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Outline

• Introduction to OpenMP

• Hardware developments

• Developments in CUDA
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OpenMP

Based on tutorial by Joel Yliluoma
http://bisqwit.iki.fi/story/howto/openmp/
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OpenMP in C++

• OpenMP consists of a set of compiler 

#pragmas that control how the program 

works. 

• The pragmas are designed so that even if 

the compiler does not support them, the 

program will still yield correct behavior, but 

without any parallelism.
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Simple Example

• Multiple threads

#include <cmath>

int main()

{

const int size = 256;

double sinTable[size];

#pragma omp parallel for

for(int n=0; n<size; ++n)

sinTable[n] = std::sin(2 * M_PI * n / size);

// the table is now initialized

}
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Simple Example

• Single thread, SIMD

#include <cmath>

int main()

{

const int size = 256;

double sinTable[size];

#pragma omp simd

for(int n=0; n<size; ++n)

sinTable[n] = std::sin(2 * M_PI * n / size);

// the table is now initialized

}
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Simple Example

• Multiple threads on another device

#include <cmath>

int main()

{

const int size = 256;

double sinTable[size];

#pragma omp target teams distribute parallel for 
map(from:sinTable[0:256])

for(int n=0; n<size; ++n)

sinTable[n] = std::sin(2 * M_PI * n / size);

// the table is now initialized

}
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Syntax

• All OpenMP constructs start with #pragma 
omp

• The parallel construct 

– Creates a team of N threads (N determined at 
runtime) all of which execute statement or next 
block

– All variables declared within block become local 
variables to each thread

– Variables shared from the context are handled 
transparently, sometimes by passing a reference 
and sometimes by using register variables
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if

extern int parallelism_enabled;

#pragma omp parallel for if(parallelism_enabled)

for(int c=0; c<n; ++c)

handle(c);
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for

#pragma omp for

for(int n=0; n<10; ++n)

{

printf(" %d", n);

}

printf(".\n");

• Output may appear in arbitrary order
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Creating a New Team

#pragma omp parallel

{

#pragma omp for

for(int n=0; n<10; ++n) printf(" %d", n);

}

printf(".\n");

• Or, equivalently

#pragma omp parallel for

for(int n=0; n<10; ++n) printf(" %d", n);

printf(".\n");
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Specifying Number of Threads

#pragma omp parallel num_threads(3)

{

// This code will be executed by three threads.

// Chunks of this loop will be divided amongst

// the (three) threads of the current team.

#pragma omp for

for(int n=0; n<10; ++n) printf(" %d", n);

}
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parallel, for, parallel for

The difference between parallel, parallel for and for is 
as follows:

• A team is the group of threads that execute currently.
– At the program beginning, the team consists of a single thread.

– A parallel construct splits the current thread into a new team 
of threads for the duration of the next block/statement, after 
which the team merges back into one.

• for divides the work of the for-loop among the threads of the 
current team. It does not create threads.

• parallel for is a shorthand for two commands at once. 
Parallel creates a new team, and for splits that team to 
handle different portions of the loop.

• If your program never contains a parallel construct, there is 
never more than one thread.
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Scheduling

• Each thread independently decides which chunk of the 
loop it will process

#pragma omp for schedule(static)

for(int n=0; n<10; ++n) printf(" %d", n);

printf(".\n");

• In dynamic schedule, each thread asks OpenMP runtime 
library for an iteration number,  then handles it and asks 
for next.
– Useful when different iterations take different amounts of time to 

execute

#pragma omp for schedule(dynamic)

for(int n=0; n<10; ++n) printf(" %d", n);

printf(".\n");
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Scheduling

• Each thread asks for iteration number, 

executes 3 iterations, then asks for 

another
#pragma omp for schedule(dynamic, 3)

for(int n=0; n<10; ++n) printf(" %d", n);

printf(".\n");
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ordered

#pragma omp for ordered schedule(dynamic)

for(int n=0; n<100; ++n)

{

files[n].compress();

#pragma omp ordered

send(files[n]);

}

16



reduction

int sum=0;

#pragma omp parallel for reduction(+:sum)

for(int n=0; n<1000; ++n) 

sum += table[n];
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Sections

#pragma omp parallel sections

{

{ Work1(); }

#pragma omp section

{ Work2();

Work3(); }

#pragma omp section

{ Work4(); }

}
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#pragma omp parallel // starts a new team

{

//Work0(); // this function would be run by all threads.

#pragma omp sections // divides the team into sections

{ 

// everything herein is run only once.

{ Work1(); }

#pragma omp section

{ Work2();

Work3(); }

#pragma omp section

{ Work4(); }

}

//Work5(); // this function would be run by all threads.

}

19



simd

• SIMD means that multiple calculations will be performed 

simultaneously using special instructions that perform 

the same calculation to multiple values at once. 

• This is often more efficient than regular instructions that 

operate on single data values. This is also sometimes 

called vector parallelism or vector operations.

float a[8], b[8];

...

#pragma omp simd

for(int n=0; n<8; ++n) a[n] += b[n];

20



simd

#pragma omp declare simd aligned(a,b:16)

void add_arrays(float *__restrict__ a, float 

*__restrict__ b)

{

#pragma omp simd aligned(a,b:16)

for(int n=0; n<8; ++n) a[n] += b[n];

}

Reduction:

int sum=0;

#pragma omp simd reduction(+:sum)

for(int n=0; n<1000; ++n) sum += table[n];
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aligned

#pragma omp declare simd aligned(a,b:16)

void add_arrays(float *__restrict__ a, float 

*__restrict__ b)

{

#pragma omp simd aligned(a,b:16)

for(int n=0; n<8; ++n) a[n] += b[n];

}

• Tells compiler that each element is aligned to the given number of bytes

• Increases performance
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declare target

#pragma omp declare target

int x;

void murmur() { x+=5; }

#pragma omp end declare target

• This creates one or more versions of "x" and "murmur". A set that exists 

on the host computer, and also a separate set that exists and can be run 

on a device.

• These two functions and variables are separate, and may contain values 

separate from each others.
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target, target data

• The target data construct creates a device data environment.

• The target construct executes the construct on a device (and also has target data 
features).

• These two constructs are identical in effect:

#pragma omp target // device()... map()... if()...

{

<<statements...>>

}

.....

#pragma omp target data // device()... map()... if()...

{

#pragma omp target

{

<<statements...>>

}

}
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critical
• Restricts the execution of the associated statement / block to a single thread at time

• May optionally contain a global name that identifies the type of the critical construct. 
No two threads can execute a critical construct of the same name at the same time.

• Below, only one of the critical sections named "dataupdate" may be executed at any 
given time, and only one thread may be executing it at that time. I.e. the functions 
"reorganize" and "reorganize_again" cannot be invoked at the same time, and two calls 
to the function cannot be active at the same time

#pragma omp critical(dataupdate)

{

datastructure.reorganize();

}

...

#pragma omp critical(dataupdate)

{

datastructure.reorganize_again();

}
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private, firstprivate, shared

int a, b=0;

#pragma omp parallel for private(a) shared(b)

for(a=0; a<50; ++a)

{

#pragma omp atomic

b += a;

}
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private, firstprivate, shared

#include <string>

#include <iostream>

int main()

{

std::string a = "x", b = "y";

int c = 3;

#pragma omp parallel private(a,c) shared(b) 
num_threads(2)

{

a += "k";

c += 7;

std::cout << "A becomes (" << a << "), 
b is (" << b << ")\n";

}

}

• Outputs “k” not “xk”, c is uninitialized 
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private, firstprivate, shared

#include <string>

#include <iostream>

int main()

{

std::string a = "x", b = "y";

int c = 3;

#pragma omp parallel firstprivate(a,c) shared(b) 
num_threads(2)

{

a += "k";

c += 7;

std::cout << "A becomes (" << a << "), 
b is (" << b << ")\n";

}

}

• Outputs “xk”
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Barriers

#pragma omp parallel

{

/* All threads execute this. */

SomeCode();

#pragma omp barrier

/* All threads execute this, but not before

* all threads have finished executing 
SomeCode().

*/

SomeMoreCode();

}
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#pragma omp parallel

{

#pragma omp for

for(int n=0; n<10; ++n) Work();

// This line is not reached before the for-loop is completely finished

SomeMoreCode();

}

// This line is reached only after all threads from

// the previous parallel block are finished.

CodeContinues();

#pragma omp parallel

{

#pragma omp for nowait

for(int n=0; n<10; ++n) Work();

// This line may be reached while some threads are still executing for-loop.

SomeMoreCode();

}

// This line is reached only after all threads from

// the previous parallel block are finished.

CodeContinues();
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Nested Loops

#pragma omp parallel for

for(int y=0; y<25; ++y)

{

#pragma omp parallel for

for(int x=0; x<80; ++x)

{

tick(x,y);

}

}

• Code above fails, inner loop runs is sequence
#pragma omp parallel for collapse(2)

for(int y=0; y<25; ++y)

for(int x=0; x<80; ++x)

{

tick(x,y);

}
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The Fermi Architecture

Selected notes from 

presentation by:

Michael C. Shebanow
Principal Research Scientist, 

NV Research

mshebanow@nvidia.com

(2010)
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Much Better Compute
• Programmability

– C++ Support

– Exceptions/Debug support

• Performance
– Dual issue SMs

– L1 cache

– Larger Shared Memory

– Much better DP math

– Much better atomic support

• Reliability: ECC

GT200 GF100 Benefit

L1 Texture 

Cache (per 

quad)

12 KB 12 KB Fast texture 

filtering

Dedicated 

L1 LD/ST 

Cache

X 16 or 48 KB Efficient 

physics and

ray tracing

Total 

Shared 

Memory

16KB 16 or 48 KB More data reuse

among threads

L2 Cache 256KB

(TEX read 

only)

768 KB

(all clients 

read/write)

Greater texture 

coverage, 

robust compute 

performance

Double

Precision 

Throughput

30 

FMAs/clock

256 

FMAs/clock

Much higher 

throughputs for 

Scientific codes
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Instruction Set Architecture

• Enables C++ : virtual functions, 

new/delete, try/catch

• Unified load/store addressing

• 64-bit addressing for large 

problems

• Optimized for CUDA C, OpenCL

& Direct Compute 

– Direct Compute is Microsoft’s 

general-purpose computing on GPU 

API 

• Enables system call functionality 

– stdio.h, etc.
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Local

Shared

Global

GlobalLocal Shared

Non-unified Address Space

Unified Address Space

0 32-bit

0 40-bit

*p_local

*p_shared

*p_global

*p

Unified Load/Store Addressing
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Instruction Issue and Control Flow 

• Decouple internal execution resources

– Deliver peak IPC on branchy / int-heavy / LD-ST - heavy codes

• Dual issue pipelines select two warps to issue

Instruction Dispatch Unit

Warp Scheduler

Warp 8 instruction 11 Warp 9 instruction 11

Warp 2 instruction 42 Warp 3 instruction 33

Warp 14 instruction 95 Warp 15 instruction 95

Instruction Dispatch Unit

Warp Scheduler

Warp 8 instruction 12 Warp 9 instruction 12

Warp 14 instruction 96 Warp 3 instruction 34

Warp 2 instruction 43 Warp 15 instruction 96

ti
m

e
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Caches

• Configurable L1 cache per SM

– 16KB L1$ / 48KB Shared 
Memory

– 48KB L1$ / 16KB Shared 
Memory

• Shared 768KB L2 cache

• Compute motivation:

– Caching captures locality, 
amplifies bandwidth

– Caching more effective than 
Shared Memory for irregular or 
unpredictable access

• Ray tracing, sparse matrix 
multiplication, physics kernels …

– Caching helps latency sensitive 
cases

Register File

DRAM

Thread

Register File

DRAM

Thread

L1 Cache / Shared Memory

L2 Cache

Tesla Memory Hiearchy

S
h

a
re

d
 

M
e

m
o

ry

Fermi Memory Hiearchy
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GigaThread Hardware Thread Scheduler

• Hierarchically manages tens of 

thousands of simultaneously 

active threads

• 10x faster 

context 

switching 

on Fermi

• Concurrent 

kernel execution
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GigaThread Streaming Data Transfer Engine

• Dual DMA engines

• Simultaneous CPUGPU

and GPUCPU data 

transfer

• Fully overlapped with 

CPU/GPU processing
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Fermi runs independent kernels in parallel

Concurrent Kernel Execution + Faster Context Switch

Serial Kernel Execution Parallel Kernel Execution

T
im

e

Kernel 

1

Kernel 

1

Kernel 2

Kernel 2 Kernel 3

Kernel 3

K

er

4
ne

l
Kernel 5

Kernel 5

Kernel 

4

Kernel 2

Kernel 2



Inside Kepler
Manuel Ujaldon

Nvidia CUDA Fellow

Computer Architecture Department

University of Malaga (Spain)

Modified by P. Mordohai
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Summary of Features

• Released in 2012

• Architecture: Between 7 and 15 multiprocessors 
SMX, endowed with 192 cores each.

• Arithmetic: More than 1 TeraFLOP in double 
precision (64 bits IEEE-754 floating-point format).

– Specific values depend on the clock frequency for 
each model (usually, more on GeForces, less on 
Teslas).

• Major innovations in core design:

– Dynamic parallelism

– Thread scheduling (Hyper-Q)
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How the Architecture Scales Up
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Hardware Resources and Peak Performance
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Memory Features
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Fermi

46



Kepler GK110
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From SM to SMX in Kepler
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Differences in Memory Hierarchy
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New Data Cache

• Additional 48 Kbytes to expand L1 cache size

• Avoids the texture unit

• Allows a global address to be fetched and 
cached, using a pipeline different from that of 
L1/shared

• Flexible (does not require aligned accesses)

• Eliminates texture setup

• Managed automatically by compiler ("const__ 
restrict“ indicates eligibility). Next slide shows 
an example.
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How to use Data Cache

• Annotate eligible kernel parameters with "const __restrict"

• Compiler will automatically map loads to use read-only data cache 
path.

__global__ void saxpy(float x, float y,

const float * __restrict input,

float * output)

{

size_t offset = threadIdx.x +

(blockIdx.x * blockDim.x);

// Compiler will automatically use cache for "input"

output[offset] = (input[offset] * x) + y;

}
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GPUDirect now supports RDMA

[Remote Direct Memory Access]

• This allows direct transfers between GPUs and network 

devices, for reducing the penalty on the extraordinary 

bandwidth of GDDR5 video memory
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Relaxing Software Constraints for 

Massive Parallelism
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Major Hardware Enhancements

• Large scale computations

• New architectural features
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Dynamic Parallelism

• The ability to launch new grids from the GPU:

– Dynamically: Based on run-time data

– Simultaneously: From multiple threads at once

– Independently: Each thread can launch a different grid
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Dynamic Parallelism
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Workload Balance

• Plenty of factors, unpredictable at run time, may 

transform workload balancing among 

multiprocessors into an impossible goal

• See below the duration of 8 warps on an SM of 

the G80:
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Hyper-Q
• In Fermi, several CPU processes can send thread blocks 

to the same GPU, but a kernel cannot start its execution 

until the previous one has finished

• In Kepler, we can execute simultaneously up to 32 

kernels launched from different:

– MPI processes, CPU threads (POSIX threads) or CUDA streams

• This increments the % of temporal occupancy on the 

GPU
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Without Hyper-Q
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With Hyper-Q
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Six Ways to Improve Code on Kepler
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Dynamic Work Generation
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Parallelism based on Level of Detail
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Grid Management Unit
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Software and Hardware Queues
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Software and Hardware Queues
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Instruction Issue and Execution
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Data-Dependent Parallelism
• The simplest possible parallel program:

– Loops are parallelizable

– Workload is known at compile-time
for i = 1 to N

for j = 1 to M

convolution(i,j);

• The simplest impossible program:
– Workload is unknown at compile-time.

– The challenge is data partitioning
for i = 1 to N

for j = 1 to x[i]

convolution(i,j);
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Data-Dependent Parallelism

• Kepler version:

__global__ void convolution(int x[])

{

for j = 1 to x[blockIdx] 

// Each block launches x[blockIdx] 
// kernels from GPU

kernel <<< ... >>> (blockIdx, j) 

}

// Launch N blocks of 1 thread

// on GPU (rows start in parallel)

convolution <<< N, 1 >>> (x); 

• Up to 24 nested loops supported in CUDA 5.0
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Recursive Parallel Algorithms prior 

to Kepler

• Early CUDA programming model did not 
support recursion at all

• CUDA started to support recursive functions 
in version 3.1, but they can easily crash if the 
size of the arguments is large

• A user-defined stack in global memory can be 
employed instead, but at the cost of a 
significant performance penalty

• An efficient solution is possible using 
dynamic parallelism
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Parallel Recursion: Quicksort
• Typical divide-and-conquer algorithm hard to do 

on Fermi
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Quicksort
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Quicksort Results
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Maxwell 
(2nd generation)

Released in 2014

Material by Mark Harris (NVIDIA) 
and others
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Energy Efficiency

Performance per Watt

GTX 680: Kepler GTX 980: Maxwell
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New Features
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New Features

• Improved instruction scheduling

– Four warp schedulers per SMM, no shared 
core functional units

• Increased occupancy

– Maximum active blocks per SMM has doubled

• Larger dedicated shared memory

– L1 is now with texture cache

• Faster shared memory atomics

• Broader support for dynamic parallelism
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Graphics
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Pascal

Released in 2016
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Key New Features

• Smaller manufacturing process

– 16 nm vs. 28 nm of previous generations

• Much faster memory

• Higher clock frequency 

– 1607 MHz vs. 1216 MHz

• Dynamic load balancing including graphics 

pipeline

• Page Migration Engine
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NVIDIA DGX-1

81



82



AMD RX Vega

• Will be released soon

• 8/16 GB high bandwidth memory (HBM2)

• 14 nm production process

• 12 TFLOPS expected

– Compared to 11 TFLOPS of NVIDIA GTX 

Titan X

• 4096 cores
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CUDA 4.0
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CUDA 4.0 Release

• March 2011

• Independent software release

• Unlike:

– CUDA 1.0 released with G80/G9x in 2007 

(nearly a year later than the hardware) 

– CUDA 2.0 released for GT200 in 2008 

– CUDA 3.0 released for Fermi in 2009
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CUDA 4.0 – Application Porting

• Unified Virtual Addressing

• Faster Multi-GPU Programming

– NVIDIA GPUDirect 2.0

• Easier Parallel Programming in C++

– Thrust
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Easier Porting of Existing Applications

Share GPUs across multiple 
threads 

• Easier porting of multi-
threaded apps 
– pthreads / OpenMP threads 

share a GPU 

• Launch concurrent kernels 
from different host threads 
– Eliminates context switching 

overhead 

• New, simple context 
management APIs 
– Old context migration APIs 

still supported 

Single thread access to all 
GPUs 

• Each host thread can now 
access all GPUs in the 
system 
– One thread per GPU 

limitation removed 

• Easier than ever for 
applications to take 
advantage of multi-GPU 
– Single-threaded applications 

can now benefit from 
multiple GPUs 

– Easily coordinate work 
across multiple GPUs
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No-copy Pinning of System Memory

• Reduce system memory usage and CPU 

memcpy() overhead 

– Easier to add CUDA acceleration to existing 

applications 

– Just register malloc’d system memory for async

operations and then call cudaMemcpy() as usual 

89



New CUDA C/C++ Language Features

• C++ new/delete 

– Dynamic memory management 

• C++ virtual functions 

– Easier porting of existing applications 

• Inline PTX 

– Enables assembly-level optimization 
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GPU-Accelerated Image Processing

• NVIDIA Performance Primitives (NPP) library
– 10x to 36x faster image processing

– Initial focus on imaging and video related 
primitives
• Data exchange and initialization

• Color conversion

• Threshold and compare operations

• Statistics

• Filter functions

• Geometry transforms

• Arithmetic and logical operations

• JPEG
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Layered Textures – Faster Image Processing

• Ideal for processing multiple textures with same size/format 

– Large sizes supported on Tesla T20 (Fermi) GPUs (up to 16k 

x 16k x 2k) 

– e.g. Medical Imaging, Terrain Rendering (flight simulators), 

etc. 

• Faster Performance 

– Reduced CPU overhead: single binding for entire texture array 

– Faster than 3D Textures: more efficient filter caching 

– Fast interop with OpenGL / Direct3D for each layer 

– No need to create/manage a texture atlas 

• No sampling artifacts 

– Linear/Bilinear filtering applied only within a layer 
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NVIDIA GPUDirect:Towards

Eliminating the CPU Bottleneck 
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Before GPUDirect 2.0

Two copies required
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GPUDirect 2.0: Peer-to-Peer 

Communication
Only one copy required
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GPUDirect 2.0: Peer-to-Peer 

Communication 
• Direct communication between GPUs 

– Faster - no system memory copy overhead 

– More convenient multi-GPU programming 

• Direct Transfers 
– Copy from GPU0 memory to GPU1 memory 

– Works transparently with UVA 

• Direct Access 
– GPU0 reads or writes GPU1 memory (load/store) 

• Supported on Tesla 20-series and other Fermi 
GPUs 
– 64-bit applications on Linux and Windows
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Unified Virtual Addressing

• No UVA: Multiple 

Memory Spaces

• UVA: Single Address 

Space
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Unified Virtual Addressing

• One address space for all CPU and GPU memory 

– Determine physical memory location from pointer 
value 

– Enables libraries to simplify their interfaces (e.g. 
cudaMemcpy) 

• Supported on Tesla 20-series and other Fermi 
GPUs 
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New Developer Tools

• Auto Performance Analysis: Visual Profiler

– Identify limiting factor

– Analyze instruction throughput

– Analyze memory throughput

– Analyze kernel occupancy

• C++ Debugging 

– cuda-gdb for MacOS

• GPU Binary Disassembler
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CUDA 5.0

Mark Harris 

Chief Technologist, GPU 

Computing
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Open Source LLVM Compiler

• Provides ability for anyone to add CUDA to new 

languages and processors
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NVIDIA Nsight, Eclipse Edition

102

For Linux and Mac OS



CUDA 4: Whole-Program 

Compilation & Linking
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CUDA 5: GPU Library Object 

Linking
• Separate compilation allows building independent 

object files

• CUDA 5 can link multiple object files into one 
program

• Can also combine object files into static libraries
– Link and externally call device code
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CUDA 5: GPU Library Object 

Linking

• Enables 3rd party 

closed-source 

device libraries

• User-defined device 

callback functions
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CUDA 5.0: Run-time Syntax and 

Semantics
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CUDA 6.0

Manuel Ujaldon

Nvidia CUDA Fellow

Computer Architecture 

Department

University of Malaga (Spain)
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CUDA 6 Highlights

• Unified Memory:
– CPU and GPU can share data without much programming 

effort

• Extended Library Interface (XT) and Drop-in Libraries:
– Libraries much easier to use

• GPUDirect RDMA:
– A key achievement in multi-GPU environments

• Developer tools:
– Visual Profiler enhanced with:

• Side-by-side source and disassembly view showing.

• New analysis passes (per SM activity level), generates a kernel 
analysis report.

• Multi-Process Server (MPS) support in nvprof and cuda-
memcheck

• Nsight Eclipse Edition supports remote development (x86 
and ARM)
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CUDA 6.0: Performance 

Improvements in Key Use Cases

• Kernel launch

• Repeated launch of the same set of 

kernels

• cudaDeviceSynchronize()

• Back-to-back grids in a stream

109



Unified Memory

110



Unified Memory Contributions

• Creates pool of managed memory between 
CPU and GPU

• Simpler programming and memory model:
– Single pointer to data, accessible anywhere

– Eliminate need for cudaMemcpy(), use 
cudaMallocManaged()

– No need for deep copies

• Performance through data locality:
– Migrate data to accessing processor

– Guarantee global coherency

– Still allows cudaMemcpyAsync() hand tuning
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Memory Types
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Additions to the CUDA API

• New call: cudaMallocManaged()
– Drop-in replacement for cudaMalloc() allocates 

managed memory

– Returns pointer accessible from both Host and 
Device

• New call: cudaStreamAttachMemAsync()
– Manages concurrency in multi-threaded CPU 

applications

• New keyword: __managed__
– Declares global-scope migratable device variable

– Symbol accessible from both GPU and CPU code
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Code without Unified Memory
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Code with Unified Memory

• What remains the same:
– Data movement

– GPU accesses a local 
copy of text

• What has changed:
– Programmer sees a 

single pointer

– CPU and GPU both 
reference the same object

– There is coherence
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CUDA 7.0

By Mark Harris
NVIDIA
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New Features: C++11

• C++11 features on device including: 

– auto, 

– lambda, 

– variadic templates, 

– rvalue references, 

– range-based for loops
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Example
#include <initializer_list>

#include <iostream>

#include <cstring>

// Generic parallel find routine. Threads search through the

// array in parallel. A thread returns the index of the 

// first value it finds that satisfies predicate `p`, or -1.

template <typename T, typename Predicate>

__device__ int find(T *data, int n, Predicate p)

{

for (int i = blockIdx.x * blockDim.x + threadIdx.x;

i < n;

i += blockDim.x * gridDim.x)

{

if (p(data[i])) return i;

}

return -1;

}
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// Use find with a lambda function that searches for x, y, z

// or w. Note the use of range-based for loop and 

// initializer_list inside the functor, and auto means we 

// don't have to know the type of the lambda or the array

__global__

void xyzw_frequency(unsigned int *count, char *data, int n)

{

auto match_xyzw = [](char c) {

const char letters[] = { 'x','y','z','w' };

for (const auto x : letters) 

if (c == x) return true;

return false;

};

int i = find(data, n, match_xyzw);

if (i >= 0) atomicAdd(count, 1);

}
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int main(void)

{   

char text[] = "zebra xylophone wax";

char *d_text;

cudaMalloc(&d_text, sizeof(text));

cudaMemcpy(d_text, text, sizeof(text),cudaMemcpyHostToDevice);

unsigned int *d_count;

cudaMalloc(&d_count, sizeof(unsigned int));

cudaMemset(d_count, 0, sizeof(unsigned int));

xyzw_frequency<<<1, 64>>>(d_count, d_text, strlen(text));

unsigned int count;

cudaMemcpy(&count, d_count, sizeof(unsigned int), cudaMemcpyDeviceToHost);

std::cout << count << " instances of 'x', 'y', 'z', 'w'"

<< "in " << text << std::endl;

cudaFree(d_count);

cudaFree(d_text);

return 0;
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Other Features

• Thrust version 1.8

– Thrust algorithms can now be invoked from 
the device

• cuSOLVER, cuFFT

– cuSolver library is a high-level package based 
on the cuBLAS and cuSPARSE libraries

• Runtime compilation

– No need to generate multiple optimized 
kernels at compile time

121



CUDA 8.0

By Milind Kukanur
NVIDIA

122



What’s New

123



Unified Memory

• Oversubscribe GPU memory, up to system 

memory size

void foo() {

// Allocate 64 GB

char *data;

size_t size = 64*1024*1024*1024;

cudaMallocManaged(&data, size);

}
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Unified Memory

__global__ void mykernel(char *data) {

data[1] = ‘g’;

}

void foo() {

char *data;

cudaMallocManaged(&data, 2);

mykernel<<<...>>>(data);

// no synchronize here

data[0] = ‘c’;

cudaFree(data);

}
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