threads have finished executing
  SomeCode().
 */
```

SomeMoreCode();

}

```
#pragma omp parallel
 {
   #pragma omp for
   for(int n=0; n<10; ++n) Work();</pre>
   // This line is not reached before the for-loop is completely finished
   SomeMoreCode();
// This line is reached only after all threads from
 // the previous parallel block are finished.
CodeContinues();
 #pragma omp parallel
 {
   #pragma omp for nowait
   for(int n=0; n<10; ++n) Work();</pre>
   // This line may be reached while some threads are still executing for-loop.
   SomeMoreCode();
 }
```

// This line is reached only after all threads from
// the previous parallel block are finished.
CodeContinues();

Nested Loops

```
#pragma omp parallel for
 for(int y=0; y<25; ++y)
   #pragma omp parallel for
   for(int x=0; x<80; ++x)
   {
     tick(x, y);
  Code above fails, inner loop runs is sequence
 #pragma omp parallel for collapse(2)
 for(int y=0; y<25; ++y)
   for(int x=0; x<80; ++x)
```

{

}

tick(x,y);

The Fermi Architecture Selected notes from presentation by: Michael C. Shebanow

Principal Research Scientist, NV Research mshebanow@nvidia.com

(2010)

Much Better Compute

- Programmability
 - C++ Support
 - Exceptions/Debug support
- Performance
 - Dual issue SMs
 - L1 cache
 - Larger Shared Memory
 - Much better DP math
 - Much better atomic support
- Reliability: ECC

	GT200	GF100	Benefit
		-	-
L1 Texture	12 KB	12 KB	Fast texture
Cache (per			filtering
quad)			
Dedicated	X	16 or 48 KB	Efficient
L1 LD/ST			physics and
Cache			ray tracing
Total	16KB	16 or 48 KB	More data reuse
Shared			among threads
Memory			
L2 Cache	256KB	768 KB	Greater texture
	(TEX read	(all clients	coverage,
	only)	read/write)	robust compute
			performance
Double	30	256	Much higher
Precision	FMAs/clock	FMAs/clock	throughputs for
Throughput			Scientific codes

Instruction Set Architecture

FP Unit

- Enables C++ : virtual functions, • new/delete, try/catch
- Unified load/store addressing ٠
- 64-bit addressing for large ٠ problems
- Optimized for CUDA C, OpenCL ۲ & Direct Compute
 - Direct Compute is Microsoft's _ general-purpose computing on GPU API
- Enables system call functionality ullet- stdio.h, etc.

Unified Load/Store Addressing

Instruction Issue and Control Flow

- Decouple internal execution resources
 - Deliver peak IPC on branchy / int-heavy / LD-ST heavy codes
- Dual issue pipelines select two warps to issue

Warp Scheduler	Warp Scheduler	
Instruction Dispatch Unit	Instruction Dispatch Unit	
Warp 8 instruction 11	Warp 9 instruction 11	
Warp 2 instruction 42	Warp 3 instruction 33	
Warp 14 instruction 95	Warp 15 instruction 95	
Warp 8 instruction 12	Warp 9 instruction 12	
Warp 14 instruction 96	Warp 3 instruction 34	
Warp 2 instruction 43	Warp 15 instruction 96	
Caches

- Configurable L1 cache per SM
 - 16KB L1\$ / 48KB Shared Memory
 - 48KB L1\$ / 16KB Shared Memory
- Shared 768KB L2 cache
- Compute motivation:
 - Caching captures locality, amplifies bandwidth
 - Caching more effective than Shared Memory for irregular or unpredictable access
 - Ray tracing, sparse matrix multiplication, physics kernels ...
 - Caching helps latency sensitive cases

GigaThread Hardware Thread Scheduler

- Hierarchically manages tens of thousands of simultaneously
 - active threads
- 10x faster context switching on Fermi
- Concurrent kernel execution

GigaThread Streaming Data Transfer Engine

- Dual DMA engines
- Simultaneous CPU→GPU and GPU→CPU data transfer
- Fully overlapped with CPU/GPU processing

Fermi runs independent kernels in parallel

Concurrent Kernel Execution + Faster Context Switch

Serial Kernel Execution

Parallel Kernel Execution

Inside Kepler

Manuel Ujaldon Nvidia CUDA Fellow Computer Architecture Department University of Malaga (Spain)

Modified by P. Mordohai

Summary of Features

- Released in 2012
- Architecture: Between 7 and 15 multiprocessors SMX, endowed with 192 cores each.
- Arithmetic: More than 1 TeraFLOP in double precision (64 bits IEEE-754 floating-point format).
 - Specific values depend on the clock frequency for each model (usually, more on GeForces, less on Teslas).
- Major innovations in core design:
 - Dynamic parallelism
 - Thread scheduling (Hyper-Q)

How the Architecture Scales Up

Architecture	G80	GT200	Fermi GF100	Fermi GF104	Kepler GK104	Kepler GK110
Time frame	2006-07	2008-09	2010	2011	2012	2013
CUDA Compute Capability (CCC)	1.0	1.2	2.0	2.1	3.0	3.5
N (multiprocs.)	16	30	16	7	8	15
M (cores/multip.)	8	8	32	48	192	192
Number of cores	128	240	512	336	1536	2880

Hardware Resources and Peak Performance

Tesla card (commercial model)	M2075	M2090	K10	K20	K20X	
GPU generation	Fei	mi	Kepler			
GPU architecture	GF	L00	GK104	GK	L10	
CUDA Compute Capability (CCC)	2.	.0	3.0	3.5		
GPUs per graphics card	1	1	2	1	1	
Multiprocessors x (cores/multiproc.)	14 x 32	16 x 32	8 x 192 (x2)	13 x 192	14 x 192	
Total number of cores	448	512	1536 (x2)	2496	2688	
Multiprocessor type	S	Μ	SMX	SMX with parallelism a	dynamic and HyperQ	
Transistors manufacturing process	40 nm.	40 nm.	28 nm.	28 nm.	28 nm.	
GPU clock frequency (for graphics)	575 MHz	650 MHz	745 MHz	706 MHz	732 MHz	
Core clock frequency (for GPGPU)	1150 MHz	1300 MHz	745 MHz	706 MHz	732 MHz	
Number of single precision cores	448	512	1536 (x2)	2496	2688	
GFLOPS (peak single precision)	1030	1331	2288 (x2)	3520	3950	
Number of double precision cores	224	256	64 (x2)	832	896	
GFLOPS (peak double precision)	515	665	95 (x2)	1170	1310	
			Manuel Ui	aldon - Nvidia (CUDA Fellow	

Memory Features

Tesla card	M2075	M2090	K10	K20	K20X
32-bit register file / multiprocessor	32768	32768	65536	<mark>65536</mark>	<mark>65536</mark>
L1 cache + shared memory size	64 KB.	64 KB.	64 KB.	64 KB.	64 KB.
Width of 32 shared memory banks	32 bits	32 bits	64 bits	64 bits	64 bits
SRAM clock frequency (same as GPU)	575 MHz	650 MHz	745 MHz	706 MHz	732 MHz
L1 and shared memory bandwidth	73.6 GB/s.	83.2 GB/s.	190.7 GB/s	180.7 GB/s	187.3 GB/s
L2 cache size	768 KB.	768 KB.	768 KB.	1.25 MB.	1.5 MB.
L2 cache bandwidth (bytes per cycle)	384	384	512	1024	1024
L2 on atomic ops. (shared address)	1/9 per clk	1/9 per clk	1 per clk	1 per clk	1 per clk
L2 on atomic ops. (indep. address)	24 per clk	24 per clk	64 per clk	64 per clk	64 per clk
DRAM memory width	384 bits	384 bits	256 bits	320 bits	384 bits
DRAM memory clock (MHz)	2x 1500	2x 1850	2x 2500	2x 2600	2x 2600
DRAM bandwidth (GB/s, ECC off)	144	177	160 (x2)	208	250
DRAM generation	GDDR5	GDDR5	GDDR5	GDDR5	GDDR5
DRAM memory size in Gigabytes	6	6	4 (x2)	5	6

Fermi

Kepler GK110

From SM to SMX in Kepler

SM								
Instruction Cache								
Warp Scheduler Warp Scheduler								
Dis	spatch U	nit	Dis	patch Ur	vit			
				+				
	Registe	er File (3	2,768 x	32-bit)				
				LD/ST				
Core	Core	Core	Core	LD/ST				
Core	Corre	Corre	Core	LD/ST	SFU			
Core	Core	Core	Core	LD/ST				
Core	Core	Core	Core	LD/ST				
				LD/ST	SFU			
Core	Core	Core	Core	LD/ST				
				LD/ST				
Core	Core	Core	Core	LD/ST				
0		0	0	LD/ST	SFU			
Core	Core	Core	Core	LD/ST				
Core	Core	Core	Core	LD/ST				
				LD/ST	SFU			
Core	Core	Core	Core	LD/ST				
				LUISI				
Interconnect Network								
64 KB Shared Memory / L1 Cache								
Uniform Cache								
Tex		Tex	Tex		Гex			
Texture Cache								

									auuuu		ле								_
	Wa	rp Sch	eduler			W	arp Sche	duler		Warp Scheduler				Warp Scheduler					
Dis	patch Ur	iit	Dispatch	Unit	Dia	patch U	nit	Dispetch	Unit	Dia	patch Ur	nit	Dispatch	Unit	Die	spatch U	nit	Dispatch	Unit
	•		•			•		errinter	r Eile (ce e2c	- 22 h	ai+1	•					-	
			_					egistei	r File (00,000	× 32-0	,	_						
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Coro	Corp	DP Unit	Core	Core	Core	DP Unit	LDIST	SFL
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
ore	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFL
ore	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFL
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
ore	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFL
ore	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFL
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
Core	Core	Core	DP Unit	Core	Core	Core	DP Unit	LD/ST	SFU	Core	Core	Corp	DP Unit	Core	Core	Core	DP Unit	LDIST	SFU
6066	66666	50552	\$600,000	00000	555550	2002	64 64	KB Sh	irconne ared M	et Nété emory /	vork L1 Ca	che	000000	55555	8888	-2000	666666	500000	5000
								48 K	B Read	-Only (ache								
	Tex		Tex	:		Tex		Te>	¢		Tex		Tex	:		Tex		Te>	ł
	Tox		Тет			Tor		Tes			Tax					Tax			

Differences in Memory Hierarchy

Kepler Memory Hierarchy

New Data Cache

- Additional 48 Kbytes to expand L1 cache size
- Avoids the texture unit
- Allows a global address to be fetched and cached, using a pipeline different from that of L1/shared
- Flexible (does not require aligned accesses)
- Eliminates texture setup
- Managed automatically by compiler ("const_ restrict" indicates eligibility). Next slide shows an example.

How to use Data Cache

- Annotate eligible kernel parameters with "const __restrict"
- Compiler will automatically map loads to use read-only data cache path.

GPUDirect now supports RDMA [Remote Direct Memory Access]

 This allows direct transfers between GPUs and network devices, for reducing the penalty on the extraordinary bandwidth of GDDR5 video memory

Relaxing Software Constraints for Massive Parallelism

GPU generation	Fei	rmi		Kepler		
Hardware model	GF100	GF10)4	GK104	GK110	
CUDA Compute Capability (CCC)	2.0	2.1		3.0	3.5	
Number of threads / warp (warp size)	32		32	32	32	
Max. number of warps / Multiprocessor	48	ſ	48	64	64	
Max. number of blocks / Multiprocessor	8		8	16	16	
Max. number of threads / Block	1024	1	024	1024	1024	
Max. number of threads / Multiprocessor	1536	1	536	2048	2048	

Crucial enhancement for Hyper-Q (see later)

Major Hardware Enhancements

Large scale computations

GPU generation	Fermi		Кер	oler			
Hardware model	GF100	GF104	04 GK104 GK110		Limitation	Impact	
Compute Capability (CCC)	2.0	2.1	3.0	3.5			
Max. grid size (on X dimension)	2^16-1	2^16-1	2^32-1	2^32-1	Software	Problem size	

New architectural features

GPU generation	Fermi		Kep	oler			
Hardware model	GF100 GF104 GK104 GK110		Limitation	Impact			
Compute Capability (CCC)	2.0	2.1	3.0	3.5			
Dynamic Parallelism	No	No	No	Yes	Hardware	Problem structure	
Hyper-Q	No	No	No	Yes	Hardware	Thread scheduling	

Dynamic Parallelism

- The ability to launch new grids from the GPU:
 - Dynamically: Based on run-time data
 - Simultaneously: From multiple threads at once
 - Independently: Each thread can launch a different grid

Dynamic Parallelism

The pre-Kepler GPU is a co-processor

The Kepler GPU is autonomous: Dynamic parallelism

Now programs run faster and are expressed in a more natural way.

Workload Balance

- Plenty of factors, unpredictable at run time, may transform workload balancing among multiprocessors into an impossible goal
- See below the duration of 8 warps on an SM of the G80:

SM Warp Vis - test.bin.gz
<u>F</u> ile <u>V</u> iew <u>H</u> elp
ଲୋଲାର୍ପ୍ୟାୟ୍ୟ୍ୟselection: RESET ZOOM Iside: SHOW
0 time (cycles)
0_0 9
0_1 0
0_2 0
0_3 0
1_0 9
1.2 0
1_3 0
2_0 9
2_1 0
2.2 0
2.3 0
3_0 9
3_1 0
3.2 0
3_3 0

57

Hyper-Q

- In Fermi, several CPU processes can send thread blocks to the same GPU, but a kernel cannot start its execution until the previous one has finished
- In Kepler, we can execute simultaneously up to 32 kernels launched from different:

– MPI processes, CPU threads (POSIX threads) or CUDA streams

 This increments the % of temporal occupancy on the GPU

KEPLER 32 Simultaneous MPI Tasks

Without Hyper-Q

With Hyper-Q

Six Ways to Improve Code on Kepler

Dynamic Work Generation

Coarse grid

Higher performance, lower accuracy

Fine grid

Lower performance, higher accuracy

Dynamic grid

Target performance where accuracy is required

Parallelism based on Level of Detail

CUDA until 2012: • The CPU launches kernels regularly. • All pixels are treated the same. Computational power allocated to regions of interest

CUDA on Kepler: • The GPU launches a different number of kernels/blocks for each computational region.

Grid Management Unit

Fermi

Kepler GK110

Software and Hardware Queues

Software and Hardware Queues

Instruction Issue and Execution

	SM-SMX fetch & issue (front-end)	SM-SMX execution (back-end)
Fermi (GF100)	Can issue 2 warps, 1 instruction each. Total: 2 warps per cycle . Active warps: 48 on each SM, chosen from up to 8 blocks. In GTX480: 15 * 48 = 720 active warps.	32 cores (1 warp) for "int" and "float". 16 cores for "double" (1/2 warp). 16 load/store units (1/2 warp). 4 special function units (1/8 warp). A total of up to 4 concurrent warps .
Kepler (GK110)	Can issue 4 warps, 2 instructions each. Total: 8 warps per cycle . Active warps: 64 on each SMX, chosen from up to 16 blocks. In K20: 13 * 64 = 832 active warps.	 192 cores (6 warps) for "int" and "float". 64 cores for "double" (2 warps). 32 load/store units (1 warp). 32 special function units (1 warp). A total of up to 10 concurrent warps.

Data-Dependent Parallelism

- The simplest possible parallel program:
 - Loops are parallelizable
 - Workload is known at compile-time

```
for i = 1 to N
for j = 1 to M
convolution(i,j);
```

- The simplest impossible program:
 - Workload is unknown at compile-time.
 - The challenge is data partitioning

```
for i = 1 to N
for j = 1 to x[i]
    convolution(i,j);
```

Data-Dependent Parallelism

• Kepler version:

// Launch N blocks of 1 thread
// on GPU (rows start in parallel)
convolution <<< N, 1 >>> (x);

• Up to 24 nested loops supported in CUDA 5.0

Recursive Parallel Algorithms prior to Kepler

- Early CUDA programming model did not support recursion at all
- CUDA started to support recursive functions in version 3.1, but they can easily crash if the size of the arguments is large
- A user-defined stack in global memory can be employed instead, but at the cost of a significant performance penalty
- An efficient solution is possible using dynamic parallelism

Parallel Recursion: Quicksort

 Typical divide-and-conquer algorithm hard to do on Fermi

Quicksort

Version for Kepler

Version for Fermi

```
global void qsort(int *data, int 1, int r)
                                               global void gsort(int *data, int 1, int r)
{
                                               {
  int pivot = data[0];
                                                 int pivot = data[0];
 int *lptr = data+l, *rptr = data+r;
                                                 int *lptr = data+l, *rptr = data+r;
 // Partition data around pivot value
                                                 // Partition data around pivot value
                                                 partition(data, 1, r, lptr, rptr, pivot);
 partition(data, l, r, lptr, rptr, pivot);
                                                 // Use streams this time for the recursion
                                                 cudaStream t s1, s2;
                                                 cudaStreamCreateWithFlags(&s1, ...);
 // Launch next stage recursively
                                                 cudaStreamCreateWithFlags(&s2, ...);
  int rx = rptr-data; lx = lptr-data;
                                                 int rx = rptr-data; lx = lptr-data;
 if (1 < rx)
                                                 if (1 < rx)
    gsort<<<...>>>(data,1,rx);
                                                   qsort <<<..., 0, s1 >>> (data, 1, rx);
  if (r > lx)
                                                 if (r > lx)
    qsort<<<...>>>(data,lx,r);
                                                   qsort <<<..., 0, s2 >>> (data, lx, r);
                                               }
     left- and right-hand sorts are serialized
                                                  Use separate streams to achieve concurrency
```
Quicksort Results

Quicksort

Problem Size (Million of Elements)

Maxwell (2nd generation) Released in 2014

Material by Mark Harris (NVIDIA) and others

Energy Efficiency

Performance per Watt GTX 680: Kepler GTX 980: Maxwell

New Features

GPU	GeForce GTX 680 (Kepler)	GeForce GTX 980 (Maxwell)		
SMs	8	16		
CUDA Cores	1536	2048		
Base Clock	1006 MHz	1126 MHz		
GPU Boost Clock	1058 MHz	1216 MHz		
GFLOPs	3090	4612 ¹		
Texture Units	128	128		
Texel fill-rate	128.8 Gigatexels/sec	144.1 Gigatexels/sec		
Memory Clock	6000 MHz	7000 MHz		
Memory Bandwidth	192 GB/sec	224 GB/sec		
ROPs	32	64		
L2 Cache Size	512KB	2048KB		
TDP	195 Watts	165 Watts		
Transistors	3.54 billion	5.2 billion		
Die Size	294 mm ²	398 mm²		
Manufacturing Process	28-nm	28-nm		

New Features

- Improved instruction scheduling
 - Four warp schedulers per SMM, no shared core functional units
- Increased occupancy

 Maximum active blocks per SMM has doubled
- Larger dedicated shared memory – L1 is now with texture cache
- Faster shared memory atomics
- Broader support for dynamic parallelism

Graphics

NEXT GENERATION GRAPHICS

Enabling New Algorithms and Superior Image Quality

- Voxel Global Illumination
- Multi Projection
- Conservative Raster
- Shader : Raster Ordered View
- Tiled Resources
- Advanced Sampling

Pascal

Released in 2016

Key New Features

- Smaller manufacturing process
 16 nm vs. 28 nm of previous generations
- Much faster memory
- Higher clock frequency – 1607 MHz vs. 1216 MHz
- Dynamic load balancing including graphics pipeline
- Page Migration Engine

NVIDIA DGX-1

NVIDIA DGX-1 WORLD'S FIRST DEEP LEARNING SUPERCOMPUTER

Engineered for deep learning | 170TF FP16 | 8x Tesla P100 NVLink hybrid cube mesh | Accelerates major Al frameworks

"250 SERVERS IN-A-BOX"

	DUAL XEON	DGX-1
FLOPS (CPU + GPU)	3 TF	170 TF
AGGREGATE NODE BW	76 GB/ s	768 GB/ s
ALEXNET TRAIN TIME	150 HOURS	2 HOURS
TRAIN IN 2 HOURS	>250 NODES*	1 NODE

*Caffe Training on Multi-node Distributed-memory Systems Based on Intel® Xeon® Processor E5 Family (extrapolated) Gennady Fedorov (Intel)'s picture Submitted by Gennady Fedorov (Intel), Vadim P. (Intel) on October 29, 2015 https://software.intel.com/en-us/articles/caffe-training-on-multi-node-distributed-memory-systems-based-on-intel-xeon-processor-e5

AMD RX Vega

- Will be released soon
- 8/16 GB high bandwidth memory (HBM2)
- 14 nm production process
- 12 TFLOPS expected
 - Compared to 11 TFLOPS of NVIDIA GTX Titan X
- 4096 cores

CUDA 4.0

CUDA 4.0: Highlights

© NV/DIA Corporation 2011

CUDA 4.0 Release

- March 2011
- Independent software release
- Unlike:
 - CUDA 1.0 released with G80/G9x in 2007 (nearly a year later than the hardware)
 - CUDA 2.0 released for GT200 in 2008
 - CUDA 3.0 released for Fermi in 2009

CUDA 4.0 - Application Porting

- Unified Virtual Addressing
- Faster Multi-GPU Programming – NVIDIA GPUDirect 2.0
- Easier Parallel Programming in C++

 Thrust

Easier Porting of Existing Applications

Share GPUs across multiple threads

- Easier porting of multithreaded apps
 - pthreads / OpenMP threads share a GPU
- Launch concurrent kernels from different host threads
 - Eliminates context switching overhead
- New, simple context management APIs
 - Old context migration APIs still supported

Single thread access to all GPUs

- Each host thread can now access all GPUs in the system
 - One thread per GPU limitation removed
- Easier than ever for applications to take advantage of multi-GPU
 - Single-threaded applications can now benefit from multiple GPUs
 - Easily coordinate work across multiple GPUs

No-copy Pinning of System Memory

- Reduce system memory usage and CPU memcpy() overhead
 - Easier to add CUDA acceleration to existing applications
 - Just register malloc'd system memory for async operations and then call cudaMemcpy() as usual

Before No-copy Pinning	With No-copy Pinning
Extra allocation and extra copy required	Just register and go!
malloc(a)	
cudaMallocHost(b)	
memcpy(b, a)	cudaHostRegister(a)
cudaMemcpy() to GPU, launch kernels	, cudaMemcpy() from GPU
memcpy(a, b)	
cudaFreeHost(b)	cudaHostUnregister(a)

New CUDA C/C++ Language Features

• C++ new/delete

– Dynamic memory management

C++ virtual functions

 Easier porting of existing applications

- Inline PTX
 - Enables assembly-level optimization

GPU-Accelerated Image Processing

- NVIDIA Performance Primitives (NPP) library
 - 10x to 36x faster image processing
 - Initial focus on imaging and video related primitives
 - Data exchange and initialization
 - Color conversion
 - Threshold and compare operations
 - Statistics
 - Filter functions
 - Geometry transforms
 - Arithmetic and logical operations
 - JPEG

Layered Textures - Faster Image Processing

- Ideal for processing multiple textures with same size/format
 - Large sizes supported on Tesla T20 (Fermi) GPUs (up to 16k x 16k x 2k)
 - e.g. Medical Imaging, Terrain Rendering (flight simulators), etc.
- Faster Performance
 - Reduced CPU overhead: single binding for entire texture array
 - Faster than 3D Textures: more efficient filter caching
 - Fast interop with OpenGL / Direct3D for each layer
 - No need to create/manage a texture atlas
- No sampling artifacts
 - Linear/Bilinear filtering applied only within a layer

NVIDIA GPUDirect:Towards Eliminating the CPU Bottleneck

Before GPUDirect 2.0

Two copies required

GPUDirect 2.0: Peer-to-Peer Communication

Only one copy required

GPUDirect 2.0: Peer-to-Peer Communication

- Direct communication between GPUs
 - Faster no system memory copy overhead
 - More convenient multi-GPU programming
- Direct Transfers
 - Copy from GPU0 memory to GPU1 memory
 - Works transparently with UVA
- Direct Access
 - GPU0 reads or writes GPU1 memory (load/store)
- Supported on Tesla 20-series and other Fermi GPUs
 - 64-bit applications on Linux and Windows

Unified Virtual Addressing

No UVA: Multiple
 Memory Spaces

UVA: Single Address
 Space

Unified Virtual Addressing

- One address space for all CPU and GPU memory
 - Determine physical memory location from pointer value
 - Enables libraries to simplify their interfaces (e.g. cudaMemcpy)
- Supported on Tesla 20-series and other Fermi GPUs

Before UVA	With UVA
Separate options for each permutation	One function handles all cases
cudaMemcpyHostToHost cudaMemcpyHostToDevice cudaMemcpyDeviceToHost cudaMemcpyDeviceToDevice	cudaMemcpyDefault (data location becomes an implementation detail)

New Developer Tools

- Auto Performance Analysis: Visual Profiler
 - Identify limiting factor
 - Analyze instruction throughput
 - Analyze memory throughput
 - Analyze kernel occupancy
- C++ Debugging

 cuda-gdb for MacOS
- GPU Binary Disassembler

CUDA 5.0

Mark Harris Chief Technologist, GPU Computing

Open Source LLVM Compiler

 Provides ability for anyone to add CUDA to new languages and processors

NVIDIA Nsight, Eclipse Edition

Colleg - Fedman, Jon, Perdman, an . Cider						
Die 201 Steve Belletze Mergels Search Ben Brejett gebeiten Belge						
The = 0+ 0+ 9+ 4+ 0+ 0+ 1+					0.61810	ŀ.,
Blong B	T He Variables 10 Dats	Alafurration II	As Description		E . T . C	
* Effertinge (s/C++ #gglication)	me Quite	wp/				15
* Westerford Mer. (2) [device: 8] (Sequended : Step]	THE DEPOSIT	1 B design	I masses to	and the second second	TROCK Place	12
* P CMDA Thread (0.3, 0.06m/c4/0.3, 4)	CONTRACT OF	R. CONTRACT	10072	111000.111	a section.	12
B contait individuant() at find max cost 14 lick173all	P (231.0.0	-Burning	WWD718480	3 findeau ou	113(00977316)	15
OLDA Thread (LLA) Block (LLA)	P 025,8.0	Maring	Wep/TLane1	2 feelinas ou tra staventa tel		1.4
 Billiock (1) (1) (b) (cross Active Terrently Billiock (1) (1) (b) (cross Active Terrently 	P (726.8.0)	huring	Wwip71,ane2	il federation	11369917316	
a new control on all one second to share	A mress	1 Brandwich	Theorem 71 agree 3	1.0 Conditions, 181	TITLE AND	ł.,
il fintmates H		- 0	2 Outline IR II	recountly as sed	aters II - O	
<pre>xinit2 i vestElement; xinit2 i 1 = firstElementIndex + threadsChow1;</pre>		1	148787			
			fearse	TELL (080) 2.01	TLABORAS	
nevillement + arise[1];			222.843	10	8.	
f incontineers a nation			10.91	16276272	14730372	
sus - nextsident; saalubis - 1;	D.		#F #2	4153123	2024586	
			10.83	9.02	8193	
investment through the same			100 Mar.	31-0-104	CITIZATIA.	
throuthatin [throutly.s] = ansides;			107.84	TEALINE	NO485214	
and an all and a second			mar			
			ill ye	\$1708	81718	
			10.99	8	8	
Ruming kingle-threaded boot code			10.111	8387991	14778246	
Max mumber in Bull00000 with index 2723000			BE \$11	0		
Running milti-threaded sevice code			and and	1041579	104574	
			William .	4	1	
20						
1. 例 /						
14-1-						
1						
grant of perchaptered bearing pro-						

CUDA-Aware Editor

- Automated CPU to GPU code refactoring
- Semantic highlighting of CUDA code
- Integrated code samples & docs

Nsight Debugger

- Simultaneously debug of CPU and GPU
- Inspect variables across CUDA threads
- Use breakpoints & single-step debugging

Nsight Profiler

- Quickly identifies performance issues
- Integrated expert system
- Automated analysis
- Source line correlation

For Linux and Mac OS

CUDA 4: Whole-Program Compilation & Linking

CUDA 5: GPU Library Object Linking

- Separate compilation allows building independent object files
- CUDA 5 can link multiple object files into one program
- Can also combine object files into static libraries
 - Link and externally call *device* code

CUDA 5: GPU Library Object Linking

- Enables 3rd party closed-source device libraries
- User-defined device callback functions

CUDA 5.0: Run-time Syntax and Semantics

CUDA 6.0

Manuel Ujaldon Nvidia CUDA Fellow Computer Architecture Department University of Malaga (Spain)

CUDA 6 Highlights

- Unified Memory:
 - CPU and GPU can share data without much programming effort
- Extended Library Interface (XT) and Drop-in Libraries:
 - Libraries much easier to use
- GPUDirect RDMA:
 - A key achievement in multi-GPU environments
- Developer tools:
 - Visual Profiler enhanced with:
 - Side-by-side source and disassembly view showing.
 - New analysis passes (per SM activity level), generates a kernel analysis report.
- Multi-Process Server (MPS) support in nvprof and cudamemcheck
- Nsight Eclipse Edition supports remote development (x86 and ARM)
CUDA 6.0: Performance Improvements in Key Use Cases

- Kernel launch
- Repeated launch of the same set of kernels
- cudaDeviceSynchronize()
- Back-to-back grids in a stream

Unified Memory

Unified Memory Contributions

- Creates pool of managed memory between CPU and GPU
- Simpler programming and memory model:
 - Single pointer to data, accessible anywhere
 - Eliminate need for cudaMemcpy(), use cudaMallocManaged()
 - No need for deep copies
- Performance through data locality:
 - Migrate data to accessing processor
 - Guarantee global coherency
 - Still allows cudaMemcpyAsync() hand tuning

Memory Types

	Zero-Copy (pinned memory)	Unified Virtual Addressing	Unified Memory
CUDA call	cudaMallocHost(&A, 4);	cudaMalloc(&A, 4);	cudaMallocManaged(&A, 4);
Allocation fixed in	Main memory (DDR3)	Video memory (GDDR5)	Both
Local access for	CPU	Home GPU	CPU and home GPU
PIC-e access for	All GPUs	Other GPUs	Other GPUs
Other features	Avoid swapping to disk	No CPU access	On access CPU/GPU migration
Coherency	At all times	Between GPUs	Only at launch & sync.
Full support in	CUDA 2.2	CUDA 1.0	CUDA 6.0

Additions to the CUDA API

- New call: cudaMallocManaged()
 - Drop-in replacement for cudaMalloc() allocates managed memory
 - Returns pointer accessible from both Host and Device
- New call: cudaStreamAttachMemAsync()
 - Manages concurrency in multi-threaded CPU applications
- New keyword: <u>managed</u>
 - Declares global-scope migratable device variable
 - Symbol accessible from both GPU and CPU code

Code without Unified Memory

sizeof(g text));

Code with Unified Memory

CPU memory

GPU memory

```
void launch(dataElem *elem) {
    kernel<<< ... >>>(elem);
```

- What remains the same:
 - Data movement
 - GPU accesses a local copy of text
- What has changed:
 - Programmer sees a single pointer
 - CPU and GPU both reference the same object
 - There is coherence

CUDA 7.0

By Mark Harris NVIDIA

New Features: C++11

- C++11 features on device including:
 - auto,
 - lambda,
 - variadic templates,
 - rvalue references,
 - range-based for loops

Example

#include <initializer_list>
#include <iostream>
#include <cstring>

```
// Generic parallel find routine. Threads search through the
// array in parallel. A thread returns the index of the
// first value it finds that satisfies predicate p_{,} or -1.
template <typename T, typename Predicate>
 device int find(T *data, int n, Predicate p)
{
    for (int i = blockIdx.x * blockDim.x + threadIdx.x;
         i < n;
         i += blockDim.x * gridDim.x)
    {
        if (p(data[i])) return i;
    }
    return -1;
```

```
// Use find with a lambda function that searches for x, y, z
// or w. Note the use of range-based for loop and
// initializer_list inside the functor, and auto means we
// don't have to know the type of the lambda or the array
__global___
void xyzw_frequency(unsigned int *count, char *data, int n)
{
```

```
auto match_xyzw = [](char c) {
   const char letters[] = { 'x','y','z','w' };
   for (const auto x : letters)
      if (c == x) return true;
   return false;
};
int i = find(data, n, match_xyzw);
```

```
if (i >= 0) atomicAdd(count, 1);
```

}

```
int main(void)
{
    char text[] = "zebra xylophone wax";
    char *d text;
    cudaMalloc(&d text, sizeof(text));
    cudaMemcpy(d text, text, sizeof(text),cudaMemcpyHostToDevice);
   unsigned int *d count;
    cudaMalloc(&d count, sizeof(unsigned int));
    cudaMemset(d count, 0, sizeof(unsigned int));
   xyzw frequency<<<1, 64>>>(d count, d text, strlen(text));
   unsigned int count;
    cudaMemcpy(&count, d count, sizeof(unsigned int), cudaMemcpyDeviceToHost);
    std::cout << count << " instances of 'x', 'y', 'z', 'w'"</pre>
              << "in " << text << std::endl;
   cudaFree(d count);
    cudaFree(d text);
```

```
return 0;
```

Other Features

- Thrust version 1.8
 - Thrust algorithms can now be invoked from the device
- cuSOLVER, cuFFT
 - cuSolver library is a high-level package based on the cuBLAS and cuSPARSE libraries
- Runtime compilation
 - No need to generate multiple optimized kernels at compile time

CUDA 8.0

By Milind Kukanur NVIDIA

What's New

Unified Memory

 Oversubscribe GPU memory, up to system memory size

```
void foo() {
    // Allocate 64 GB
    char *data;
    size_t size = 64*1024*1024*1024;
    cudaMallocManaged(&data, size);
```

Unified Memory

```
__global__ void mykernel(char *data) {
    data[1] = `g';
}
```

```
void foo() {
    char *data;
    cudaMallocManaged(&data, 2);
```

```
mykernel<<<...>>>(data);
// no synchronize here
data[0] = `c';
```

cudaFree(data);

}